Operator's Manual

Model 9210 300 MHz
Programmable
Pulse Generator

LeCroy

Innovators in Instrumentation

Corporate Headquarters
700 Chestnut Ridge Road
Chestnut Ridge, NY 10977-6499
Tel: (914) 578-6020, Fax: (914) 589-5985
European Headquarters
2, chemin-Pre-de-la Fontaine 1217 Meyrin 1
Geneva, Switzerland
Tel.: (022) 7192111
Copyright© March 1, 1995, LeCroy. All rightsreserved. Information in this publication supersedesall earlier versions. Specifications subject to changewithout notice.

TABLE OF CONTENTS

19210 QUICK START 1
Purpose 1
Quick Start Instructions 1
2 GETTING AROUND THE FRONT PANEL 5
Accessing the Control Displays 5
Selection of Parameters 6
Adjusting Parameters with the Numeric Keypad 7
Adjusting Parameters with the Rotary Knob 7
Non-Numeric Entries 8
Storing \& Recalling Setups 8
Executing Action Commands 9
Manually Triggering the Generator 11
Alternate Parameter Formats 11
Restoring Local Control 11
Module Controls - Enabling or Inverting the Pulse Output. 12
Power - Turning the Generator On \& Off 13
3 CHANNEL A \& B CONTROLS 15
General Information 15
Controlling Vertical Characteristics 15
Width - Controlling Horizontal Duration 17
Delay - Controlling Horizontal Position 20
Controlling Transition Rates 21
Dynamic Range and Transition Rates 24
Double Pulse Operation. 25
Controlling Repetition Rate 26
Parameter Conflicts 27
Load Compensation. 30
Logic Family Presets 32
Limiting the Output Levels 32
Module Considerations 32
4 TRIGGER CONTROLS 39
General Information 39
The Trigger Output 39
The Trigger Input 39
Frequency Counter 40
Trigger Modes 41
Normal Mode 41
Single Mode 42
Gate Mode 43
Burst Mode 44
External Width Mode 46
Double Pulse Interactions 47
Normal Mode 47
Single Mode 47
Gate Mode 47
Burst Mode 47
External Width Mode 48
Setting the Trigger Level and Slope 48
Setting the Trigger Level Automatically 48
Parameter Limits and Triggering 49
Setting the Internal Trigger Rate 49
Using The Manual Trigger Button 49
Adjusting the Trigger Output Offset 50
Selecting the Trigger Input Impedance 51
Trigger Output Presets 51
5 THE "MORE" MENU - UTILITIES AND FEATURES 53
Invoking Self-Calibration 53
Invoking Selftest 55
Calibration and Selftest Results 56
Monitoring the GPIB Interface 57
Testing the User Interface 57
The Configuration Menu. 58
The Screen Saver 58
Disabling the Touch Screen 59
Display Brightness 59
Temperature Compensation 59
6 REMOTE OPERATIONS 61
General Information 61
Terminology 61
Numeric Representation 61
Header Compounding 62
Coupled Commands 62
Responses 62
Status Reporting 63
Common Commands 63
7 GPIB COMMANDS 65
General Information 65
Commands Which Correspond To Local Controls 66
*CAL 66
*RCL 67
*SAV 67
*TRG 67
*TST 68
AMP 68
AUTOL 69
BASE 69
BC 70
BRI 70
DBL 71
DEL 71
DISA 72
DISP 72
DUTY 73
FREQ 73
INV 74
LEAD 74
LIM 75
LVH 75
LVI 76
LOADC 77
MED 78
OUT 79
OUTBar 79
PER 80
PHA 80
SCRNSAVE 81
SLEW 81
SLEW T 82
TEMPC 83
TOUCH 83
TRAIL 84
TRIM 84
TRLV 85
TRMD 85
TROV 86
TROV SET 86
TRSL 87

Table of Contents

VHI 87
VLO 88
VSET 89
WID. 89
Commands Which Have No Corresponding Local Controls 90
*CLS 90
*ESE 90
*ESR 91
*IDN. 91
*LRN 91
*OPC 92
*OPT 93
*RST 93
*SRE 94
*STB 94
*WAI 95
CHDR 95
CHK 96
DEGC_CHG 96
ERR. 97
MSG 97
TER 98
APPENDIX A Specifications 99
LeCroy 9210300 MHz Programmable Pulse Generator Mainframe 99
LeCroy 9211250 MHz , Variable Edge Output Module. 105
LeCroy $9212300 \mathrm{MHz}, 300 \mathrm{psec}$, Variable Edge Output Module. 109
LeCroy 9213.50 MHz 16 V Amplitude_Output Module. 113
LeCroy $9214300 \mathrm{MHz}, 300$ psec, Fixed Edge Output Module. 116
APPENDIX B Warranty 119
Unpacking and Inspection. 119
Warranty 119
Calibration 120
Documentation Discrepancies. 120
APPENDIX C Service 121
APPENDIX D GPIB Documentation 123
General Information 123
GPIB Interface Function Subsets 123
Addressing Information 124
Restoration of Settings 124
Commands and Queries 124
Device Specific Commands 126
Data Elements 126
Query Responses 127
Implemented Commands and Queries 127
State After Calibration. 127
Identification Response 128
Reset, Save, Recall and Learn 128
Selftest 129
Status Data Structure 136
Sequential Processing 139
Operation Complete 139
Additional Notes 140
APPENDIX E Error Messages 141
GPIB Error Queue 141
Command Frrors 142
Execution Errors 146
Query Errors 147
Device Specific Errors 148
Displayed Error Messages 151
APPENDIX F Glossary 159
Ampl 159
Base 159
Burst Mode 159
Delay 161
Double Pulse 162
Duty Cycle 162
External Width Mode 163
Frequency 163
Gate Mode 164
Lead 164
Load Compensation. 165
Median 165
Normal Mode 165
Period 166
Phase 167
Single Mode 167
Slew 168
Temperature Compensation 168
Trail 168
Trigger Level 169
Trigger Slope 169
Trigger Output Level 169
Vhigh 169
Vlow 169
Width 170
Appendix G 9210 Pulse Generator Manual Addenda 171
Important Notice 171
For Mainframe Firmware Versions 2.7 and up 171
For 9212 users with Module Firmware Versions 1.6 and up 172
Firmware Versions 2.8 and up 172
Changes and additions to 9112 Output Module Specifications 172
Additional Feature for the 9212 Output Module 173
Appendix H 9210-50/250 100 MHz Pulse Generator Mainframe Specifications 175
Important Notice 175
Timing Characteristics 175
Inouts and Outputs 176
Programmability 177
Triggering Modes 178
Operating Features 178
Additional Capabilities 179
Environmental 179
Power 179
Miscellaneous. 180
Appendix I 921550 MHz , 15V Amplitude Output Module Specifications 181
Timing Characteristics 181
Pulse Performance 182
Appendix J 9211MOD100 100 MHz Output Module Specifications 185
Timing Characteristics 185
Output Characteristics 185
Output Levels. 185
Pulse Performance. 187
Module Controls. 188
INDEX 189

9210 QUICK START

Purpose

The intent of this chapter is to familiarize the first-time user of the LeCroy 9210 Pulse Generator with the instrument's uniquely user-friendly control scheme. The information presented herein is intended to "get you up to speed" in as short a time as possible. Detailed answers to specific questions that may arise will be found in other chapters.

Quick Start Instructions

1) To install an Output Module into slot A of the 9210 Pulse Generator Mainframe, push open the leftmost of the two self-closing cover doors on the right side of the 9210 front panel, and make sure that the module is properly placed in the guide rail. Tilt the module's front panel downwards slightly to assure proper alignment. Firmly push the module back into the mainframe assembly until it seats properly and the module front panel is approximately flush with the mainframe front panel. Do not force modules into position, as doing so may damage the connectors at the rear of the module or their mating connectors in the mainframe.

Repeat this installation procedure for module position B if a second output module is used.

NOTE: Mainframe power should be OFF when inserting and removing output modules.
2) Connect the 9210 to a power source that meets the instrument specification; $115 / 220$ VAC $\pm 20 \%, 48 \mathrm{~Hz}$ to 448 Hz . The 9210 will automatically adjust to the local line voltage.
3) Make certain that the Main Circuit Breaker/Line switch, on the rear panel, is in the ON position.

4) Push the front panel [POWER] key. The 9210 will perform power-up calibration for approximately 30 seconds, then display the Channel A control menu screen.
5) Most of the pulse parameters and their controls are accessed by touching the CRTkeys on the TouchCRT. Throughout this manual, the following symbols will be used to distinguish soft CRTkeys from actual front panel pushbuttons:
\{Width \quad CRTkey
[Invert] Front Panel Key
6) Touch \{Period\}. The key should highlight.
7) Release the CRTkey and turn the Outer Ring Knob (range). The Period changes in a 1-2-5 sequence.
8) Turn the Center Knob (vernier). The Period will change smoothly.
9) Try varying the sensitivity of the vernier Knob using the [\leftarrow Digit] and [Digit \rightarrow] keys.
10) Change the Period to 1.5 microseconds by pressing [1], [.], [5], [u/MHz].
11) Press [Recall Setup], and touch \{Standard\} and \{Execute\} to recall the factory default setup. The generator will now be in the NORMAL trigger mode, which is free running.
12) Connect the OUTPUTof the Module to a vertical input of an oscilloscope with a 50Ω cable, terminated at the scope end.
13) Press [Disable] on the Module to enable the Output. Adjust the scope to see the Pulse stream. Verify that the parameters on the generator's CRT match those of the scope trace.
14) Touch $\{$ Vhigh \}, and turn the vernier knob to vary the Pulse high level.
15) The pulse parameters are defined below. Vary each and observe its effect on the scope trace. Note that the highlighted portion of the pulse icon on the display's upper right indicates graphically what has been selected for adjustment.
> \{Vhigh \} High level. This is the active level if Invert is not on.

\{VIow\} Low level. This is the quiescent level if Invert is not on.

\{Width\}	Pulse Width is measured from the start of the leading edge to the start of the trailing edge.
\{Delay\}	Delay of the module Pulse output from the Trigger output, not including a fixed delay of typically 13 nsec. This also controls the time between the 2 pulses in double pulse mode.
\{Lead\}	Leading edge transition time, 10% to 90%.
\{Trail\}	Trailing edge transition time, 10% to
90\%.	
NOTE:	Transition times (\{Lead\} and \{Trail\}) cannot be varied in the 9214 module.
\{2 Pulse\}	Turns double pulse mode ON or OFF.
\{Period\}	Defines the time between Output Pulses in NORMAL, GATE and BURST
trigger modes.	

GETTING AROUND THE FRONT PANEL

Accessing the Control Displays

Control Menus are brought to the 9210 's display by pressing one of the five blue DISPLAY keys on the front panel. Press [TRIGGER] once to bring up the main Trigger control menu display. Press [TRIGGER] again and a second page of less frequently used trigger controls will be displayed. Repeated presses of the key will toggle the display between these two menus. The other four DISPLAY keys operate in a similar manner. See the table below for details.

Keys	Display
	Channel Parameter Menu (2 pages)
Trigger	Trigger Parameter Menu (2 pages)
MORE	Utilities and Features Menu
HELP	On-Screen Operating Summary

Selection

The selected parameter is the one that is highlighted (backlit). Parameters are selected by touching their corresponding CRTkey, or by pressing the SELECT [$\uparrow],[\downarrow]$ keys on the front panel until the desired parameter is highlighted. Note that when making selections with the CRTkeys, the selection process is not completed until the key is released.

NOTE: If a 9214 module is installed in one of the module bays, the \{Lead\} and \{Trail\}
CRTkeys will not be displayed in that channel's menu.

Adjusting Parameters with the Numeric Keypad

Non-Numeric Entries

Storing \& Recalling Setups

Certain of the 9210's control parameters are non-numeric in nature. Examples are the Load Compensation feature, which can be turned on or off, and the Trigger Mode, which can assume one of five of states. The state of such parameters can be set by turning the Outer Ring Knob or by pressing either Digit Select Key.

The 9210 system can store up to 16 setups, including all output pulse and trigger parameters and operating conditions. To store a setup once all settings have been established, press [Store Setup]. The display will change, and a prompt will request a number. Assign a number from 0 to 15 to the setup and enter that number using the Numeric Keypad and [Enter/Hz].

To recall a setup, press [Recall Setup]. The display will change, and a prompt will ask for a setup number. Enter the number of the desired setup using the Numeric Keypad and $[E n t e r / H z]$. The factory default settings (see the table at the end of Chapter 3, "Channel A \& B Controls") can also be recalled from this screen, by touching \{Standard\} and \{Execute\}. Additionally, the \{Previous\} setup (i.e., the state before the last recall) can be recalled from this screen in a similar manner.

Attempting to recall a setup that has not been previously stored will generate an error message. If a setup file is stored with one output module type installed in a given position, and is later recalled with a different type of module in that position, an error message is generated and the parameters will be set as closely as the new module's capabilities will allow.

Executing Action Commands

Some CRTkeys invoke actions instead of selecting parameters, but these actions do not take place immediately upon releasing the key. A confirmation box will appear on the screen, and \{Execute\} must be touched to continue with the selected action. If the action key was touched in error, \{Cancel\} can be touched and the action will not occur.
\{Cal\}, at the top of the More menu page is an example of an action key. The key is used to initiate a self-calibration cycle. When the key is touched, a box appears at the bottom of the display containing two new CRTKeys, \{Execute\} and \{Cancel\} (see figure below). If \{Execute\} is touched, the 9210 will proceed to calibrate itself. If \{Cancel\} is touched, no action will occur.

If the TouchCRT has been disabled by the user (see section entitled "Disabling the Touch Screen" in Chapter 5), action commands can be executed by using the SEIECT $\uparrow\}_{d}[d]$ keys to highlight the appropriate CRTkey, then pressing [Enter/Hz]. This will bring the confirmation box mentioned above to the screen, with \{Execute\} highlighted. Press [Enter/Hz] to begin the action, or SELECT [\downarrow] to highlight \{Cancel\}, and [Enter/Hz] to cancel the command request.

Manually Triggering the Generator

Alternate

Parameter

Formats

Restoring Local Control

In Single, Burst, Gate and External Width Trigger modes, pressing [Manual] will trigger the generator, just as if a triggering signal had been delivered to the adjacent Ext Input connector. In Gate and External Width modes, the output continues for as long as the button is held in. See Chapter 4 (Trigger Controls) for further details.

Certain pulse parameters may be controlled in alternate formats. \{Period\}, for example, displays and controls the time interval between pulses. If you press
[CHANGE FORMAT] while \{Period\} is selected, the display will change to \{Freq\}. Now, you can control and read back the frequency at which pulses are output. Alternate formats are also available for other parameters, and these are detailed in Chapter 3. The available formats for a given parameter may be cycled through by repeated presses of the[CHANGE FORMAT] key. If no other formats are available for the selected parameter, a message will appear to tell you so.

Front panel control capability can be restored to a 9210 that is operating under GPIB control, if Local Lockout has not been invoked by the Bus Controller, by pressing [LOCAL] under the GPIB heading. The Remote LED will be lit while the Generator is under bus control, and will go out when [LOCAL] is pressed. If the Bus Controller has asserted Local Lockout, pressing [LOCAL] will have no effect. See Chapters 6, 7, and Appendices D and E for more GPIB related details.

Module Controls
 - Enabling or Inverting the Pulse Output

By factory default settings, the 9210 will initially power up with the Pulse Outputs from the modules disabled. Since the generator saves its state when power is turned off, this may only be true the very first time power is applied.

The output amplifiers of all the 9210 's Output Modules connect to the outside world via a relay. This allows the module to protect itself from over-voltage conditions at its output by opening the relay (i.e., disabling the output) when such a condition is sensed. The [Disable] key on the module front panel acts as a toggle controlling the state of the output relay.

When the module's Output is disabled (i.e., when the red LED next to the key is lit), the relay is open and no Output pulses can be obtained. Also note that the legend DIS is displayed on the right side of the information window at the bottom of that module's control menu. In this case, pressing [Disable] will turn the LED off, remove the DIS legend from the display, and close the relay, thus enabling the Output.

The Output inversion function is also controlled by a key on the module's front panel. By our definition, when Invert is OFF, the True Output is more positive in the active state than in the quiescent state. Pressing [Invert] in this situation will make the True Output more negative in the active state than in the quiescent state.

The Invert function will automatically be invoked anytime a negative amplitude is requested.

Like [Disable], [Invert] acts as a toggle. Accordingly, pressing [Invert] when Invert is ON will turn it OFF. A yellow LED next to the key will be lit when Invert is ON.

Power - Turning the Generator On \& Off

The 9210's power supply will automatically adjust to local power line voltages of 115 or $220 \mathrm{VAC}, \pm 20 \%$ and to line frequencies between 48 Hz and 448 Hz . Just attach the power cord to the rear panel connector and plug it in. The Main Circuit Breaker switch on the rear panel should always be left in the ON position. This is a true circuit breaker, which will trip if the generator draws line current in excess of 5 Amps . The square, white [On/Disable] key, under the POWER heading on the front panel acts as a toggle. Pressing this key will turn the generator on and off.

3

 CHANNEL A \& B CONTROLSIn most cases, the controls for Channels A and Channel B operate identically, regardless of which Output Module is installed in which slot. Considerations specific to the Model 9211, 92129213 and 9214 Output Modules will be presented at the end of this chapter.

The term Pulse Output, as used in this chapter, refers to the signal at the Module's True Output, which is the upper connector, labeled OUTPUT, on the module's front panel. Some modules have a Complementary Output, labeled OUTPUT. This output will carry a signal of the same voltage levels as the True Output, but with opposite signal orientation

Controlling Vertical Characteristics

\{Vhigh\}: This is the active level of the Output Pulse if Invert is off, or the quiescent level if Invert is on.

This is the quiescent level of the Output Pulse if Invert is off, or the active level if Invert is on.

The signal levels indicated by the Control Menu Display will be delivered into a 50.00Ω load, or into any load connected to the module output within the compensation range if the load compensation feature is enabled. See the section entitled Load Compensation, later in this chapter, for further details.

Channel Menu showing Default Parameter Formats.

Ampl	\cdots	50 mV
Base	$\cdots \cdot$	0 V

Duty Cy .. 20.00\%
Phase - 0.0 p
Slew F ${ }_{10}^{00}$.. $\quad 400 \frac{\mathrm{v}}{\mathrm{us}}$
Slew ${ }^{\text {E }}{ }_{90}^{10}$.. $\quad 400 \frac{\mathrm{v}}{\mathrm{us}}$

2 Pulse …... off
Main

Normal 『50	DIS

Channel Menu showing Alternate Parameter Formats. NOTE: In a 3rd vertical format, the 2nd line is Median.

Pressing [CHANGE FORMAT] with either \{Vhigh\} or \{VIow\} selected will change the display for both parameters. The second vertical format controls the Output Pulse in the following manner:
\{Ampl\}: This is the Pulse Amplitude, i.e., the difference between the quiescent and active levels of the Output Pulse.

This is the quiescent level of the Output Pulse. Note that this value changes when the Output Pulse is inverted.

Pressing [CHANGE FORMAT] with either \{Base\} or \{Ampl\} selected will change the display for the \{Base\} parameter to $\{$ Median $\}$. In this third vertical format, the controls function like this:
\{Ampl\}: Pulse Amplitude (see above)
\{Median\}: This is the midpoint between the quiescent
\{Median\}: and active levels of the Output Pulse.
In this format, changes in Amplitude will occur symmetrically about the Median.

Note that in all of the vertical formats, any time a negativegoing Output Pulse or a negative Amplitude is requested, Invert will be turned ON .

The horizontal (time) duration of the Output pulse is controlled by third entry on the first page of the Channel menu display, whose default format is \{Width\}. This format provides control in the following manner:
\{Width\}: \quad This parameter directly defines the time interval during which the Output Pulse is in the active state.

NOTE: By the accepted convention among manufacturers of programmable pulse generators, pulse width includes the entire transition time from the quiescent state to the active state, and excludes the entire transition time from active to quiescent. This convention allows pulse duration and edge rates to be independently adjusted, without affecting one another. However, this definition can differ significantly from the FWHM (Full Width, Half Max) definition, used by digital oscilloscopes for measuring pulse width, if the leading and trailing edge rates are not equal.

Changing Repetition Rate in the Duration Formats

Pressing [CHANGE FORMAT] while $\{$ Width $\}$ is selected changes this parameter's display to \{Duty Cy\}. This changes the mode of control over the duration of the Output Pulse as follows:
\{Duty Cy\}: Duty Cycle defines the percentage of the \{Period\} (see below) over which the Output pulse is in the active state.

In \{Duty Cy\} mode, the Output Pulse duration varies proportionally with the \{Period\}, while in \{Width\} mode the duration is unaffected by \{Period\}.

Duty Cycle mode is merely a method the generator uses to derive pulse $\{$ Width $\}$ values. In modes where $\{$ Period $\}$ has no operational meaning (such as Single trigger mode see Chapter 4), the $\{$ Width \} is determined by \{Duty Cy\} X \{Period\} $\times 0.01$.

Delay Controlling Horizontal Position

Control of the Output Pulse's horizontal (time) position is provided by the fourth line of the first page of the Channel menu display. This control is effected as follows:
\{Delay\}: This parameter defines the time interval from the Trigger Output to the Output Pulse, excluding a fixed time offset of approximately 13 nsec . See Chapter 4 (Trigger Controls) for more details about the Trigger Output in the various Trigger Modes.

If [CHANGE FORMAT] is pressed while \{Delay\} is selected, The displayed name for this parameter changes to \{Phase\}. The mode of parametric control is changed as follows:
\{Phase\}: Phase mode provides delay control in a manner proportional to $\{$ Period\}, similar to the way Duty Cycle format controls pulse duration. In this operating mode, the pulse's position is expressed as a phase angle, with $0_{\text {_ }}$ corresponding to the minimum \{Delay\} setting (i.e. the offset). This phase angle is maintained as \{Period\} is varied. When \{Phase\} has been set, the Pulse $\{$ Delay $\}=$ \{Phase\}/360 X \{Period\}.

Resolution in \{Phase\} format is always 0.1 _ (i.e. one part in 3600). Depending upon the \{Period\} setting, this may be more or less resolution than the \{Delay\} format provides.

Controlling Transition Rates

The fifth and sixth lines of the first page of a Channel menu display control the Output Pulse's transition time (edge speed). The default format for these parameters provide control as follows:
\{Lead\}: This controls the time required for the leading edge of the Output Pulse to make the transition from 10% to 90% of its total amplitude.
\{Trail\}: This controls the time required for the trailing edge of the Output Pulse to make the transition from 90% to 10% of its total amplitude.

Changing Repetition Rate in the Position Formats

Pressing [CHANGE FORMAT] when either \{Lead\} or \{Trail\} is selected will change the display for both these parameters to \{Slew\}. Note that the icon within each CRTkey denotes which edge's slew rate that key will control. The mode of control changes as follows:
\{Slew\}: Slew Rate defines the slope of the selected edge during its 10% to 90% (or 90% to 10%) transition.

Changing Amplitude in the Transition Time formats

Dynamic Range and Transition

 RatesIt follows from the parameter definitions that changing the amplitude of the Output Pulse in \{Lead\}/\{Trail\} mode will cause a change in the edge slopes, while in \{Slew\} mode, the slopes will remain constant.

Note that in the 9214 module, transition time is a fixed parameter. Therefore, \{Lead\}, \{Trail\}, and \{Slew\} cannot be adjusted in that module. Additionally, the \{Slew\} format is not supported in the 9212 module.

In the 9211 and 9213 Output modules, linear edge transitions are created by the charging (or discharging) of capacitors by a programmable current source. The wide range of edge speeds offered by these modules is achieved by switching among a series of capacitors in ranges appropriate to the edge rates requested. This results in each of these modules having several edge speed ranges. Each range covers a span of values of approximately 25:1. Additionally, each range overlaps the next slower range over an area of about $2.5: 1$, except at the boundary of the two fastest ranges, where the overlap is $2: 1$.

If an attempt is made to create a pulse with edge speeds sufficiently different from one another as to exceed the boundaries of a given range, priority will be given to the currently selected edge. The range will be switched to accommodate the value requested for the selected edge, the displayed value for the other edge will be updated, and an asterisk (*) will be placed on the display to the left of the other edge's CRTkey, to alert the user that the value has been altered due to the change in ranges. The previous value for the unselected edge is saved in memory and will be restored when possible (i.e. when the boundary range is re-crossed by the selected edge). For information about the range boundaries for a given Output Module, see the Module's Technical Data Sheet.

Double Pulse Operation

The state of the Double Pulse operating mode is controlled by the \{2 Pulse\} CRTkey. In Normal and Single Trigger modes, when $\{\mathbf{2}$ Pulse $\}$ is OFF, one Output Pulse will follow each Trigger Output. Turning \{2 Pulse\} ON in either of these trigger modes will result in two Output Pulses for each Trigger Output. Be aware that \{Delay\} must be set to a value greater than \{Width\} in order to see the second pulse.

Note that the first of the two Output Pulses in this operating mode will occur approximately 2 nsec sooner than a single Output Pulse programmed for zero delay will. In other words, the delay offset for Double Pulse operating mode is about 2 nanoseconds less than in the standard operating mode.

Double Pulse Operation is compatible with all Trigger Modes except External Width. See the section entitled "Double Pulse Interactions" in Chapter 4 (Trigger Controls) for further details.

Controlling Repetition Rate

The last line of the first page of a Channel menu display provides control over the Output Pulse repetition rate. The default format is:
\{Period\}: This defines the time between Output Pulses in Normal, Burst and Gate Trigger Modes.

Pressing [CHANGE FORMAT] when \{Period\} is selected will change the display for this parameter to:
\{Freq\}: \quad This controls the frequency of Output Pulses in Normal, Burst and Gate Trigger Modes.

The difference between these formats is only in the way the rate is specified, and not in any sense an operational difference. This parameter has meaning in Single Trigger Mode only if the pulse duration is specified in \{Duty Cy\} format, in which it is used to calculate the Output Pulse's Width, or if pulse position is specified in \{Phase\} format, where \{Period\} will be used to calculate the Delay See the "Trigger Modes" section of Chapter 4 for further details.

This parameter is also available on the first page of the Trigger menu.

Parameter Conflicts

It is possible that while adjusting the parameters detailed above, a situation will arise where the requested parameter set is in violation of the basic parameter definitions (see the Glossary, Appendix F, for a listing of the parameter definitions). In such a case, blinking question marks (?) will appear next to each of those parameters involved in the Conflict condition. This occurs when a requested set of parameters is beyond the specified range of operation due to the interaction of two or more parameters.

Pictorial representation of Pulse Parameters

Notes: 1) Duty Cycle $=($ Width $/$ Period) $\times 100 \%$
2) Phase $=\left(\right.$ Delay $/$ Period) $\times 360^{\circ}$

Guided by the requirements of your application, select from among the indicated parameters those which can be altered to both resolve the conflict and satisfy the demands of your measurement. The following conditions must be true in order to avoid conflict:

1) Vhigh > Vlow
2) Lead $<$ Width
3) Vhigh - Vlow \geq Min. Amplitude
4) Vhigh - Vlow \leq Max. Amplitude
5) 1.25 X Lead < Width
if Limits are enabled (see the section entitled Limiting the Output Levels, below):
6) Vhigh ${ }^{2}$ Vmax
7) Vlow ${ }^{3}$ Vmin
if \{2 Pulse\} is OFF and Trigger Mode is Normal, Burst or Gate:
8) Width + (1.25 X Trail) < Period
9) Width + Retrig < Period
10) Delay + Retrig < Period
if \{2 Pulse\} is ON:
11) Width + (1.25 X Trail) < Delay
12) Width + Retrig < Delay
if $\{2$ Pulse $\}$ is ON and Trigger Mode is Normal, Burst or Gate:
13) Delay + Width + (1.25 X Trail) < Period
14) Delay + Width + Retrig < Period

NOTES: The 0% to 100% transition time needed to determine conflicts is 1.25 times greater than the 10% to 90% displayed \{Lead\} and \{Trail\} times.

> "Retrig" is a time interval during which one of the 9210 's timing generators cannot be retriggered without possibly compromising proper device operation. The exact magnitude of Retrig is dependent upon several operating conditions. It is usually negligibly small and always less than 5 nsec.

Load Compensation

At the top of the second page of the Channel menu display is a CRTkey which controls the state of the 9210 's Load Compensation feature. When \{Loadcomp\} is OFF, the load is assumed to be 50.00Ω. The voltage levels delivered to the actual load, based on that assumption, may be up to two times those specified, dependent on the actual load resistance. When \{Loadcomp\} is turned ON, the generator measures the load connected to the Module Output, and calculates a correction factor. It then uses that factor to make the necessary DC corrections to deliver the displayed voltage levels to any load resistance from 47Ω to . $1 \mathrm{M} \Omega$. If the load resistance is subsequently changed, \{Loadcomp\} must be turned OFF, then ON again to recalculate the correction factor.

Channel A Page 2

Loadcomp -•••OFF

TMI set

ECL set

Limits

 OFFV max ... 500mv V min $\cdots-500 \mathrm{mv}$

Return New Page

Normal $\overline{50}$	DIS

Note that the Load Compensation algorithm used in the 9210 is valid for resistive loads only, and cannot correct for damping, ringing or oscillations caused by reactive loads, or for reflections due to transmission line mismatching. Nor can it correct for loads terminated to voltages other than ground (e.g. 50Ω to -2 V).

Logic Family Presets

Limiting the Output Levels

Module Considerations

\{TTL set\} and \{ECL set\} are action keys (see "Executing Action Commands" in Chapter 2) which allow the user to quickly assign standard logic family voltage levels to the Output Pulse.
\{TTLset\} will set \{Vlow\} to 300 mV and \{Vhigh\} to 3.5 V. If the Vertical format is other than \{Vhigh\}/\{VIow\}, it will be changed to this format .
\{ECLset\} will set \{VIow\} to -1.9 V and $\{$ Vhigh\} to -800 mV .

The last three lines of the second page of a Channel menu display provide the user with a means of limiting the requested voltage levels of the Output Pulse, to protect a delicate device under test from application of potentially harmful signal levels.

If \{Limits\} is ON, then \{Vhigh\} cannot be set above \{Vmax\}, and \{Vlow\} cannot be set below \{Vmin\}. Any attempt to exceed either limit will produce the message "Value limited to user limit". With \{Limits\} OFF, the Module's full specified output swing is available.

The 9212 and 9214 Output Modules, which feature very fast edge rates (as fast as 300 psec), have slightly different Control Menu Displays. The first pages of the menus for these two modules are pictured below. In the 9212 module, the transition times of both edges of the Output Pulse are adjusted in common. Therefore, there is no \{Trail\} CRTkey. Both edges are adjusted by selecting \{Lead\}, but the value of \{Trail\} is updated on the display. Transition time is fixed at 300 psec in the 9214 module, so there are no CRTkeys for \{Lead\} or \{Trail\} on that module's control menu.

The 9210 Mainframe's display also indicates the specified Transition Time tolerances for any given setting in the 9212. When the LEAD menu box is selected on the 9210's TouchCRT, the tolerance window will be displayed to the right of the parameter's name (where the edge symbol appears when the key is not selected). For example, when LEAD is set to 0.7 nsec , the displayed tolerance window will be $\pm 440 \mathrm{psec}$. These limits will be updated as the value is varied. Note that the tolerance window applies to the trailing edge as well as the leading edge.

Because of the very fast edges these modules can generate, the output amplifiers in the 9212 and 9214 require matching terminations on their two outputs in order to maintain proper edge fidelity. To allow the user to leave unused outputs unterminated, options have been added to the second page of the control menus for these modules to disconnect and internally terminate either of the outputs in 50Ω. This menu is shown above.

When \{Output\} is turned ON, the output relay for the module's normal outputconnects the output amplifier to the SMA connector on the front panel. When \{Output\} is turned OFF, the output relay for the module's normal output connects the output amplifier to an internal $501 / 2$ precision resistor. The same applies to \{/Output\} and the complemented output.

These CRTkeys interact with the [Disable] pushbutton on the module's front panel, which disconnects both outputs simultaneously. For example, the complementary output is only enabled when \{/Output\} is ON and [Disable] is OFF (i.e. when the red LED on the module's front panel is not lit).

In the 9212 and 9214 modules, transition times are specified from 20% to 80% of the full-scale transition, rather than from 10% to 90%. This method of specifying transition time is typical of fast transition time devices, such as ECL and GaAs logic IC's.

The table on the following page lists the factory default settings for the Models 9211, 9212,9213 and 9214 Output Modules. These are the settings which will be obtained when the \{Standard\} option is executed after the [Recall Setup] key has been pressed. The Trigger parameters listed below (from Mode through Input Z) are explained in Chapter 4, "Trigger Controls".

Default Settings for Output Modules for the LeCroy 9210 Programmable Pulse Generator				
Module	9211	9212	9213	9214
Vhigh	1.000 V	500 mV	1.000 V	500 mV
Vlow	0 mV	0 mV	0 mV	0 mV
Width	20.00 ns	2.00 ns	20.00 ns	2.00 ns
Delay	0.00 ns	0.00 ns	0.00 ns	0.00 ns
Lead	1.00 ns	0.40 ns	5.00 ns	n / a
Trail	1.00 ns	0.40 ns	5.00 ns	n / a
2 Pulse	OFF	OFF	OFF	OFF
Period	100 ns	100 ns	100 ns	100 ns
Loadcomp	OFF	OFF	OFF	OFF
Limits	OFF	OFF	OFF	OFF
Vmax	500 mV	500 mV	500 mV	500 mV
Vmin	-500 mV	-500 mV	-500 mV	-500 mV
Output	ON	ON	ON	ON
Output	ON	ON	ON	ON
Mode	Normal	Normal	Normal	Normal
Burst Ct	3	3	3	3
Level	0.10 V	0.10 V	0.10 V	0.10 V
Slope	Positive	Positive	Positive	Positive
Outlvl	0.10 V	0.10 V	0.10 V	0.10 V
Input Z	50Ω	50Ω	50Ω	50Ω
Invert	OFF	OFF	OFF	OFF
Disable	ON	ON	ON	ON

The table on the following page lists the specified limits for the parameters detailed in this chapter for the Models 9211, 9212,9213 and 9214 Output Modules. Vertical specifications listed in parentheses () apply when driving a high impedance load ($\geq 10 \mathrm{k} \Omega$), those without parentheses apply when driving 50Ω.

Output Module Parameter Limits for the LeCroy 9210 Modular Pulse Generator								
	Model 9211		Model 9212		Model 9213		Model 9214	
Parameter	Min	Max	Min	Max	Min	Max	Min	Max
\{Vhigh \}	$\begin{gathered} -4.95 \mathrm{~V} \\ (-9.90 \mathrm{~V}) \end{gathered}$	$\begin{gathered} +5.00 \mathrm{~V} \\ (+10.00 \mathrm{~V}) \end{gathered}$	$\begin{gathered} -4.50 \mathrm{~V} \\ (-4.00 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{gathered} +5.00 \mathrm{~V} \\ (+5.00 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{gathered} -7.98 \mathrm{~V} \\ (-15.96 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{gathered} +8.00 \mathrm{~V} \\ (+16.00 \mathrm{~V}) \end{gathered}$	$\begin{gathered} -4.50 \mathrm{~V} \\ (-4.00 \mathrm{~V}) \end{gathered}$	$\begin{gathered} +5.00 \mathrm{~V} \\ (+5.00 \mathrm{~V}) \\ \hline \end{gathered}$
\{Vlow\}	$\begin{gathered} -5.00 \mathrm{~V} \\ (-10.00 \mathrm{~V}) \end{gathered}$	$\begin{gathered} +4.95 \mathrm{~V} \\ (+9.90 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{gathered} -5.00 \mathrm{~V} \\ (-5.00 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{aligned} & +4.50 \mathrm{~V} \\ & (+4.00) \end{aligned}$	$\begin{gathered} -8.00 \mathrm{~V} \\ (+16.00 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{gathered} +7.98 \mathrm{~V} \\ (+15.96 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{gathered} -5.00 \mathrm{~V} \\ (-5.00 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{array}{r} +4.50 \mathrm{~V} \\ (+4.00) \\ \hline \end{array}$
\{Ampl\}	$\begin{gathered} 50 \mathrm{mV} \\ (100 \mathrm{mV}) \end{gathered} .$	$\begin{gathered} 5.00 \mathrm{~V} \\ (10.00 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & 500 \mathrm{mV} \\ & (1.00 \mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{gathered} 5.00 \mathrm{~V} \\ (10.00 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{gathered} 20 \mathrm{mV} \\ (40 \mathrm{mV}) \end{gathered}$	$\begin{gathered} 16.00 \mathrm{~V} \\ (32.00 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{array}{r} 500 \mathrm{mV} \\ (1.00 \mathrm{~V}) \\ \hline \end{array}$	$\begin{gathered} 5.00 \mathrm{~V} \\ (10.00 \mathrm{~V}) \\ \hline \end{gathered}$
\{Base\}	$\begin{gathered} -5.00 \mathrm{~V} \\ (-10.00 \mathrm{~V}) \end{gathered}$	$\begin{gathered} +5.00 \mathrm{~V} \\ (+10.00 \mathrm{~V}) \end{gathered}$	$\begin{gathered} -5.00 \mathrm{~V} \\ (-5.00 \mathrm{~V}) \end{gathered}$	$\begin{gathered} +5.00 \mathrm{~V} \\ (+5.00 \mathrm{~V}) \end{gathered}$	$\begin{gathered} -8.00 \mathrm{~V} \\ (-16.00 \mathrm{~V}) \end{gathered}$	$\begin{gathered} +8.00 \mathrm{~V} \\ (+16.00 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{gathered} -5.00 \mathrm{~V} \\ (-5.00 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{gathered} +5.00 \mathrm{~V} \\ (+5.00 \mathrm{~V}) \\ \hline \end{gathered}$
(Median)	$\begin{aligned} & -4.975 \mathrm{~V} \\ & (-9.950 \mathrm{~V}) \end{aligned}$	$\begin{gathered} +4.975 \mathrm{~V} \\ (+9.950 \mathrm{~V}) \end{gathered}$	$\begin{gathered} -4.75 \mathrm{~V} \\ (-4.50 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{gathered} +4.75 \mathrm{~V} \\ (+4.50 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & (-7.99 \mathrm{~V}) \\ & (-15.98 \mathrm{~V}) \end{aligned}$	$\begin{gathered} (+7.99 \mathrm{~V}) \\ (+15.98 \mathrm{~V}) \end{gathered}$	$\begin{gathered} -4.75 \mathrm{~V} \\ (-4.50 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{gathered} +4.75 \mathrm{~V} \\ (+4.50 \mathrm{~V}) \\ \hline \end{gathered}$
\{Width\}	2 nsec	450 msec	1.2 nsec	450 msec	5 nsec	450 msec	1.2 nsec	450 msec
\{Duty Cy\}	1\%	99\%	1\%	99\%	1\%	99\%	1%	99\%
\{Delay\}	0 nsec	450 msec						
(Phase)	0	$359.9=$	0	359.9 _	0	359.9 -	$0{ }_{-}$	359.9
\{Lead	1.2 nsec	10 msec	300 psec	1 nsec	6.5 nsec	95 msec	300 psec	300 psec
\{Trail\}	1.2 nsec	10 msec	300 psec	1 nsec	6.5 nsec	95 msec	300 psec	300 psec
\{Slew\}	$0.1 \mathrm{~V} / \mathrm{msec}$	$3.3 \mathrm{kV} / \mu \mathrm{sec}$	N/A	N/A	$0.1 \mathrm{~V} / \mathrm{msec}$	$2.3 \mathrm{kV} / \mu \mathrm{sec}$	N/A	N/A
[Period]	4 nsec	450 msec	3.33 nsec	450 msec	20 nsec	450 msec	3.33 nsec	450 msec
\{Freq\}	2.2 Hz	250 MHz	2.2 Hz	300 MHz	2.2 Hz	50 MHz	2.2 Hz	300 MHz

Values above the bold double line in the table are the actual minimum and maximum values which will be accepted by the mainframe. Values below the bold double line are guaranteed specifications but the mainframe may accept values outside the indicated range. Certain combinations of the above parameters may not be achievable simultaneously. See the section of this chapter entitled Parameter Conflicts for details.

Specifications subject to change without notice.

General Information

The Trigger Output

The 2 Output Modules in the 9210 are driven from a common timebase, i.e. the channel outputs are both referenced to the same trigger. This does not mean that the two channels must both output their pulses at the same time, or that they must be of identical width, but merely that the repetition rates and Trigger modes of the 2 channels must be the same.

The signal available at the 9210 's Trigger Output connector is a negative-going pulse, synchronized with the \{Ext Input\} signal, if any, and the 9210's internal timebase. \{Delay\} is relative to this signal's leading (negative) edge. The width of the Trigger Output is dependent upon the selected Trigger \{Mode\} and other operating conditions. Its amplitude will be 1 V into a 50Ω load (2 V into an open circuit), and its quiescent level is programmable (see the section entitled "Adjusting the Trigger Output Offset", below).

The Trigger Input

The 9210 can be adjusted to trigger on any signal connected to the Ext Input connector whose amplitude is greater than 200 mV , at frequencies up to 300 MHz , (note that not all Output Modules will be able to deliver pulses at the mainframe's maximum trigger frequency). Trigger pulses as narrow as 1.5 nsec can be accommodated.

The impedance of the Trigger Input can be programmed to either $10 \mathrm{k} \Omega$, or $50 \Omega(\pm 5 \%)$. See the section entitled "Selecting the Trigger Input Impedance" below for further details. The signal levels at the Ext Input must not exceed $\pm 5 \mathrm{~V}$ into 50Ω, or $\pm 20 \mathrm{~V}$ into $10 \mathrm{k} \Omega$.

Frequency Counter

In the externally triggered modes (Single, Burst, Gate and External Width), the 9210 's internal frequency counter measures the frequency of the signal at the Ext Input, and displays the result of the measurement in the information window while the Trigger Menu is displayed.

Trigger Modes

The CRTkey at the top of the first page of the Trigger menu display, \{Mode\}, is used to select the 9210's Trigger Mode. When \{Mode\} is selected, the modes are listed on the screen in a box at the upper right (see above). The operating characteristics of the Trigger Modes are described below. See the section entitled "Non-Numeric Entries" in Chapter 2 of this manual for details on making selections from this menu.

Normal Mode
\{Normal\} trigger mode produces a continuous Pulse stream at the selected \{Period\} and \{Width\}. One Trigger Output will occur for each Output Pulse. The width of the Trigger Output will be dependent upon the repetition rate. See the table below for details. The Output Pulse follows the Trigger Output by \{Delay\}, plus an offset of $\approx 13 \mathrm{nsec}$.

Normal Trigger Mode is free - running, requiring no external trigger signal.

Nominal Trigger Output Widths in Normal Trigger Mode	
If the Period is...	The Trigger Output Width will be...
$<7.2 \mathrm{nsec}$	1.8 nsec
$7.2 \mathrm{nsec}<$ Period $<50 \mathrm{nsec}$	$3.6 \mathrm{nsec} \leq$ Trigger Out Width $\leq 7.2 \mathrm{nsec}$
$>50 \mathrm{nsec}$	25 nsec

Single Mode
$+$
Appendix t vo ss
\{Single\} mode is triggered externally, either from the front panel Ext Input, the Manual Trigger button, or via GPIB command. The trigger starts the 9210 's timebase. One Trigger Output follows each trigger by $\approx 21 \mathrm{nsec}$. The Trigger Output width is dependent upon the Output Pulse \{Width\}. If \{Width\} is 40 nsec or less, the Trigger Output will be 1.8 nsec wide. If \{Width\} is greater than 40 nsec , the Trigger Output will be 25 nsec wide. If 2 Output Modules are installed, the larger \{Width\} setting is used to determine the Trigger Output width.

t delay time

As above, the Output Pulse will follow the Trigger Output by \{Delay $\}+\approx 13 \mathrm{nsec}$. The $\{$ Period $\}$ parameter has no meaning in Single Trigger Mode, unless the \{Duty Cy\} format is selected, in which case \{Period\} is used to calculate the Width of the Output Pulse, or if \{Phase\} format is selected, where \{Period\} will be used to calculate Delay.

Gate Mode

In \{Gate\} mode, Output Pulses of the programmed \{Width\} occur at the rate specified by \{Period\} as long as the signal at the Ext Input is in the state defined as true (see the section entitled "Trigger Slope and Level", below). One Trigger Output Pulse follows each external input by $\approx 21 \mathrm{nsec}$. The width of the Trigger Output will be roughly equal to the width of the External Input signal.

In Gated Trigger Mode, Output Pulses start after the Delay, and continue to run at the rate defined by Period, for the duration of the true state of the Gate Input

The first Output Pulse follows the Trigger Output by \{Delay\} $+\approx 13 \mathrm{nsec}$. If the external input goes false while an Output Pulse is active, the \{Width\} and \{Trail\} will be completed as specified by the parameter settings.

NOTES:

1) To allow the 9210 's internal timing generator circuits to fully re-initialize, there is a minimum retrigger interval (ie. dead time) of 20 nsec after the completion of the last Output Pulse in Gate Mode.
2) The front panel Manual Trigger button can be used to simulate a Gate input. The output will remain active for as long as the button is held in.

Burst Mode

\{Burst\} mode is similar to \{Single\} mode, but a programmed number of Output Pulses is generated for each external input, rather than just one. This number may be programmed from 3 to 4095 by selecting and setting \{Burst Ct\} (burst count), on the second line of the first page of the Trigger menu display. A burst of two pulses can be created in \{Single\} mode via Double Pulse operation (see "Double Pulse Operation" in Chapter 3, and "Double Pulse Interactions", below).

Ont pulse

"W "pulses $\begin{gathered}\text { procraminced }\end{gathered}$

In Burst Trigger Mode, a programmed number (the Burst Count) of pulses are output for each trigger. The Trigger Output's width will be equal to Period X (Burst Count-1).

One Trigger Output follows each trigger by $\approx 21 \mathrm{nsec}$. The Trigger Output width will be equal to the $\{$ Period $\}$ times the \{Burst Ct -1. \{Delay\} (+ $\approx 13 \mathrm{nsec}$) specifies the time from the leading edge of the Trigger Output to the leading edge of the first Output Pulse, the time between Output Pulses is specified by \{Period\} and the duration of each Output Pulse is specified by \{Width\}.

NOTE: To allow the 9210's internal timing generator circuits to fully re-initialize, there is a minimum re-trigger interval (i.e. dead time) of 50 nsec after the completion of the last Output Pulse in Burst Mode.

Double Pulse Interactions

Normal Mode

Single Mode

Gate Mode

Burst Mode

\{Delay\}, \{Width\} and \{Period\} adjustments made when the generator is in \{Ext wid\} mode will become effective when the Trigger Mode is changed, but these settings are meaningless in External Width mode.

The front panel Manual Trigger Button can be used to simulate an input signal in \{Ext wid\} mode. The output will remain in the active state for as long as the button is held in.

The interaction of Double Pulse operation with the various Trigger Modes is detailed below. Note that while the Trigger Mode is common to both channels, $\{2$ Pulse $\}$ can be enabled in either channel independently of the other.

Two Output Pulses follow each Trigger Output rather than 1. The first will trail the Trigger's leading edge by the double pulse delay offset of $\approx 11 \mathrm{nsec}$, and the second will follow the first by the \{Delay\}.

Same as Normal Mode, except that triggers must be received from some external source.

Again, the same as Normal Mode, except only while the signal at the Ext Input is in the true state. (See "Setting the Trigger Level and Slope" below.)

In this case \{Burst Ct \} specifies the number of Output Pulse pairs, rather than the number of Output Pulses, per trigger. The first pulse of the first pair in any burst will follow the leading edge of the Trigger Output by $\approx 11 \mathrm{nsec}$, the second pulse in any pair follows the first by \{Delay\}, and the first pulse of any pair follows the first pulse of the previous pair by \{Period\}.

External Width Mode

Setting the

Trigger Level
Automatically
\{Ext wid\} Mode is incompatible with Double Pulse operation, i.e., its function is unaffected by the state of \{2 Pulse\}.

The user may specify the point on the Ext Input signal at which the generator will trigger by utilizing the \{Slope\} and \{Level\} CRTkeys. The control provided by these keys is as follows:
\{Level\} selects the voltage threshold that must be crossed by the Ext Input signal in order to trigger the 9210. \{Level\} can be set to any value between $\pm 2.5 \mathrm{~V}$ with 20 mV .
\{Slope\} determines the direction of the transition (Positive or Negative) through the specified voltage \{Level\} that will trigger the generator. \{Slope\} may also be set to Disable, in which case the generator will not respond to the external input at all. In External Width mode, setting \{Slope\} to Negative causes the pulse at the module's normal output to be inverted with respect to the signal at the Ext Input
\{Auto Ivl\} is an action key which enables the 9210 to determine an appropriate setting for $\{$ Level $\}$ such that the 9210 will trigger on the edge of the Ext Input signal specified by \{Slope\} (if \{Slope\} is set to Disable, executing \{Auto Ivl\} will reset it to Positive). It will take a few seconds for the proper level to be found. Touching \{Auto IvI\} and \{Execute\} with no signal (or an inappropriate signal) connected to the Ext Input will bring an error message to the screen.

Parameter Limits and Triggering

Setting the Internal Trigger Rate

Using The Manual Trigger Button

When the maximum Width or Delay settings are approached (within about 500 psec) in Single trigger mode, the error message "TRIGGER TOO FAST" may appear in the information window. This occurs because the Width or Delay timing generator circuit has been retriggered before it has recovered from the previous trigger. The message is meant to indicate that a trigger may have been missed. However, if a trigger is received during the first 500 psec after the timing generator asserts that it is actually ready to re-trigger, the error detection circuitry may still trip and produce the error message.

In Normal Trigger Mode, the 9210 triggers itself at a rate determined by the $\{$ Period $\}$ parameter, which can be adjusted from the bottom line of the first page of the Trigger menu display, just as it can on the Channel Menus. (Internal triggers are also utilized in Gate and Burst Modes, but only after an external trigger has started the period generator.) The \{Freq\} format may also be used. See the section entitled "Controlling Repetition Rate" in Chapter 3 for further details.

Pressing the [Manual] trigger button on the front panel is effectively identical to delivering a trigger pulse which exceeds threshold (see the section entitled "Setting the Trigger Level and Slope", above) to the Ext Input connector. Furthermore, in Gate and External Width modes, holding this button in causes the trigger "signal" to remain true until the button is released.

Adjusting the Trigger Output Offset

The top line of the second page of the Trigger menu display, \{Out Ivl\}, controls the quiescent level of the Trigger Output. The range of programmable values for \{Out IVI\} is from -1.5 V to +1.5 V , with resolution of approximately 20 mV . The Trigger Output's active level will nominally be 1 V below the programmed quiescent level.

Trigger Page 2
Out 1v1 ... 100 mv
Input 2 50
TTL set
ECL set

Return - New Page

| Normal $\sqrt{2} 50$ | 0 Hz |
| :---: | :---: | :---: |

Keep in mind that the levels listed above assume operation into a load of 50Ω. If the Trigger Output drives an open circuit, the quiescent level will be twice that reported by \{Out IVI\}, and the Trigger amplitude will nominally be 2 V.

Selecting the Trigger Input Impedance

The user may select the impedance presented by the 9210 's Ext Input. \{Input Z\} can be set to either $\mathbf{5 0} \Omega$ or $\mathbf{H I} \mathbf{Z}$. When set for $\mathbf{H I} \mathbf{Z}$, the impedance is $10 \mathrm{k} \Omega$.

Trigger Output Presets

\{TTLset and \{ECLset\} on the Trigger menu display are action keys which provide the user with a shorthand method of establishing voltage levels at the Trigger Output compatible with the standard logic families is use today.

Touching \{TTLset $\}$ and then \{Execute will set \{Out Ivl\} 1.24 V . While this is admittedly not a standard TTL high level, remember that the quiescent level doubles into a high impedance (which a TTL circuit will present to the generator), and 2.48 V is more than enough to be recognized as a high by any TTL-compatible logic family. The active pulse level in this case will be 480 mV , which will certainly be recognized as a TTL low.

Executing \{ECLset\} will make \{Out Ivl\} -850 mV , well within the specified limits for an ECL high level. The high frequencies and fast edge rates common to ECL applications dictate the use of good co-axial cable with proper termination when introducing an external signal, so a 50Ω load is assumed. The active Trigger Output level in this case will be -1.85 V , again, well within the specified limits for an ECL low.

5 THE "MORE" MENU - UTILITIES AND FEATURES

Invoking SelfCalibration

The top line of the More menu display, \{Cal\}, is an action key which, when $\{$ Execute\} is touched, will cause the 9210 's measurement system to begin a calibration cycle. Calibration insures the accuracy of all Voltage and Time parameters listed on the Channel menu displays.

This action will require approximately 30 seconds to execute with one Output Module installed, somewhat longer with two Modules. The message "Calibration in progress" will occupy the display until the calibration is complete, at which time another message will appear to inform you of the success or failure of the procedure. A complete listing of the results of the calibration can be brought to the display via the \{Cal Msg\} key (see below). If calibration is canceled while it is in progress, those calibration parameters that have been derived during the process will be used, while those that had not been determined will retain their values from the previous calibration.

Calibration is automatically performed at power-up. In order for the 9210 and its installed Output Modules to meet their published specifications, a new calibration must be performed after about 15 minutes of operation, by which time the generator should be fully warmed up. The message "Self-Cal suggested" will appear in the information window at the bottom of the display 15 minutes after power-up to prompt the user. The message will be removed from the display as soon as any operation is performed.

The 9210's Temperature Compensation feature monitors and adjusts timing for operating temperature changes over a $5^{\circ} \mathrm{C}$ range. If the operating temperature changes by more than $5^{\circ} \mathrm{C}$, the generator will issue the warning message "Self-cal suggested" to inform the user that this feature may no longer be able to make the necessary corrections. See the "Temperature Compensation" section at the end of this chapter for further details.

Invoking Selftest

\{Selftest\}, is an action key which, when $\{$ Execute\} is touched, will cause the 9210 to perform a full Self-test cycle. Self-test includes the Calibration described above as well as various tests on system memory, video display circuitry, and the trigger, threshold and slope controls. \{Selftest\} requires about a minute to complete, slightly longer if two Output Modules are installed.

The results of \{Selftest\} can be brought to the screen via the \{Cal Msg\} key, as above. The calibration results are reported first, followed by the results of the additional tests.

NOTE: Signals with fast edge rates and large amplitude connected to the 9210's Ext Input may cause the Self-test to fail. It is therefore recommended that the Ext Input be left open while Self-test is in progress.

First page of Calibration Message Screen

GPIB Control / Monitor Screen

Calibration and Selftest Results

A complete listing of the results of the last self calibration or self-test can be brought to the display by touching \{Cal Msg\} The information contained within this multipage listing is invaluable in determining the seriousness and possible causes of a self calibration or selftest failure. It is suggested that you review this listing before contacting your LeCroy service representative regarding such failures.

A description of the tests performed by \{Cal\} and \{Selftest\} can be found in Appendix D of this manual (GPIB Documentation), in the section entitled "Selftest".

Monitoring the GPIB Interface

Testing the User Interface

Touching \{Gpib\} will bring to the CRT a screen on which all GPIB transactions involving the 9210 are displayed, along with any error codes which may have resulted, in a window at the center of the screen.

The top 2 lines of this screen allow the user to select the GPIB operating \{Mode\} for the 9210, and to select the Bus Address of the generator. \{Mode\} can be set for Addressed (Addr) or Listen Only (LON), and valid choices for Address are the integers from 0 to 30 , inclusive. See Chapters 6 and 7, and Appendices D and E for further details about GPIB operation.

Touching \{TEST\}, the sixth line of the More menu display, will bring a new screen to the 9210 's display with 2 choices, $\{$ Tch Test\} and $\{$ Key Test\}.

The \{Tch Test\} screen contains 11 CRTkeys, each of which should highlight when touched. This screen can be exited by pushing any of the front panel DISPLAY keys. If this test is requested with the Touch Screen disabled, it will be automatically enabled.

The \{Key Test\} screen contains a representation of all the buttons on the 9210's front panel. Each symbol should light when the button it represents is pushed. The symbol labeled FINE represents the inner vernier knob, and the one labeled COARSE represents the outer ring. When either knob is turned, its symbol should both light up and indicate the direction $(+1$ or -1$)$ of the turn. Note that the only way to exit this screen is by use of the \{Return\} CRTkey at the bottom of the display. For this reason, the TouchCRT will be automatically enabled if this test is requested with the Touch Screen disabled.

The
Configuration Menu

Disabling the Touch Screen

Display Brightness

Temperature Compensation

The 9210's TouchCRT user interface utilizes infra-red transmitter and receiver diodes as the sense elements. The operation of these optical diodes can be adversely affected if the unit is operated in intense sunlight or incandescent light. Should you need to operate under such conditions and experience problems with the interface, the Touch Screen can be disabled and the "SELECT" keys (up and down arrows) can be used to select the parameters to be programmed. The 9210's Touch Screenis enabled by factory default setting. It can be disabled, if desired, by setting \{TouchCRT\} to OFF.

The Touch Screen can also be disabled at power-up, by holding a finger on the screen while pushing the [POWER] button, and keeping it there until the "Calibration in Progress" message appears. Another message will then appear to alert the operator that the screen will be disabled.

The brightness of the 9210 's CRT display can be changed to a more comfortable level by adjusting the value of \{Bright\}. The range of values for this variable are the integers between 1 and 16 , inclusive.

The 9210 senses the internal temperature of its timing ICs and attempts to compensate for changes of $0.1^{\circ} \mathrm{C}$ or greater. This maintains timing accuracy within specifications over a range of temperature variation of greater than $\pm 5^{\circ} \mathrm{C}$ since the last calibration. The timing shift caused by such small changes in temperature is always much smaller than the 9210 's timing accuracy specification, and will not be noticeable in most situations. However, in some cases, it may be more desirable to permit the timing to drift gradually with temperature than to permit sudden changes of even small magnitude. For such cases, \{Temp Comp\} may be set to OFF from the bottom line of the More menu display.

When \{Temp Comp\} is OFF, timing can be expected to drift by as much as $0.2 \% /^{\circ} \mathrm{C}$. \{Temp Comp\} is set to ON by factory default setting. We suggest that \{Temp Comp\} should only be turned OFF after a self calibration has been performed after at least 15 minutes of warm-up. \{Temp Comp\} OFF is appropriate in cases where sudden timing changes on the order of $0.03 \%(0.1 \%$ worst case) cannot be tolerated.

Note that starting 15 minutes after power-up, and at five minute intervals, the 9210 checks to see if temperature has changed by more than $5^{\circ} \mathrm{C}$ since the last self-calibration. If so, a message is displayed suggesting that you invoke a new self-calibration cycle, in order to assure the generator's specified accuracy. The temperature change since the last self-calibration is part of the $\{\mathbf{C a l ~ M s g}\}$ created by each calibration cycle.

The change in temperature since the last self-calibration can be queried over the GPIB. See Chapter 7 for details. REMOTE OPERATIONS

General Information

Terminology

Numeric
 Representation

Remote operation of the 9210 is IEEE STD 488.2-1987 compatible. This ensures that input is accepted in a flexible way, and responses are presented in a strictly defined manner designed to be easy for the user to deal with. If you are not familiar with 488.2 , you should read the following section in order to take advantage of some of its features.

Commands and queries (commands which get an answer via GPIB) are called "program message units". A "program message" consists of one or more "program message units". On input, the "program message terminator" is EOI with the last character of the message or with Line Feed, or Line Feed alone. The "program message unit separator" (for separating multiple units in one program message)is ';'.

NRf stands for Numeric Representation, flexible. All of the following are equivalent as input using this representation:

100E-9
100.0000000000000000000000000000000 E -9 $000000100000 \mathrm{E}-000012$
100n
100 N

NOTE: Input is always case insensitive.

On output, one of three stricter formats, typically NR3, is used instead of NRf. NR3 never has leading zeroes or embedded spaces, or an unreasonably large number of digits, and always has an exponent of the form "E<sign><value>".

Header Compounding

Coupled Commands

Coupled commands are commands which interact. For example, in Normal trigger mode, Width must be less than Period. If the message "A:WIDTH 100E-9" is sent, it may or may not produce an invalid state depending on the current trigger mode and Period. If coupled commands are sent in one program message, they are all evaluated when the program message terminator is received. For example, the message "TRMD NORMAL; A:WIDTH 100E-9; PER 200E-9" can never produce an error due to the previous trigger mode or Period.

If a program message contains one or more queries, it will get one "response message". For example,
"A:VHI?;VLO?" might get the answer:
" $1.00 \mathrm{E}+0 ; 0.000 \mathrm{E}+0$ ". The response message terminator is always line feed with EOI.

Status Reporting and Service Requests

Common Commands

The 9210 implements the 488.2 standard status byte and the standard event status register. In addition, we implement an "error queue". The error queue summary bit (1 when the queue is not empty) is bit 7 in the main status byte. The status byte and event status register are described in detail in Appendix D. For further information about the error queue, see the "ERR?" query in Chapter 7 (GPIB Commands), and the list of possible errors in Appendix E.

IEEE Std 488.2 defines certain commands which all instruments claiming to be 488.2 compatible must implement, and other commands which are optional but, if implemented, must be implemented in a manner defined in the standard. These are called common commands. The first character of all common command headers is "*". For example, all 488.2 instruments should respond to "*CAL?" by performing calibration and returning " 0 " if there were no errors.

General Information
This section describes the syntax of commands to control the 9210 via GPIB. It does not describe operation of controlled features; other parts of the manual describe operation.

Header names must match all the characters shown. Extra characters are ignored so, for example, you may send "WIDTH" for "WID" or "PERIOD" instead of "PER". Exception: The first three characters of the received header are used to compute a hash value (look-up index). Therefore, extra characters may not be added to headers shorter than three characters. Only one header, " BC ", is shorter than three characters.

Character arguments are matched to a maximum of four characters so, for example, "TRMD NORM" will work as well as "TRMD NORMAL".

In the tables below, the first line of each header's documentation gives the header name, an English description, and a list of attributes which may include the following:

CMD - this header may be sent as a command.
QRY - this header may be sent as a query, i.e., with question mark immediately following it. A response will be generated.

MOD_ID - this header requires a module id. Either it must be preceded by "A:" or "B:", or some previous module specific command in the same program message must have been preceded by "A:" or "B:".

CPLD - This is a coupled command. The argument to this command may or may not cause an error depending upon the parameter settings enacted by other commands. Execution of these commands is postponed until the program message terminator is received, to give the user a chance to change multiple coupled items with one program message, without generating any error status.

Commands Which Correspond To Local Controls

*CAL
 Perform calibration and return error code

Query: No arguments.
Example: *CAL?
Notes: Returns 0 if no error.
Calibration takes about 30 seconds to complete with one Output Module installed, slightly longer with two Modules.
*RCL Recall a saved state CMD

Command: 1 argument, NRf.
Units: dimensionless.

$$
\text { Example: *RCL } 0
$$

Notes: Valid arguments are the integers 0 to 15 . See also *SAV.
*SAV
Save current state
CMD
Command: 1 argument, NRf.
Units: dimensionless.

$$
\text { Example: *SAV } 0
$$

Notes: Valid arguments are the integers 0 to 15 . See also *RCL.

> *TRG Trigger

CMD
Command: No arguments.
Example: *TRG
*TST Perform selftest and return error code QRY

Query: No arguments.
Example: *TST?
Notes: Returns 0 if no error.

AMP Pulse Amplitude
CMD+QRY+ MOD_ID+CPLD
Command: 1 argument, NRf.
Units: Volts.
Example: A:AMP 3.2
Query: No arguments.
Example: A:AMP?
Notes: With INVert OFF:
AMP is positive
BASE is the same as VLO
BASE plus AMP is VHI.
MEDIAN is BASE plus 1/2 AMP
With INVert ON:
AMP is negative
BASE is the same as VHI
BASE plus AMP is VLO
MEDIAN is BASE plus $1 / 2$ AMP
Coupled to SLEW_L and SLEW_T.

AUTOL Trigger auto level set

Command: No arguments

> Example: AUTOLEVEL

BASE

Pulse base level
CMD+QRY+MOD_ID+CPLD
Command: 1 argument, NRf.
Units: Volts.
Example: A:BASE 0.2
Query: No arguments.
Example: A:BASE?
Notes: With INVert OFF:
AMP is positive.
BASE is the same as VLO
BASE plus AMP is VHI.
MEDIAN is BASE plus 1/2 AMP
With INVert ON:
AMP is negative
BASE is the same as VHI
BASE plus AMP is VLO
MEDIAN is BASE plus 1/2 AMP

BC Burst Count

CMD+QRY
Command: 1 argument, NRf, 3..4095.
Units: Dimensionless (count).
Example: BC 2352
Query: No arguments.
Example: BC?

BRI
Brightness adjust
CMD+QRY
Command: 1 argument, NRf, 1..16.
Units: dimensionless.
Example: BRIGHTNESS 12
Query: No arguments.
Example: BRI?

DBL
 Double Pulse

Command: 1 argument [OFF I ON]

Example: A:DBL ON

Query: No arguments.
Example: A:DBL?

DEL
Pulse Delay
CMD+QRY+MOD_ID+CPLD
Command: 1 argument, NRf.
Units: seconds.
Example: A:DEL 100n
Query: No arguments.
Example: A:DEL?
Notes: Delay is coupled with LEADing edge, WIDTH and PERIOD in NORMAL trigger mode. Delay is the time from trigger out to pulse out, not including a fixed offset, see Chapters 3 and 4.

DISA

Disable output
CMD+QRY+MOD_ID
Command: 1 argument, [OFF ION]
Example: A:DISA OFF
Query: No argument.
Example: A:DISA?
Notes: Disables pulse (and complement, if any) outputs.
When Disable is ON, the outputs are turned off.

DISP Display enable

Command: 1 argument, [OFFION]
Example: DISP OFF
Query: No arguments.
Example: DISP?
Notes: Maximum speed of response to GPIB commands is achieved with DISPlay OFF, however this is not usually significant. DISPlay OFF can only be issued over the GPIB. Once local control has been re-established, DISPlay ON can be issued locally.
DUTY Duty cycle
Command: 1 argument, NRf.
Units: percent.
Example: A:DUTY 50

CMD+QRY+MOD_ID

Query: No arguments.
Example: A:DUTY?

FREQ
Frequency
CMD+QRY+CPLD
Command: 1 argument, NRf.
Units: Hertz.
Example: FREQ 30M
Query: No argument.
Example: FREQ?
Notes: Coupled to WIDTH, DELAY, LEADing edge time and TRAILing edge time in NORMAL trigger mode.
INV Invert CMD+QRY+MOD_ID
Command: 1 argument, [OFF I ON]
Example: A:INV OFF
Query: No argument.
Example: A:INV?
LEAD Leading edge time CMD+QRY+MOD_ID+CPLD
Command: 1 argument, NRf.
Units: seconds.
Example: A:LEAD 100E-9
Query: no arguments.
Example: A:LEAD?Notes: Coupled to WIDTH, also to DELAY, TRAIL and PERIOD in NORMAL triggermode.

This command is not applicable to the 9214 Output Module.

LIM Enable vertical parameter limits
CMD+QRY+MOD_ID
Command: 1 argument, [OFFION]
Example: A:LIM ON
Query: No argument.
Example: A:LIM?
Notes: Limits are enforced when turned on, and at all subsequent changes of VHI, VLO (or AMPL, BASE, MEDIAN) or max or min limits. If any limit has been exceeded, the offending value is set to the limit and error 507, "VALUE LIMITED TO USER LIMIT" is placed in the error queue (or displayed, depending on whether the source of the command was GPIB or the front panel).

LVH
Set most positive voltage limit
CMD+QRY+MOD_ID
Command: 1 argument, NRf.
Units: Volts.
Example: A:LVH 3.6
Query: No argument.
Example: A:LVH?
Notes: Only has effect when limits are on; see LIM.

LVL Set most negative voltage limit

Command: 1 argument, NRf.
Units: Volts.
Example: A:LVL 0.2
Query: No argument.

Example: A:LVL?

Notes: Only has effect when limits are on; see LIM.

LOADC Load Compensate

> CMD+QRY+MOD_ID+CPLD

Command: 1 argument, [OFF I ON]
Example: A:LOADCOMP ON
Query: No arguments.
Example: A:LOADCOMP?
Notes: VHI and VLO set voltage into 50Ω if LOADComp is off, or voltage into the actual (resistive) load if LOADComp is on. The range of load resistances for which LOADComp will function is from 47Ω to $1 \mathrm{M} \Omega$ The compensation factor is calculated and saved when the command LOADC ON is received. If the load is subsequently changed, LOADComp must be turned ON again to measure the new load. If LOADComp is OFF, for a module with 50Ω output impedance (such as the 9212), the actual output voltage will be:
$2 \times$ Requested output voltage $\times($ load $/($ load +50$)$)
LOADComp measures the output voltages and compares them to the current settings. For this reason, LOADC ON should be the last <PROGRAM MESSAGE UNIT> in a <PROGRAM MESSAGE> containing commands which change the output voltage levels.

LOADComp is not applicable to modules with other than voltage outputs.

MED Median voltage CMD+QRY+MOD_ID+CPLD
Command: 1 argument, NRf.
Units: Volts.

$$
\text { Example: A:MED } 0
$$

Query: No arguments.
Example: A:MED?
Note: MEDIAN is $(\mathrm{VHI}+\mathrm{VLO}) / 2$, which is the same as BASE $+1 / 2$ AMP.

OUT	Normal Output Enable	CMD+QRY+MOD_ID
OUTBar	Complementary Output Enable	CMD+QRY+MOD_ID

Command: 1 argument, [ON I OFF].

Example: A:OUT OFF

Query: No arguments.
Example: A:OUT?
Note: These commands interact with the DISAble command, which disconnects both outputs simultaneously. For example, the complementary output is only enabled when OUTB is ON and DISA is OFF.

At the time of this writing, this command is applicable only to the 9212 and 9214 Output Modules.

PER Period

CMD+QRY+CPLD
Command: 1 argument, NRf.
Units: seconds.
Example: PER 33.3n
Query: no arguments.
Example: PER?
Notes: Coupled to WIDTH, DELAY and LEADing edge time in NORMAL trigger mode.

PHA
 Phase
 CMD+QRY+MOD_ID+CPLD

Command: 1 argument, NRf, 0 to <360.
Units: degrees.
Example: A:PHA 90
Query: no arguments.
Example: A:PHA?
Notes: When Phase has been set, Pulse Delay = Phase/360*Period. Phase is displayed and set with a resolution of 0.1_{-}, and is therefore always settable to one part in 3600 of the Period. Phase is coupled with LEADing edge and WIDTH in NORMAL trigger mode. Phase does not include the fixed delay offset from the Trigger Output (see Chapters 3 and 4).

SCRNSAVE Screen Save

Command: 1 argument, [OFF ION]
Example: SCRNSAVE ON
Query: No arguments.
Example: SCRNSAVE?
Notes: If SCRNSAVE is on, the CRT will be dimmed to approximately BRIGHTNESS 1 after seven minutes of no front panel activity. Any front panel activity restores the BRIGHTNESS setting and resets the seven minute timer. SCRNSAVE OFF restores the normal BRIGHTNESS setting. When SCRNSAVE is set to OFF, the CRT is never dimmed.

SLEW_L Slew rate, leading edge
CMD+QRY+MOD_ID+CPLD
Command: 1 argument, NRf.
Units: Volts/second.
Example: A:SLEW_L le6
Query: No arguments.
Example: A:SLEW_L?
Notes: Coupled to VHI and VLO (or AMP) and WIDTH; also to DELAY and PERIOD if NORMAL trigger mode.

This command is not applicable to the 9212 and 9214 Output Modules.

SLEW_T Slew rate, trailing edge
CMD+QRY+MOD_ID+CPLD
Command: 1 argument, NRf.
Units: Volts/second.
Example: A:SLEW_T le6
Query: No arguments.
Example: A:SLEW_T?
Notes: Coupled to VHI and VLO (or AMP); also to DELAY, WIDTH and PERIOD if NORMAL trigger mode.
This command is not applicable to the 9212 and 9214 Output Modules.

TEMPC Temperature Compensation

Command: 1 argument [OFFI ON]
Example: TEMPCOMP OFF
Query: No arguments.
Example: TEMPC?
Notes: Setting TEMPC OFF disables the automatic application of temperature compensation corrections. We suggest that this should only be done after a self calibration has been performed after at least 15 minutes of warmup. While TEMPCOMP is ON, the 9210 periodically calculates a correction factor based on the temperature change since the last calibration; when the factor grows large enough it is applied. TEMPCOMP OFF is appropriate where sudden timing changes on the order of 0.03% (0.1% worst case) cannot be tolerated. Whether TEMPCOMP is on or off, changing any timing parameter (period, delay or width) will cause it to be set appropriately for the current temperature.

TOUCH Touch screen enable
Command: 1 argument, [OFFION]
Example: TOUCH OFF
Query: No argument.
Example: TOUCH?

TRAIL Trailing edge time
CMD+QRY+MOD_ID+CPLD
Command: 1 argument, NRf.
Units: seconds.
Example: A:TRAIL 100E-9
Query: no arguments.
Example: A:TRAIL?
Notes: Coupled to DELAY, LEAD, WIDTH and PERIOD if NORMAL trigger mode.
This command is not applicable to the 9214 Output Module.

TRIM Trigger input Impedance
Command: 1 argument [HIGHZ | FIFTY]
Example: TRIM FIFTY;
Query: No arguments.
Example: TRIM?
TRLV Trigger Level
CMD+QRY

Command: 1 argument, NRf.
Units: Volts.
Example: TRLV 0.5
Query: No arguments.
Example: TRLV?

TRMD
Trigger Mode
CMD+QRY+CPLD
Command: 1 argument [NORMAL I SINGLE I GATE | BURST | E_WID]

Example: TRMD SINGLE

Query: no arguments.
Example: TRMD?
Notes: TRMD is coupled to PERIOD / FREQuency and therefore to everything they are coupled to, since in NORMAL trigger DELAY plus LEADing edge plus WIDTH must be less than the PERIOD.

TROV Trigger Output Voltage

Command: 1 argument, NRf.
Units: Volts.

Example: TROV 1

Query: No argument.
Example: TROV?
Notes: This specifies the quiescent voltage for trigger output, assuming a 50Ω load to ground, and may be from -1.5 V to +1.5 V . The output will swing -1 Volt when trigger occurs. Voltages double into high impedance. See also TROV_SET.

TROV_SET Set Trigger Output for TTL or ECL compatibility
Command: 1 argument, [ECL | TTL]
Example: TROV_SET TTL
Notes: TROV_SET TTL sets TROV to 1.24 V , so levels are 2.48 V (inactive) and .48 V (active) into high impedance. TROV_SET ECL sets TROV to -.85 volts, so levels are -.85 V (inactive) and -1.85 V (active) into a 50Ω load to ground. The proper load on the trigger output is required to achieve the desired logic levels.
TRSL Trigger Slope CMD+QRY

Command: 1 argument. [POS I NEG I DISABLE]
Example: TRSL POS
Query: No arguments.
Example: TRSL?

VHI

Pulse high level
CMD+QRY+MOD_ID+CPLD
Command: 1 argument, NRf.
Units: Volts.
Example: A:VHI 3.2
Query: No arguments.
Example: A:VHI?
Notes: Coupled to VLO, SLEW_L and SLEW_T.
VHI sets the voltage into 50Ω if LOADComp is off, or voltage into the actual (resistive) load if LOADComp is turned on after VHI is set, or if LOADComp was previously invoked into the present load.

VLO

Pulse low level
CMD+QRY+MOD_ID+CPLD
Command: 1 argument, NRf.
Units: Volts.

$$
\text { Example: A:VLO } 0.2
$$

Query: No arguments.
Example: A:VLO?
Notes: Coupled to VHI, SLEW_L and SLEW_T.
VLO sets the voltage into 50Ω if LOADComp is off, or voltage into the actual (resistive) load if LOADComp is turned on after VLO is set, or if LOADComp was previously invoked into the present load.

Command: 1 argument, [ECL I TTL]
Example: A:VSET TTL
Notes: VSET ECL sets VHI -0.9 and VLO -1.8 Volts. VSET TTL sets VHI 3.5 and VLO 0.3 Volts. This means that if LOADComp is ON, VSET TTL will actually produce 3.5 and 0.3 V levels and VSET ECL will actually produce -0.9 and -1.8 V levels into any load which LOADComp can compensate for. (LOADComp cannot, for example, compensate for loads terminated to any voltage other than ground.)

If LOADComp is OFF, VSET will work properly into a 50Ω load to ground. There is some latitude in the load value if loadcomp is off. See LOADComp for more information.

WID Pulse Width
CMD+QRY+MOD_ID+CPLD
Command: 1 argument, NRf.
Units: seconds.
Example: A:WID 100n
Query: No arguments.
Example: A:WID?
Notes: WIDTH is coupled with DELAY, LEADing edge time and PERIOD in NORMAL or BURST trigger modes, and with LEADing edge time only in other trigger modes.

Commands Which Have No Corresponding Local Controls

Commands below this point are for GPIB only. They do not correspond to any displayed item.

*CLS

 Clear statusCMD
Command: No arguments.
*ESE
Standard Event Status Enable
CMD+QRY
Command: 1 argument, NRf.
Units: dimensionless.

$$
\text { Example: *ESE } 1
$$

Query: No argument.
Example: *ESE?

*ESR Read Out the Standard Event Status Register

Query: No argument.
Example: *ESR?
*IDN Identification \quad QRY
Query: No arguments.
Example: *IDN?
Notes: The response to *IDN must have four fields separated by commas which are: 1) manufacturer; 2) model\#; 3) serial\# or 0;4) firmware rev or 0 . Each field may contain any ASCII character 0×20 through $0 \times 7 \mathrm{E}$ except comma and semicolon.

Overall length must be less than or equal to 72 characters.
The response is sent as an <ARBITRARY ASCII RESPONSE DATA> element, i.e., not a quoted string. This type of element must be the last in a response message, as it must be followed by the response message terminator (line feed with EOI); therefore *IDN? should be the last query in the program message which contains it.
*LRN Learn device setup QRY
Query: No arguments.
Example: *LRN?
Note: *LRN? returns one large PROGRAM MESSAGE which contains PROGRAM MESSAGE UNITS capable of returning the system to its current state.

*OPC

Operation complete
CMD+QRY
Command: No arguments.
Example: *OPC
Query: No arguments.
Example: *OPC?
Notes: The command causes the Operation Complete bit in the standard event status register to be set when all commands in the program message have been completed.

The query causes a " 1 " to be placed into the output queue when all commands in the program message have been completed.

*OPT
 Option identification

Query: No arguments.
Example: *OPT?
Notes: Returns an <ARBITRARY ASCII RESPONSE DATA> element, therefore, *OPT? should be the last query in the program message which contains it. See the note for *IDN for further explanation.

The 9210 's response to *OPT is five fields showing the module type and revision level for the installed modules, and a code for any installed mainframe options. As of this writing, there are no reportable mainframe options so the code will always be zero.

An example of *OPT? response could be:
MODULE A 9211, REV 1, MODULE B 9211, REV 1, MAINFRAME OPTIONS 0

*RST Reset

Command: No arguments.

Example: *RST

Note: *RST is equivalent to *RCL of a predefined state, plus it cancels *OPC command and query.

*SRE
 Service Request Enable

CMD+QRY
Command: 1 argument, NRf, 0.255 .
Units: dimensionless.
Example: *SRE 160
Query: No argument.
Example: *SRE?
Notes: Bit 6 does not need an enable; the query always returns a value as if bit 6 is zero.
For example, "*SRE 255; *SRE?" would return 191.
*STB Read out the status byte \quad QRY
Query: No argument.
Example: *STB?
Note: Bit 6 in this byte is the "Master Status Summary" from the time the status byte was created. It is not cleared by serial poll. This differs from bit 6 as read by serial poll, which is cleared by the serial poll.

*WAI Wait for pending operations

Command: No arguments.
Example: *WAI
Note: The implementation of *WAI is mandatory according to IEEE 488.2. However, when a device implements sequential commands only, as is the case with the 9210 , the command has no operational meaning.

> CHDR Enable Command Header with Query response

Command: 1 argument, [OFF I ON I SHORT I LONG]
Example: CHDR OFF
Query: No argument.
Example: CHDR?
Notes: The arguments ON, SHORT and LONG are equivalent. SHORT and LONG are present for compatibility with other LeCroy instruments.

The intent of CHDR is to return query responses which are valid commands and easily readable. For example, with CHDR off, the TRMD? query might return SINGLE. With CHDR on, the same query would return TRMD SINGLE.

CHK

Command: 1 argument, NRf.
Units: dimensionless.
Example: A:CHK 9211
Query: No arguments.
Example: A:CHK?
Notes: Query returns plug-in model number. Command produces a "device error" if the model number does not match. If the module is not installed, the command or query produces error 241 "hardware missing" (as do all module specific commands).

DEGC_CHG Report temperature change

Query: No argument.
Example: DEGC_CHG?
Notes: Returns the temperature change of the timing ASICs (as measured inside the chips) since the last self calibration. Responses have a resolution of $0.1^{\circ} \mathrm{C}$, for example " 2.3^{\prime}. Positive numbers indicate warming since the previous self-cal, negative numbers indicate cooling.

ERR Read out the next error queue entry

Query: No argument.
Example: ERR?
Notes: The query returns a numeric error code (as an <NR1 NUMERIC RESPONSE DATA $>$ element) and a quoted string (a $<$ STRING RESPONSE DATA $>$ element) with a brief description of the error. For example, ERR? might return: 121,"INVALID CHAR IN NUMBER".

The error queue can hold 31 entries. If 31 errors occur, the last entry will be 350,"TOO MANY EVENTS". See the list of possible errors in Appendix E.

MSG Display a message

Command: 1 argument, a quoted string.
Notes: The message is displayed in large text as up to ten lines of up to eighteen characters each. Linefeed may be embedded in the string to advance to the next line, otherwise each line is filled to eighteen characters. The string may be delimited by single or double quotes; the other type may be used within the string. Whichever is used as the delimiter, if it occurs twice in succession it is interpreted as occurring once in the string. For example: MSG "He said ""She said 'Hi'""" shows: He said "She said 'Hi'".

TER
Read TST/CAL Error Register
Query: One argument, NRf.
Units: dimensionless.
Example: TER? 3
Notes: The argument is a number from 0 to 15 . The response is a number to be interpreted as a 32 bit integer. Each integer provides more detailed information for one of the 16 bits in the response of *CAL? or *TST?. For example, if *CAL? returned 8 , then TER? 3 will return a value with more information on why calibration failed. Each bit in the response of *CAL? or *TST may be thought of as a summary bit for one of the 32 bit registers read out by TER?

LeCroy 9210300 MHz Programmable Pulse Generator Mainframe

IMPORTANT NOTE: At least one Output Module (9211, 9212, 9213, or 9214) must be installed in the 9210 Pulse Generator Mainframe in order to obtain a pulse output.

TIMING CHARACTERISTICS: Defined at 50% amplitude points and minimum transition times.

NOTE: The minimum values listed below refer to the mainframe only, and may not be achievable with all output modules.

Pulse Period:
3.33 nsec to 450 msec

Resolution:
Accuracy:
RMS Jitter:
Temperature Coefficient: $<250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ. with Temperature Compensation ON
the greater of 0.1% of value or 10 psec
$\pm(0.5 \%$ of value $+0.2 \mathrm{nsec})$ from 3.33 nsec to 450 msec
$\leq 0.035 \%$ (350 ppm) of value +35 psec

Frequency: Alternate format for Period. Settable from 300 MHz to 2.2 Hz with 0.1% resolution.

Pulse Width:

Resolution:
Accuracy:
RMS Jitter:
Temperature Coefficient:
1.0 nsec to 450 msec

For Width setting $\leq 7.2 \mathrm{nsec}$, max Width $=$ Period -0.75 nsec
For Width setting $>7.2 \mathrm{nsec}$, max Width $=$ Period -2.85 nsec
the greater of 0.1% of value or 10 psec
$\pm(0.5 \%$ of value $+0.3 \mathrm{nsec})$ from 1.6 nsec to 450 msec
$\leq 0.035 \%$ of value +35 psec
$<250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ. with Temperature Compensation ON

TIMING CHARACTERISTICS (continued):

Alternate format for Width. Settable from 1% to 99% in 0.01% steps. In this format, Width is controlled as a percentage of Period

Pulse Delay: \quad| 0 nsec to 450 msec measured from the leading edge of |
| :--- |
| Trigger Out to beginning of leading edge of Pulse Output |
| (relative to fixed offset) |
| For Period setting $\leq 8.0 \mathrm{nsec}:$ max Delay $=$ Period -2.6 |
| nsec |
| |
| For Period setting $>8.0 \mathrm{nsec}: \max$ Delay $=$ Period -4.7 |
| nsec |

Resolution:
Accuracy:
RMS Jitter:
Temperature Coefficient:
Match Between Output
Modules of the same type: 1.2 nsec

Phase:
Alternate format for delay. Settable from 0° to 359.9° with 0.1° resolution. In this format, Delay $=$ Phase $/ 360 \times$ Period

Double Pulse Delay: $\quad 4 \mathrm{nsec}$ to 450 msec

Resolution:
Accuracy:
RMS Jitter:
Temperature Coefficient:
the greater of 0.1% of value or 10 psec
$\pm(0.5 \%$ of value $+0.3 \mathrm{nsec})$
$\leq 0.035 \%$ of value +35 psec
$<250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ. with Temperature Compensation ON

INPUTS AND OUTPUTS:

External Input:Input Impedance:Input Range:$10 \mathrm{k} \Omega$ or $50 \Omega \pm 5 \%$, selectable$\pm 5 \mathrm{~V}$ into 50Ω or $\pm 20 \mathrm{~V}$ into $10 \mathrm{k} \Omega$Min. Detectable Amplitude: 200 mVThreshold Rangeand Resolution: $\quad \pm 2.5 \mathrm{~V}$ adjustable in 20 mV steps
Threshold Level Accuracy: $\pm 100 \mathrm{mV}$
Max. Input Frequency: 300 MHz
Min. Pulse Width: 1.5 nsec
Min. Input Slew Rate $10 \mathrm{~V} / \mathrm{sec}$
Edge Selection:
Positive, Negative, neither edge (disabled).
Trigger Output:
Output Levels:
Nominal 1 V negative swing from base level into50Ω. Base level adjustable over $\pm 1.5 \mathrm{~V}$ range with20 mV resolution. (Into Hi Z: Amplitude $=-2 \mathrm{~V}$.Base level of $\pm 3 \mathrm{~V}, 40 \mathrm{mV}$ resolution)
Output Impedance: $50 \Omega \pm 5 \%$
Protection: Protected against application of $\pm 10 \mathrm{~V}$.
Delay from Trigger Input: 21 nsec typ.
Width:Normal Mode:
Dependent on Trigger Mode
Period $\leq 7.2 \mathrm{nsec}$: Width $=1.8 \mathrm{nsec}$ typ.
7.2 nsec < Period < 50 nsec :
3.6 nsec \leq Width $\leq 7.2 \mathrm{nsec}$
Period $\geq 50 \mathrm{nsec}$: Width $=25 \mathrm{nsec}$ typ.
Pulse Width setting $\leq 40 \mathrm{nsec}$:
Trigger Output Width $=1.8 \mathrm{nsec}$ typ.
Pulse Width setting $>40 \mathrm{nsec}$:
Trigger Output Width $=25 \mathrm{nsec}$ typ.Width $=$ Period \mathbf{x} (Burst Count -1)

INPUTS AND OUTPUTS (continued):

Gate and External
Width Modes:
Trigger Output Width \approx Trigger Input Width
PROGRAMMABILITY: All generator functions are programmable over GPIB. Command set conforms with IEEE 488.2-1987

TRIGGERING MODES:

Normal:

Single:

Gated:

Burst:

External Width:

Continuous pulse stream. Trigger output for each pulse output.

Each external trigger input generates a single output pulse. One Trigger output for each trigger.

Signal at external input enables period generator. The first output pulse is synchronized with the gate's leading edge. Last pulse is allowed to complete. One Trigger output for each Gate input. 20 nsec retrigger (dead) time between Gate inputs

Each external trigger input generates a pre-programmed number of pulses (3 to 4095). Minimum time between two bursts is 50 nsec . One Trigger output for each trigger.

The signal at the external input is reproduced with programmable transition times and output levels. Trigger Output for each external trigger.

OPERATING FEATURES:

Manual Trigger: Front panel pushbutton generates an external trigger input. Each push provides one trigger pulse in Single and Burst Modes. Output remains active as long as button is pressed in Gate and External Width Modes.

$$
\begin{array}{ll}
\text { Double Pulse Mode: } \quad \begin{array}{l}
\text { When double pulse is set to ON, two pulses are produced } \\
\text { for each trigger. The first pulse begins as soon as possible } \\
\text { after the trigger (approximately the minimum Pulse Delay } \\
\text { time). The Delay parameter now specifies the time from } \\
\text { the leading edge of the first pulse to the leading edge of } \\
\text { the second pulse. One Trigger Output occurs for each } \\
\text { pulse pair. Compatible with all Trigger Modes except } \\
\text { External Width. }
\end{array}
\end{array}
$$

ADDITIONAL CAPABILITIES:

Setups: $\quad 16$ setup configurations can be stored and recalled using the

Limit:

Change Format:

When enabled, the maximum high and low level settability of the pulse outputs is limited to protect the device under test. Store and Recall keys on the front panel.

Enables the alternate representation of a parameter or enables an alternate mode of operation. Examples are Amplitude/Base or Amplitude/Median in lieu of VHigh/Vlow, Duty Cycle instead of Width, Phase instead of Delay, Frequency instead of Period, Slew Rate as opposed to Transition Time.

ENVIRONMENTAL: The following specifications apply to the 9210 mainframe and to output modules (9211, 9212, 9213, and 9214).
\(\left.\begin{array}{ll}Storage Temperature: \& -40^{\circ} \mathrm{C} to 70^{\circ} \mathrm{C} (temp above 40^{\circ} \mathrm{C} may degrade

\& battery life)

Operating Temperature: \& 5^{\circ} \mathrm{C} to 40^{\circ} \mathrm{C} at rated specifications,

operational from 0^{\circ} \mathrm{C} to 50^{\circ} \mathrm{C}\end{array}\right\}\)| | Temperature \& Self-Calibration:Generator and Output Modules will meet
 specifications over a $\pm 5^{\circ} \mathrm{C}$ range without
 repeating Self-Calibration |
| :--- | :--- |
| Humidity Range: | $<95 \%$ R.H. from $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ |

POWER:

$$
115 / 220 \mathrm{VAC} \pm 20 \% ; 48-448 \mathrm{~Hz}
$$

$$
300 \text { Watts Max. (180 typ) }
$$

MISCELLANEOUS:
Battery Backup Life: 10 years typ.The following specifications apply to the 9210 mainframe and to output modules(9211, 9212, 9213 and 9214).
Recalibration Interval: 1 yearWarmup Time (to meet specs):be performed.
9210 Mainframe:
Weight:
Dimensions:
23 lbs. net
34 lbs. shipping
Height: 5"
Width: 17"
Depth: 21"
Output Modules:
Weight:
2 lbs. net
4 lbs. shipping
Dimensions:
Height: 4.6"
Width: 2.4"
Depth: 14.7"15 min, after which a new Self-Calibration must
OPTIONS:
9210/SM Service Manual
9210/RM Rack Mount Kit
LeCroy 9211250 MHz, Variable Edge Output Module
TIMING CHARACTERISTICS:
Maximum Rep Rate: $\quad \geq 250 \mathrm{MHz}$
Minimum Pulse Width: $\leq 2.0 \mathrm{nsec}$
Fixed Delay from Trigger Out: $13 \mathrm{nsec} \pm 4 \mathrm{nsec}$
OUTPUT CHARACTERISTICS: Specified with both outputs terminated in 50.00Ω (Ratings in \{ \} are when driving an opencircuit.)
Outputs: Normal and Complementary Polarity
Short Circuit Output Current: $\pm 260 \mathrm{~mA}$
DC Output Source Impedance: $50 \pm 1 \Omega$
Output Protection: Protected against application of $\leq \pm 15 \mathrm{~V}$
OUTPUT LEVELS:

High Level	-4.95 V to $+5.00 \mathrm{~V}\{-9.90 \mathrm{~V}$ to $+10.00 \mathrm{~V}\}$
Low Level	-5.00 V to $+4.95 \mathrm{~V}\{-10.00$ to $+9.90 \mathrm{~V}\}$
Output Voltage Range:	± 5 Volts $\{ \pm 10$ Volts $\}$
	Maximum amplitude of $5 \mathrm{~V}\{10 \mathrm{~V}\}$

Level Accuracy:
Normal Output:$\pm(1 \%$ of Programmed Value $+1 \%$ ofAmplitude +40 mV) into 50.00Ω

OUTPUT LEVELS (continued):

Level Accuracy (continued):
Accuracy with Load Comp: The same accuracy as stated above will be maintained for user supplied load of 47Ω to $1 \mathrm{M} \Omega$ when load compensation feature is enabled.

Complementary Output:

Accuracy with Load Comp:

$\pm(1 \%$ of Programmed Value $+3 \%$ of Amplitude +40 mV) into 50.00Ω
$\pm(3 \%$ of setting times the ratio of the load on the complemented output to the load on the normal output). Measurements for the load compensating correction factors are made on the normal output.

PULSE PERFORMANCE:

Variable Transition Times (10% to 90%):

Leading Edge:
Trailing Edge:

Ranges:

$\leq 1.2 \mathrm{nsec}$ minimum (1 nsec typ) to 10 msec
$\leq 1.2 \mathrm{nsec}$ minimum (1 nsec typ) to 10 msec

7 ranges of 25:1, Minimum lead to trail dynamic range $=2.5: 1$, except $2: 1$ at first range break (see graph, below).

9211 Transition Time Ranges

PULSE PERFORMANCE (continued):

Variable Transition Times (continued):

Resolution:
Accuracy:
Linearity:

Slew Rate mode:

Overshoot and Ringing:
Settling Time:
Normal to Complementary Output Skew:
the greater of 1% or 100 psec
$\pm(10 \%$ of value $+300 \mathrm{psec})$
$\pm 3 \%$ typ. ($10-90 \%$) for transition times
$>50 \mathrm{nsec}$
Settable down to $0.1 \mathrm{~V} / \mathrm{msec}$ with 0.1% resolution and $\pm 10 \%$ accuracy (separately settable for leading and trailing edge) Max. rate determined by amplitude setting \& transition time limits stated above.
the greater of $\pm 8 \%$ of amplitude or $\pm 10 \mathrm{mV}$ $\leq 10 \mathrm{~ns}$ to 2% of amplitude change at fastest transition times

200 psec max

MODULE CONTROLS:

Invert:

Disable:
Display Channel:

The following controls are located on the front panel of the output module.

Inverts normal output pulse levels. Quiescent and active levels exchanged.

Output circuitry is disconnected via relay.
Instructs mainframe to select and display all of the parameter settings for this module.

LeCroy $9212300 \mathrm{MHz}, 300$ psec, Variable Edge Output Module
 TIMING CHARACTERISTICS:

Maximum Rep Rate:	$\geq 300 \mathrm{MHz}$
Minimum Pulse Width:	$\leq 1.2 \mathrm{nsec}$
Fixed Delay from Trigger Out:	$13 \mathrm{nsec} \pm 4 \mathrm{nsec}$

OUTPUT CHARACTERISTICS:

Outputs:

Short Circuit Output Current:
Specified with both outputs terminated in 50.00Ω. (Ratings in $\}$ are when driving an open circuit.)

DC Output Source Impedance:
Output Protection:
Normal and Complementary Polarity $\pm 240 \mathrm{~mA}$
$50 \pm 1.0 \Omega$
Protected against application of $< \pm 6 \mathrm{~V}$

OUTPUT LEVELS:

High Level:
Low Level:
Output Voltage Range:

Resolution:

Level Accuracy:

-4.50 V to $+5.00 \mathrm{~V}\{-4.00 \mathrm{~V}$ to $+5.00 \mathrm{~V}\}$
-5.00 V to $+4.50 \mathrm{~V}\{-5.00 \mathrm{~V}$ to $+4.00 \mathrm{~V}\}$
± 5 Volts $\{ \pm 5$ Volts $\}$ (Amplitude will double into a high impedance up to the 5 V limit). Max. amplitude of $5 \mathrm{~V}\{10 \mathrm{~V}\}$.
Min. amplitude of $500 \mathrm{mV}\{1 \mathrm{~V}\}$
$5 \mathrm{mV}\{10 \mathrm{mV}\}$

Normal Output:
(1% of Programmed Value $+1 \%$ of
Amplitude +40 mV) into 50.00Ω
Accuracy with Load Comp: The same accuracy as stated above will be maintained for user supplied load of 47Ω to $1 \mathrm{M} \Omega$ when load compensation feature is enabled.

OUTPUT LEVELS (continued):

Level Accuracy (continued):
Complementary Output: $\quad \pm(1 \%$ of Programmed Value $+3 \%$ of Amplitude +40 mV) into 50.00Ω

Accuracy with Load Comp:
\pm (3% of setting times the ratio of the load on the complemented output to the load on the normal output). Measurements for the load compensating correction factors are made on the normal output.

PULSE PERFORMANCE:

Minimum Transition Time: $\leq 300 \mathrm{psec}$ guaranteed (20% to 80%) @ Lead/Trail set to 250 psec

Transition Time

Amplitude	(@ Lead/Trail set to 1 nsec)
0.50 V	$\geq 450 \mathrm{psec}$
0.75 V	$\geq 540 \mathrm{psec}$
1.00 V	$\geq 580 \mathrm{psec}$
2.00 V	$\geq 675 \mathrm{psec}$
3.00 V	$\geq 720 \mathrm{psec}$
4.00 V	$\geq 745 \mathrm{psec}$
5.00 V	$\geq 750 \mathrm{psec}$

Transition Time Accuracy: $\quad \pm(20 \%$ of value $+300 \mathrm{psec})$, for values less than the maximum (see below)

Transition Time Symmetry: $\quad\left|t_{l e a d}-\mathrm{t}_{\text {trail }}\right|<20 \%$ of value $\pm 300 \mathrm{psec}$
Transition Time Resolution:
50 psec steps, worst case (at the module output)
Transition Time Repeatability: $\pm 100 \mathrm{psec}$ (for identical module setup)

PULSE PERFORMANCE (continued):

Transition Time Variability:
The 9212 has adjustable edge transition rates from 300 psec to about 1 nsec . Leading and Trailing edges are adjusted in common. The graph below describes the adjustability ranges for given amplitudes.

Overshoot and Ringing:
Settling Time:
Normal to Complemented Output Skew:
the greater of $\pm 10 \%$ of amplitude or $\pm 10 \mathrm{mV}$
$\leq 10 \mathrm{nsec}$ to 2% of amplitude change at fastest transition time.

100 psec max at fastest transition time. (25 psec typ)

MODULE CONTROLS:

Invert:

Disable:
Display Channel:

These controls are located on the front panel of the output module.

Inverts normal output pulse levels. Quiescent and active levels exchanged.

Output circuitry is disconnected via relay.
Instructs mainframe to select and display the settings parameters for this module.
LeCroy 921350 MHz , 16 V Amplitude Output Module
TIMING CHARACTERISTICS:
Maximum Rep Rate: $\geq 50 \mathrm{MHz}$
Minimum Pulse Width: $\leq 10.0 \mathrm{nsec}$
Fixed Delay from Trigger Out: $13 \mathrm{nsec} \pm 4 \mathrm{nsec}$
OUTPUT CHARACTERISTICS: Specified with output terminated in 50.00Ω.(Ratings in \{ \} are when driving an opencircuit.)
Output: Normal Polarity
Short Circuit Output Current: $\pm 200 \mathrm{~mA}$
DC Output Source Impedance: $50 \pm 2.0 \Omega$
Output Protection: Protected against application of $\leq \pm 40 \mathrm{~V}$
OUTPUT LEVELS:
High Level:
-7.98 V to $+8.00 \mathrm{~V}\{-15.96 \mathrm{~V}$ to $+16.00 \mathrm{~V}\}$-8.00 V to $+7.96 \mathrm{~V}\{-16.00 \mathrm{~V}$ to $+15.96 \mathrm{~V}\}$
Output Voltage Range: ± 8 Volts $\{ \pm 16$ Volts $\}$;
Maximum Amplitude of $16 \mathrm{~V}\{32 \mathrm{~V}\}$;
Minimum Amplitude of $20 \mathrm{mV}\{40 \mathrm{mV}\}$
Resolution: $5 \mathrm{mV}\{10 \mathrm{mV}\}$
Level Accuracy:$\pm(1 \%$ of Programmed Value $+1 \%$ of Amplitude$+40 \mathrm{mV})$ into 50.00Ω

Accuracy with Load Comp:

The same accuracy as stated above will be maintained for user supplied load of 47Ω to $1 \mathrm{M} \Omega$ when load compensation feature is enabled.

PULSE PERFORMANCE:

Variable Transition Times (10% to 90%):

Leading Edge:
Trailing Edge:
Ranges:
8 ranges of $25: 1$, Min. lead to trail dynamic range $=2.5: 1$, (except for lowest range, see graph below)

9213 Transition Time Ranges
PULSE PERFORMANCE (continued):
Variable Transition Times (continued):

Resolution:

Accuracy:
Linearity:

Slew Rate mode:

Overshoot and Ringing:

Settling Time:

MODULE CONTROLS:

Invert:

Disable:
Display Channel:
the greater of 1% or 100 psec
$\pm(8 \%$ of value,$+0.5 \mathrm{nsec})$
$\pm 3 \%$ typ. (10-90\%) for transition times $>100 \mathrm{nsec}$

Settable down to $0.1 \mathrm{~V} / \mathrm{msec}$ with 0.1% resolution and $\pm 8 \%$ accuracy (separately settable for leading and trailing edge) Max. rate determined by amplitude setting \& transition time limits stated above.
the greater of $\pm 8 \%$ of amplitude or $\pm 10 \mathrm{mV}$
$\leq 50 \mathrm{nsec}$ to 2% of amplitude change for amplitudes $\leq 10 \mathrm{~V}$ or to 3% of amplitude change for amplitudes $>10 \mathrm{~V}$ (at fastest transition times).

The following controls are located on the front panel of the output module.

Inverts normal output pulse levels. Quiescent and active levels exchanged.

Output circuitry is disconnected via relay.
Instructs mainframe to select and display the settings parameters for this module.

LeCroy $9214300 \mathrm{MHz}, 300 \mathrm{psec}$, Fixed Edge Output Module
 TIMING CHARACTERISTICS:

Maximum Rep Rate:	$\geq 300 \mathrm{MHz}$
Minimum Pulse Width:	$\leq 1.2 \mathrm{nsec}$
Fixed Delay from Trigger Out:	$13 \mathrm{nsec} \pm 4 \mathrm{nsec}$

OUTPUT CHARACTERISTICS: Specified with both outputs terminated in 50.00Ω. (Ratings in \{ \} are when driving an open circuit.)

Normal and Complementary Polarity
$\pm 240 \mathrm{~mA}$
Short Circuit Output Current:
DC Output Source Impedance:
Output Protection:
$50 \pm 1.0 \Omega$
Protected against application of $< \pm 6 \mathrm{~V}$

OUTPUT LEVELS:

High Level:	-4.50 V to $+5.00 \mathrm{~V}\{-4.00 \mathrm{~V}$ to $+5.00 \mathrm{~V}\}$
Low Level:	-5.00 V to $+4.50 \mathrm{~V}\{-5.00 \mathrm{~V}$ to $+4.00 \mathrm{~V}\}$
Output Voltage Range:	± 5 Volts $\{ \pm 5$ Volts $\}$ (Amplitude will double
	into a high impedance up to the 5 V limit).
	Max. amplitude of $5 \mathrm{~V}\{10 \mathrm{~V}\}$.
	Min. amplitude of $500 \mathrm{mV}\{1 \mathrm{~V}\}$
Resolution:	$5 \mathrm{mV}\{10 \mathrm{mV}\}$

Level Accuracy:
Normal Output:
(1% of Programmed Value $+1 \%$ of Amplitude +40 mV) into 50.00Ω
Accuracy with Load Comp:
The same accuracy as stated above will be maintained for user supplied load of 47Ω to $1 \mathrm{M} \Omega$ when load compensation feature is enabled.
OUTPUT LEVELS (continued):
Level Accuracy (continued):
Complementary Output: $\pm(1 \%$ of Programmed Value $+3 \%$ ofAmplitude +40 mV) into 50.00Ω
Accuracy with Load Comp:
\pm (3% of setting times the ratio of the load on the complemented output to the load on the normal output). Measurements for the load compensating correction factors are made on the normal output.

PULSE PERFORMANCE:

Transition Time:	≤ 300 psec guaranteed (20\% to 80%)
Overshoot and Ringing:	the greater of $\pm 10 \%$ of amplitude or $\pm 10 \mathrm{mV}$
Settling Time: Normal to Complemented Output Skew:	$\leq 10 \mathrm{nsec}$ to 2% of amplitude change.
MODULE CONTROLS:	100 psec max. (25 psec typ.)
These controls are located on the front panel of the	
output module.	

Unpacking and Inspection

Warranty

LeCroy warrants the Models 9210, 9211, 9212, 9213 and 9214 to operate within specification under normal use and service for a period of 5 years from the date of shipment. Replacement parts, and repairs are warranted for "duration of the original warranty or one (1) year, whichever is longer". This warranty extends only to the original purchaser. Longer warranty periods are available.

In exercising this warranty, LeCroy will repair or, at its option, replace any product returned to the Customer Service Department or an authorized service facility within the warranty period, provided that LeCroy's examination discloses that the product is defective due to workmanship or materials and has not been caused by misuse, neglect, accident or abnormal conditions or operations.

The purchaser is responsible for the transportation and insurance charges arising from the return of products to the servicing facility. LeCroy will return all in-warranty products with transportation prepaid.

This warranty is in lieu of all other warranties, express or implied, including but not limited to any implied warranty of merchantability, fitness, or adequacy for any particular purpose or use. LeCroy shall not be liable for any special, incidental, or consequential damages, whether in contract, or otherwise.

Although LeCroy warrants the 9210, 9211, 9212, 9213 and 9214 to meet specification for five (5) years with no adjustment, it is recommended that the user have the generator and modules calibrated once each year. If adjustments are necessary, they will be made at no charge.

LeCroy is committed to providing state-of-the-art instrumentation and is continually refining and improving the performance of its products. While physical modifications can be implemented quite rapidly, the corrected documentation frequently requires more time to produce. Consequently, this manual may not agree in every detail with the accompanying product. Where any such inconsistencies exist, please be assured that the unit you have received contains the most up-to-date features.

We will make every effort to update documentation as often as possible. If you feel that your version is outdated, call (914) 578-6020.

Service and Procedures

Products requiring maintenance should be returned to an authorized service facility. Under warranty, LeCroy will repair or replace the product at no charge. The purchaser is only responsible for the transportation charges arising from return of the goods to the service facility.

For all LeCroy products in need of repair after the warranty period, the customer must provide a Purchase Order Number before any inoperative equipment can be repaired or replaced. The customer will be billed for the parts and labor for the repair as well as for shipping.

All products returned for repair should be identified by the model and serial numbers and include a description of the defect or failure, name and phone number of the user. In the case of products returned, a Return Authorization Number is required and may be obtained by contacting the Customer Service Department at 914-578-6020. Outside the U. S. A., call your local LeCroy Sales Office or Representative.

REQUIRED DEVICE DOCUMENTATION FOR IEEE 488.2-1987 (GPIB)

General Information

The 9210's GPIB interface is IEEE 488.2-1987 compatible. Section 4.9 of IEEE 488.2-1987 contains a list of device documentation requirements. This section contains required device documentation not covered elsewhere in the manual. For items which are covered elsewhere, the appropriate section of this manual is referenced.

GPIB Interface Function
Subsets

1) The 9210 implements the following 488.2 Interface Function subsets:

SH1 - Source handshake complete capability
AH1 - Acceptor handshake complete capability
T6 - Basic talker, Serial poll, unaddress if MLA, no Talk ONly
L3 - Basic listener, Unaddress is MTA, Listen ONly mode
SR1 - Service request complete capability
RL1 - Remote/Local complete capability
PP0 - No parallel poll capability
DC1 - Device Clear (and Selected Device Clear) complete capability
DT1 - Device Trigger complete capability
C0 - No controller capability
E2 - Tri-state lines (except SRQ, NRFD, NDAC)

Addressing Information

Restoration of Settings

Commands and Queries

2) It is not possible to set the device's addressoutside the range of 0 to 30 . An attempt to do so causes an error message to be displayed, indicating that the requested value is out of range, and the address is not changed.
3) A user initiated address change is recognized immediately.
4) The 9210 's device settings at power on are restored to the values they had when the 9210 was powered off. (Note that "device settings" is a standard-defined term. Other items, such as the status data structures and enable registers, are cleared at power on.)
5) a) The input buffer is 257 bytes, the last byte of which is inside a commercial integrated circuit which implements IEEE 488.1. The input buffer cannot overflow. If the input buffer becomes filled, one byte is accepted as each byte is removed from the input buffer by the 9210's parser.
b) The only query returning more than one <RESPONSE MESSAGE UNIT> is "ERR?". Query responses are further documented in Chapter 6 (Remote Operations) and Chapter 7 (GPIB Commands) of this manual.
c) All queries generate a response when parsed.
d) No queries generate a response when read.
e) The following commands are "coupled" to at least one other command:

AMP	Pulse Amplitude
BASE	Pulse quiescent level
DEL	Pulse Delay
FREQ	Frequency
LEAD	Leading edge time
LOADComp	Load Compensate
MED	Pulse median amplitude
	(BASE + AMP/2)
PHA	Phase
PER	Period
SLEW_Lead	Slew rate, leading edge
SLEW_Trail	Slew rate, trailing edge
TRAIL	Trailing edge time
TRMD	Trigger Mode
WID	Pulse Width
VHI	Pulse high level
VLO	Pulse low level

The effect of "coupled" commands is described in Chapter 7 of this manual (GPIB Commands). All other commands are also documented in Chapter 7

Device Specific Commands

Data Elements

6) The 9210 's device specific commands can be built using all functional elements defined in IEEE 488.2-1987 section 7.3.3 except <EXPRESSION PROGRAM DATA>. It is never necessary to use <NONDECIMAL NUMERIC PROGRAM DATA>. (Commands that accept <DECIMAL NUMERIC PROGRAM DATA> will also accept <NONDECIMAL NUMERIC PROGRAM DATA> - time in picoseconds, volts in microvolts, dimensionless values in units). <ARBITRARY BLOCK PROGRAM DATA> elements, although accepted by the parser, are not used in any of the 9210 's commands and will therefore generate a command error.
<compound command program header> elements are used. From a syntactic point of view, all commands have compound headers: they can all accept the optional leading ":". More information on the 9210's use of <compound command program header> elements is found in the section entitled "Header Compounding" in Chapter 6 of this manual (Remote Operations).
7) The size of a block data element is limited by the size of the parser's buffer. The $<$ PROGRAM MESSAGE UNIT> which contains the block data element must fit entirely within the parser's 300 byte buffer.

NOTE: At the moment no 9210 command uses <ARBITRARY BLOCK PROGRAM DATA> elements.
8) <EXPRESSION PROGRAM DATA> elements are not supported.

Query Response

Implemented
 Commands and Queries

9) The response syntax for every query is specified in Chapter 7 of this manual (GPIB Commands).
10) The 9210 does not send any message which does not comply with the rules for <RESPONSE MESSAGE> elements.
11) The 9210 does not produce any block data responses.
12) The following IEEE 488.2 common commands and queries are implemented:
```
*CAL? *CLS *ESE *ESE? *ESR? *IDN?
*LRN? *OPC *OPC? *OPT? *RCL *RST
*SAV *SRE *SRE? *STB? *TRG *TST?
*WAI
```

This list includes fourteen mandatory commands and five optional commands. Further information on these commands can be found in Chapter 7 of this manual (GPIB Commands).

State After
Calibration

13) After calibration, the 9210 is automatically returned to its state before calibration.

Identification
 Response

16) The response to *IDN is an <ARBITRARY ASCII RESPONSE DATA> element (an unquoted string) as specified by IEEE 488.2. It is of the form:

LECROY,9210,0,1.2:910322
The first field is the manufacturer. The second field is the model number. The third field is the serial number or 0 if not available. The fourth field is Firmware level or equivalent.
19) The states affected by *RST, *SAV, *RCL and *LRN? are:

Mainframe: Period, frequency, trigger mode, trigger level, trigger slope, trigger input impedance, burst count, trigger output level

For each module: width, duty cycle, delay, phase, vhigh, vlow, amplitude, base, median, lead, trail, slew_lead, slew_trail, double pulse, invert, disable, load compensation, limit, voltage max limit, voltage min limit, and the normal and complementary output enables, if applicable.

In addition to the above, the display format is affected. The display format selects the following: Vhigh and Vlow or amplitude and base or amplitude and median, period or frequency, width or duty cycle, delay or phase, lead and trail or slew lead and slew trail.

NOTE: Some module dependent parameters may not be controllable on all modules. If a module is installed where some parameters cannot be controlled, those parameters which cannot be controlled are not saved by *SAV, not reported by *LRN?, and are not affected by *RCL or *RST.

Selftest

20) The scope of selftest performed by *TST is as follows:

CALIBRATION

Top level procedure:
CAL_ADC:
Purpose: Check ADC functionality. Note: not really a calibration.
Procedure: take 10 readings at ground, and nominal 2.5 V from resistive voltage divider.

Error bit: Bit 0 (value 1) set in *CAL? answer if error
Details (Error codes in cal msg and TER? 0):
1: More than 10 code spread from max to min reading at one voltage.
2: Out of limit: Ground >1 code, or $2.5 \mathrm{~V}>2150$ or $<$ $1945(+/-5 \%$ of 2048)

Displayed message: Either "Cal ADC... Passed" or "Cal ADC... Failed," followed by the numeric code shown in "details" above, followed by a line showing the sum of the ten readings of 2.5 V (should be approximately 20480) and the sum of the ten readings for Ground (should be approximately 0).

TEST_FCNT:

Purpose: Check frequency counter functionality Procedure: Count 16 MHz clock (through TDC start MUX) for 3 msec gate, 10 times.
Error bit: Bit 1 (value 2) set in *CAL? answer if error Details (Error codes shown in cal msg and TER? 1):
1: Failed. Gate end interrupt did not occur within a reasonable number of milliseconds.
2. Excessive spread: max reading - min reading greater than 10 counts.
4: Out of limit: Average reading was not between 47992 and 48008 . These limits were chosen to account for 400 nsec gate error plus one count.

CAL_TDC:
Purpose: find code for 0 time (pedestal) and fsec per code for fast TDC.
Note: fast TDC is time to voltage converter, then the 12 bit ADC.
Procedure: Using the 16 MHz reference clock as start and stop, sum 1000 readings of 1 cycle time (use second stop $=$ on), then sum 250 readings of pedestal reading, i.e., start and stop on same edge multiply by four to scale as if 1000 readings. Save pedestal code * 1000, and tdc_fs_per_code = (sum of 1 cycle - (pedestal * 1000)) / 62500000 .
Error bit: Bit 2 (value 4) set in *CAL? answer if error. Details (Error codes in cal msg and TER? 2):

1: Failed. TDC STOPPED interrupt did not occur within a reasonable number of milliseconds.
2: Excessive spread: >64 codes spread on pedestal readings, or >220 codes spread on 62.5 nsec readings.
4: Out of limit: Pedestal limits are 50 to $400,62.5 \mathrm{nsec}$ limits are 3000 to 4000 codes. Limit is checked on average of readings.
Displayed message: Either "Cal TDC... Passed" or "Cal TDC... Failed" followed by minimum, maximum and average readings for pedestal and 62.5 nsec , in codes.

CAL_VCO:

Purpose: This routine calibrates the 9210 's timing circuits. It is called five times, for PERIOD, DELAY_A, WIDTH_A, DELAY_B, and WIDTH_B timing circuits, in the order shown.
Procedure: The frequency counter is used to measure each VCO's free-running frequency (prescaled by 64) at 76 selected control voltage points. The points have been selected so that linear interpolation between the points will result in a maximum error of less than 0.05% for the expected control voltage vs. frequency curve. The VCO frequency is varied from maximum to minimum. The first count is made with a gate time of 9 msec , which should result in a count of over 50000 (count of 65535 at $466 \mathrm{MHz}, 50000$ at 355.6 MHz) As the VCO is slowed down, the gate time is increased by a factor of 1.25 whenever a count under 30000 is seen. Since the expected accuracy of the frequency counter is better than 400 nsec gate accuracy $+/-1$ count, the calibrated points should be accurate to better 1 part in 20000 .

Error bit: Bit 4 in *CAL? response
Details: (TER? 4 response)
1: Unreasonable frequency reading (less than 25000 counts) OR fastest reading $>2.8 \mathrm{~ns}$ or slowest reading ${ }^{2} 19 \mathrm{~ns}$.
2: Non-monotonic VCO frequency change
4: Aborted (very unreasonable reading, less than 20000 counts)
Displayed message: Either "... Passed" or "... Failed" followed by either the fastest and slowest readings in ps if not aborted, or if aborted, the last frequency counter count.

CAL_PLUGIN_A:

Purpose: Calibrate amplitude, offset and slew rates.
Procedure: Different for each module type. Verifies all module specs except linearity, settling time, overshoot and ringing.
Error bit: Bit 8 in ${ }^{*}$ CAL? response
Details: (TER? 8 response)

CAL_PLUGIN_B:

Purpose: Calibrate amplitude, offset and slew rates. Procedure: Different for each module type. Verifies all module specs except linearity, settling time, overshoot and ringing.
Error bit: Bit 9 in *CAL? response
Details: (TER? 9 response)
CAL_DISP_TEMPERATURE:
Purpose: Append temperature to cal message.

CAL_DISP_REV_INFO:

Purpose: Append firmware revision information to cal message.

SELFTEST

Top level procedure:

CALIBRATE:

Performs calibration (see above).

STEST_MAIN_PROM:

Purpose: sumcheck main Prom
Procedure: Add bytes to 32 bit sum. Start: 0. End:
0×1 FFFB. If 1 FFFC to 1 FFFF is not 0 , assume it is expected checksum. Compare, show PASS or FAIL.
If it is zero, just display computed checksum - never fail.
Error bit (in *TST? response): ERRBIT_STEST, bit 15
Details (in TER? 15 response): 4 = main PROM checksum test failed

STEST_PLUGIN_PROM:

Purpose: sumcheck plugin's Prom. Called twice, for A and B.
Procedure: Add bytes to 32 bit sum. If plugin installed:
For plugin A Start: 0x80000. End: 0x87FFB. For plugin B Start: 0x88000. End: 0x8FFFB.
If 4 bytes following END are not 0 , assume they are expected checksum. Compare, show PASS or FAIL. If zero, just display computed checksum never fail.
Error bit: ERRBIT_STEST

Details (in TER? 15 response):
$8=$ plugin A checksum failed
$16=$ plugin B checksum failed

STEST_BBRAM:

Purpose: perform a ram test on battery backed up RAM, from 7 C 000 to $7 \mathrm{FFFF}, 8 \mathrm{~K}$ bytes.
Procedure: for as many 1 K blocks as necessary:
Disable processor interrupts Save 1 K byte block
Write block with start pattern, low to high address (forward)
Read forward and compare start pattern
Write backward complement of start pattern
Read backward and compare complement pattern
Restore block's original contents
Enable interrupts
check_delays() - updates watchdog
Note: this test is based on "Efficient algorithms for Testing Semiconductor Memories" by R. Nair et al, IEEE Transactions on Computers Vol. C-27 No. 6, June 1978. This test will catch any stuck data line, cell fault or coupling and, as implemented, faults in the lowest 10 address lines or in the RAM chip's decoding of these lines.
Error bit: ERRBIT_STEST
Details (in TER? 15 response): 1 = battery backed-up RAM test failed

STEST_RAM:
Purpose: same as stest_bbram, but for main ram at 40000 to 47 FFF .
Error bit: ERRBIT_STEST

Details (in TER? 15 response): $2=$ main RAM test failed

STEST_VIDEO:

Purpose: Verify that Horizontal and Vertical Sync signals are being generated and are approximately the expected frequency.
Procedure: Run frequency counter: source Hsync, 10 msec gate. Check that result is 189 to 231, i.e., 18.9 to 23.1 kHz . Run frequency counter: source Vsync, 800 msec gate. Check that result is 35 to 50 , i.e., 43.75 to 62.5 Hz .

Error bit: ERRBIT_STEST
Details (in TER? 15 response): 32 = video test failed

TRIGGER_CIRCUIT_TEST:

Purpose: make sure trigger input comparators work, both slopes
Procedure: Save trigger mode, trigger slope, trigger level. Set trigger mode to External Width. Turn on "trigger test" - ground trigger input through FET. For positive slope, negative slope, and trigger input disabled:
Set the trigger comparator threshold to 2.5 V . Start the TDC on output of Period generator. Swing the trigger input threshold to -2.5 V . Expect trigger if trigger slope positive, else not. Start the TDC again on the output of the period generator. Swing the trigger input threshold back to +2.5 V . Expect trigger if trigger slope negative, else not. Check that TDC fired when expected and timed out otherwise.
Restore trigger mode, trigger slope, trigger level Error bit: ERRBIT_STEST
Details (in TER? 15 response): $64=$ trigger test failed

TRIGGER_DELAY_TEST (errbit_delay,0):
Purpose: Make sure that Period->Width->Delay chain is unbroken, with a reasonably short fixed delay.
Procedure: Save trigger mode, trigger slope, and A and B width and delay. Set trigger mode SINGLE, slope DISABLED, and Channel A and B widths to 100 nsec , and delays to 0 .
For channel A and B: Set TDC MUX to start on Period out and stop on Channel (width up). Sum 64 TDC readings, using manual trigger to fire period gen. Check that TDC always fired and reading < 20 nsec (approx.). Restore trigger mode, trigger slope, and A and B width and delay
Error bit: ERRBIT_DELAY = bit 3
Details: 1 = excessive prop delay in channel A
2 = excessive prop delay in channel B

Status Data Structure
21) The status data structures in the 9210 are:

Status Byte Register: Contains status summary messages. The 488.2 standard defines the following bits:

MAV - Message Available - true when the output queue is not empty.
ESB - Event Status Bit - true when an enabled bit in the Standard Event Status Register has been set since the last reading or clearing of the Standard Event Status Register (see below).
RQS - Indicates that this device is requesting service. This bit is only readable by serial poll, and is cleared after being read once.
MSS - Indicates that an enabled bit in the status byte register is true. This bit replaces RQS when the status byte is read by "*STB?", as shown in the diagram below.

In addition, we define:
ERQ - Error Queue summary bit - true when the error queue is not empty.

Service Request Enable Register: Each bit (except bit 6) of this register "enables" the corresponding bit in the Status Byte Register when true. Bit 6 in the Status Byte Register cannot be disabled. This register is completely defined by 488.2.

Standard Event Status Register: IEEE 488.2 defines all of the bits in this register. It is read by *ESE?

Bit 7 - Power on
Bit 6 - User Request (not used by 9210)
Bit 5 - Command Error
Bit 4 - Execution Error
Bit 3 - Device Dependent Error
Bit 2 - Query Error
Bit 1 - Request Control (not used by 9210)
Bit 0 - Operation Complete (used for *OPC command)

Standard Event Status Enable Register: Defined by 488.2. Each bit "enables" the corresponding bit of Standard Event Status Register when 1. If any enabled bit becomes set, the Event Summary Bit (ESB) in the Status Byte register becomes set.

Output Queue: defined in 488.2. Our implementation holds 257 bytes. If a larger response needs to be generated, the 9210 finishes placing the response in the buffer as the first part is read out.

In addition to these registers and the output queue, which are defined by 488.2 , we define an Error Queue. The Error Queue summary bit is bit 7 in the Status Byte Register, and has already been discussed. The error queue holds 31 entries. It is read by the ERR? query.

Successive readings get successive entries. If the queue is empty, ERR? returns 0,"NO ERROR". If the error queue is full when an error occurs, then ERR? will return 350,'TOO MANY EVENTS" after returning the 31 entries in the queue, (i.e. on the 32 nd query). A complete list of error codes appears in the Appendix E of this manual.

STATUS BYTE AND SERVICE REQUEST ENABLE REGISTER LAYOUT

	7	6	5	4	3	2	1	0
Status Byte Register (as read by Serial Poll)	ERQ	RQS	ESB	MAV	0	0	0	0
(as read by *STB?)	ERQ	MSS	ESB	MAV	0	0	0	0
Service Request Enable Register (read by *SRE?, written by *SRE <NRf $)$	7	X	5	4	3	2	1	0

Sequential Processing

Operation Complete

22) All 9210 commands are sequential, the 9210 has no "overlapped" commands. The only exception to strict sequential processing is for coupled commands (see 5 e , above) as described in 488.2-1987 section 6.4.5.3.
23) Op Complete is generated when all <PROGRAM MESSAGE UNITS> in a <PROGRAM MESSAGE> have completed execution. Op Complete generation is the final action, after the completion of coupled commands (if any), caused by a <PROGRAM MESSAGE>. The GPIB Commands Chapter of this manual (Chapter 7) documents the functional criteria that are met by each command.

Additional Notes

I) Items $14,15,17,18$ are only required if certain optional common commands (macro commands, *PUD, and *RDT) are implemented. The 9210 does not implement these commands.
II) The above required documentation is correct for the set of documented 9210 commands. The 9210 contains a few headers which are meant only for testing and are not documented in this manual.

GPIB Error Queue

This section lists the possible responses to the ERR? query. Each response is a decimal numeric error code followed by a quoted string with a very brief explanation of the error. This section presents a more detailed explanation for each error.

The list of errors is divided into groups reflecting which bit is set in the Standard Event Status Register (read by *ESR?) when each error occurs. Because the 9210's error queue contains more detail than the ESR, it is not necessary to use the ESR. The ESR is included for IEEE Std 488.2 compliance.

When the error queue is empty, the query ERR? produces the following response:

0,"NO ERROR"

One other possible response which may be caused by any error is:

350,"TOO MANY EVENTS"

This indicates that all 31 entries in the error queue were full when another error occurred.

Errors in the range of 100 to 199 set the Command Error bit (bit 5, value 32) in the Standard Event Status Register.

Command Errors

Command errors are detected while parsing commands received from GPIB. No attempt is made to execute a command which causes a command error. If the command error is caused by an error in 488.2 syntax, the parser will ignore the remainder of the program message; these errors are noted below.

102,'SYNTAX ERROR"

Possible causes: misspelled or unknown header, EOI in impossible place (such as with a '*' at the beginning of a header or before any alpha character after header path such as "A:").

106,' 'INVALID PGM DATA SEP'

The only legal program data separator is comma, with optional surrounding white space. After a program data element, the parser expects either a program data separator (indicating another program data element will follow), a program message separator or program message terminator. If something other than these is found this error is generated. The remainder of the input message is ignored.

108,'TOO MANY PARAMS"

At least one more program data element was parsed than is needed for the command or query. Example: A:VHI 2.0,3.0

109,'MISSING PARAM"

At least one less program data element was parsed than is needed for the command or query.

112,"PGM MNEM TOO LONG"

IEEE Std 488.2 specifies that all program mnemonics must be 12 characters or less. However, the 9210 does not produce this error message upon receiving a 13th character, but on receiving a program mnemonic too large to fit in the parser's buffer (over 256 characters!). The remainder of the input message is ignored.

113,"UNDEFINED HEADER"

Either a command was received whose header is valid only as a query, or what appears to be an invalid header path was found, or an impossibly short (1 character) header was found.

114,'INVALID HEADER"

The only valid characters for a program message header are A through Z (case does not matter), 0 through 9 , and underscore. The first character must be alpha. The remainder of the input message is ignored.

115,'INVALID HEADER COMPOUNDING"

Missing header path (module ID) on a header that requires it, or header path is present on a header that is does not need it.

118,"QUERY NOT ALLOWED"

A query has been received whose header is only valid as a command.

121,'INVALID CHAR IN NUMBER"

Either a non-numeric argument occurred where a number was expected, or an invalid character occurred within a numeric argument. In the latter case the remainder of the input message is ignored.

123,"NUMERIC OVERFLOW"

A number was parsed which was too large to fit in the internal representation of that value.

124,'"TOO MANY DIGITS"

The number of digits of what the parser believes is a numeric field exceeded the length of the parser's buffer. The parser's buffer is 300 characters long, part of which is used for the program message header.

141,"INVALID CHARACTER DATA"

Character data was expected, but the parsed element either isn't character data, contains an illegal character (not A to $\mathrm{Z}, 0$ to 9 or underscore) or does not match any recognized option for this header. For example, setting the trigger mode to ON with the command TRMD ON would produce this error.

NOTE: Only the first four characters of Character data elements are used by the parser, so TRMD NORM is the same as TRMD NORMAL, for example.

144,"CHAR DATA TOO LONG"

IEEE Std 488 specifies that character data elements are limited to 12 characters. The 9210 produces this error only when the character data is too large to fit in the parser's buffer. The remainder of the input message is ignored.

151,'INVALID STRING DATA"

Either a character outside the ASCII character set was found in a quoted string, or EOI occurred before the quotes were closed, or a string data element was expected but some other type of data was encountered. In the first two cases the remainder of the input message is ignored.

161,"INVALID BLOCK DATA"

Either EOI occurred during the count in a definite length block header, or an EOI occurred before the length was satisfied for a definite length block, or a block data element was expected but a different type of element was encountered.

162,"INVALID BLOCK DATA HEADER"

The character following the '\#' was not a valid block format. The remainder of the input message is ignored.

163,'BAD CHAR IN COUNT"

The count in a definite length block header contained character outside the range 0-9.

Execution Errors

 Errors in the range of 200 to 299 set the Execution Error bit (bit 4, value 16) in the Standard Event Status Register.Execution errors are detected when a properly parsed header cannot be executed because a program data element is out of range, or cannot be properly executed because of some other device condition.

221,"SETTINGS CONFLICT"

Otherwise valid device settings cannot all be valid together. For example, VHI 3.0 V is valid, unless VLO is greater than 3.0V. Please see the section on Parameter Conflicts in Chapter 3 of this manual for more information.

222,"DATA OUT OF RANGE"

Numeric program data element is outside of the device's capability for this header; this setting can never be valid. No attempt is made to execute the command.

Example: FREQUENCY 1273 GHz

223,"TOO MUCH DATA"

String data or block data element too large to fit in the parser's buffer was encountered. The remainder of the input message is ignored.

241,"HARDWARE MISSING"

A module specific command or query was parsed for a module which is not installed.

Query Error

Errors in the range of 400 to 499 set the Query Error bit (bit 2, value 4) in the Standard Event Status Register.

410,"INTERRUPTED"

The device received a complete program message which included a query, but the response was not completely sent before another program message arrived. The output queue is cleared, i.e., the unwanted query response is discarded.

420,"UNTERMINATED"

The controller attempted to read from this device without first sending a complete (terminated) query message. The output queue is cleared, i.e., any partial response message is discarded.

430,"DEADLOCKED"

The device is deadlocked when it cannot accept another character because the input buffer is full, the parser is blocked because the output buffer is full and a query has been parsed, and the controller is waiting to send more bytes to the device. The output queue is cleared to break the deadlock, and does not enqueue any response for output for the remainder of the current program message.

440,"QUERY INDEF QUERY"

This error occurs when an indefinite length response element (whose end can only be signified by EOI) is already enqueued for output and another query is encountered in the same program message. Multiple query message units within one message are supposed to generate one response message, with response message units separated by ';', but in this case the ';' and subsequent responses cannot be queued for output without causing ambiguity in the length of the indefinite length response element.

Device Specific Errors

Errors in the range of 500 and above set the Device Dependent Error bit (bit 3, value 8) in the Standard Event Status Register.

These errors are detected by device functions and are not specifically related to GPIB; most device functions can be invoked from front panel operation also. The error queue only reports errors due to GPIB messages (except for errors 508 and 509, see below). Errors due to front panel operations cause messages to be displayed on the bottom of the 9210 's screen.

501,'TOO MANY HASH TBL COLLISIONS"

At power on, the 9210 creates a hash table to speed up the parsing of commands received over GPIB. This error indicates that the maximum depth of the hash table has been exceeded. This error should never occur.

502,"TOO MANY COMMANDS FOR HASH TABLE"

At power on, the 9210 creates a hash table to speed up the parsing of commands received over GPIB. The hash table is updated when a module is inserted or removed. The hash table contains values in three ranges, indicating whether the command is in the mainframe's command table or added by module A or module B. This error indicates that a number too large to fit in the proper range would be needed. This error should never occur.

503,"CAN'T RECALL EMPTY FILE"'

Produced by *RCL when the requested file does not contain device settings.

505,"INCORRECT MODULE TYPE"

Produced by CHK when the module type specified does not match the installed module's type.

507,"VALUE LIMITED TO USER LIMIT"

Produced either when LIMits are turned on if VHI and VLO are outside the limits, or if an attempt is made to set VHI and VLO outside the limits while LIMits are ON. This error indicates that either VHI or VLO, or both, have been changed to be within the limits.

508,"MODULE IS TOO HOT TO ENABLE"

Produced when the module overheats, or when an attempt is made to re-enable the module while it is still overheated. When the module overheats, this message is queued into the error queue, the device dependent error bit is set in the ESR, and the screen displays the message "MODULE A DISABLE DUE TO OVERHEATING" (or "MODULE B...", as appropriate).

509,"MODULE AUTO DISABLED"

Produced when the module disables itself due to some cause other than overheating. In current modules, the only possible cause is overvoltage protection. When this occurs, this message is queued into the error queue, and the device dependent error bit is set in the ESR. No error message is displayed on the screen, but the "disabled" LED on the module is turned on and the status line at the bottom of the screen is updated.

Displayed Error Messages

Errors due to front panel operations cause messages to be displayed on the bottom of the 9210 's screen.

Some of the messages due to front panel operations are identical to strings which ERR? returns due to errors caused by GPIB operations. Examples are: SETTINGS CONFLICT, CAN'T RECALL EMPTY FILE, and VALUE LIMITED TO USER LIMIT. These are errors detected by device functions which may be activated by either command source. The remainder of this appendix lists messages which only appear on the display.

Value too small......set to the limit

Occurs only due to counterclockwise turning of the outer knob. The outer knob changes a numeric value in a $1,2,5$ sequence. The next lower step in this sequence is beyond the range of the parameter.

Value too large......set to the limit

Occurs only due to clockwise turning of the outer knob. The outer knob changes a numeric value in a $1,2,5$ sequence. The next higher step in this sequence is beyond the range of the parameter.

Value out of range. Range is shown with entry field

A value entered through the numeric keypad is beyond the range of the parameter. The parameter is not changed.

Value rounded or truncated

This error may occur after the CHANGE FORMAT button is pressed. For example, a 30 nsec period is not representable as frequency in a finite number of digits. The screen would show 33.333 MHz . Pressing the FORMAT button never causes hardware settings to be updated. However, any change using the fine knob (for example incrementing the rightmost digit, so the display shows 33.334 MHz) causes the hardware to be set to exactly what the display shows. Since this is not exactly .001 MHz greater than the previous value, this error message is generated.

This error may also occur when the "left arrow" button is pressed to move the highlight to a leading zero, causing a non-zero digit to vanish on the right. The hardware is immediately set to the value shown on the display.

Value at the limit

This error will occur when the selected parameter is already at its maximum value when an attempt is made to increment it, or when a parameter is already at its minimum value when an attempt is made to decrement it.

No alternate format

The CHANGE FORMAT button was pressed while a field was selected which can only be displayed in one way, i.e., it has no alternate format.

Invalid keypad entry

One of the four numeric entry terminating keys (Enter/Hz, m/kHz, $\mathbf{u} / \mathrm{MHz}, \mathrm{n} / \mathrm{GHz}$) was pressed while a numeric entry field was not displayed, i.e., before any digits, sign or decimal point had been entered.

Step too large...cannot decrement

Occurs on an attempt to decrement a digit using the fine knob which would cause the parameter to be out of range. The parameter is not changed.

Step too large...cannot increment

Occurs on an attempt to increment a digit using the fine knob which would cause the parameter to be out of range. The parameter is not changed.

At the maximum step

Cannot move the highlighted digit to the left, the highlight is on the leftmost digit that this parameter can ever have non-zero.

At the minimum step or the last digit

Cannot move the highlighted digit to the right.

Value too small to truncate

Cannot move the highlighted digit to the left, because the value is already four leading zeros and one significant digit. Moving the highlight left again would lose the last significant digit and make the value 0 , which is out of range for this parameter.

No field selected or not applicable

The FORMAT button has been pressed while either no field was selected, or the highlighted field has no parameter associated with it (i.e., it is not selectable). The latter case can occur by positioning the highlight with the up and down keys.

In remote...key ignored

Every front panel key which may effect the device's state, except LOCAL, is ignored in remote state. Pressing LOCAL exits remote state. Remote state is set by the GPIB controller.

In remote with lockout...key ignored.

Every front panel key which may effect the device's state, including LOCAL, is ignored in remote with lockout state. If you must exit remote with lockout using the front panel, your only option is to power down the device.

Invalid numerical string

One of the four numeric entry terminating keys (Enter/Hz, m/kHz, $\mathbf{u} / \mathrm{MHz}, \mathrm{n} / \mathrm{GHz}$) was pressed while the numeric entry field contained a string which could not be interpreted as a number, such as "-".

Returned to local

This is not an error. This message is to highlight the fact that front panel control has been returned. This may occur when the LOCAL button is pressed, or when the REMOTE signal is made false on GPIB.

Already in local

The LOCAL button has been pressed while local control was already enabled.

Local to remote occurred

This is not an error. This message is to highlight the fact that front panel control has been disabled from GPIB. Pressing the LOCAL button will restore local control unless remote with lockout has been set from GPIB.

Recalled standard

Not an error. Default settings have been recalled.

Recalled previous

Not an error. Settings that were in effect prior to the last Recall have been restored. These settings were automatically saved when the Recall was performed.

Recalled file <number>

Not an error. A Recall has been performed.

File <number> module mismatch

The file which has just been recalled was saved when different module types were installed, or the modules were in different slots. Settings which are not applicable are ignored; settings beyond the range of the currently installed modules are defaulted.

Trigger is too fast

This message is produced when part of the 9210 's timing hardware was retriggered while it was still busy responding to the previous trigger. The 9210's timing is pipelined. This message is produced when any stage in the pipeline is retriggered while busy. The benefit of pipelining is that the first stage can be triggered even though subsequent stages are busy. For example, consider Single trigger mode with Delay 50 nsec and Width 40 nsec. Triggers can be accepted approximately every 50 nsec because after 50 nsec the Delay timing is completed, and only width generation is in progress.

Can't find trigger level

Trigger auto level find failed because it could not detect a trigger signal at any level checked. Either the trigger is very slow, or too small a signal to detect.

Manual trigger

Not an error. Just confirmation that the Manual Trigger button has been pressed.

Ampl

Base

Burst Mode
This is the quiescent level of the Output Pulse, regardless of the state of Invert.

In Burst mode, a programmed number of Output Pulses is generated for each external input. This number may be programmed from 3 to 4095 by setting the burst count.

In Burst Trigger Mode, a programmed number (the Burst Count) of pulses are output for each trigger. The Trigger Output's width will be equal to Period X (Burst Count - 1).

Pictorial representation of Pulse Parameters

Notes: 1) Duty Cycle =(Width / Period) $\mathbf{X 1 0 0 \%}$
2) Phase = (Delay / Period) $X 360^{\circ}$

Delay
This parameter defines the variable time interval from the Trigger Output to the Output Pulse, excluding a fixed time offset of approximately 13 nsec .

Changing Repetition Rate in Delay Format

Double Pulse

Duty Cycle

Turning 2 Pulse ON will result in two Output Pulses occurring for each pulse that was output with 2 Pulse OFF. See the section entitled "Double-Pulse Interactions" in Chapter 4 of this manual (Trigger Controls) for a description of how 2 Pulse works in the various trigger modes.

Double Pulse Operation

The percentage of the Period over which the Output pulse is in the active state.

Changing Repetition Rate in Duty Cycle Format

External Width
 Mode

In External Width mode, the signal at the External Input is reproduced at the Module Output with programmable transition times and output voltage levels. The polarity of the Output Pulse is dependent upon the trigger slope selection. Setting trigger slope to Negative cause the Output Pulse to be inverted with respect to the External; Input. No inversion occurs id trigger slope is set to Positive.

> In External Width Mode, the signal at the Ext Input is reproduced at the Output with programmable transition times and voltage levels

Frequency

The inverse of Period. The repetition rate of the Output Pulse expressed in Hz .

Gate Mode
In Gate mode, Output Pulses of the programmed Width occur at the rate specified by Period as long as the signal at the Ext Input is in the state defined by Trigger Slope and Trigger Level as true.

In Gated Trigger Mode, Output Pulses start after the Delay, and continue to run at the rate defined by Period, for the duration of the true state of the Gate Input

This is the time required for the leading edge of the Output Pulse to make the transition from 10% to 90% of its total amplitude.

Load
 Compensation

Median

When the Load Compensation feature is turned ON,the generator measures the load connected to the Module Output, and calculates a correction factor. It then uses that factor to make the necessary DC corrections to deliver the displayed voltage levels to to any load resistance from 47Ω to $1 \mathrm{M} \Omega$.

This is the midpoint between the quiescent and active levels of the Output Pulse.

Normal trigger mode produces a continuous Pulse stream at the selected Period and Width.

Normal Trigger Mode is free - running, requiring no external trigger signal.

Phase mode is an alternate Delay format which works in a manner proportional to Period, similar to the way Duty Cycle format controls pulse duration. In this operating mode, the pulse's position is expressed as a phase angle, with 0 _ corresponding to the minimum Delay setting (i.e. the offset). This phase angle is maintained as Period is varied. When Phase has been set:

Pulse Delay $=$ Phase $/ 360 *$ Period.
Single mode is triggered externally, either from the front panel Ext Input, the Manual Trigger button, or via GPIB command. The trigger starts the 9210's timebase. One Output Pulse of the programmed width will follow the Trigger Output by the programmed Delay plus a fixed offset of about 13 nsec .

Single Mode

Slew

Slew Rate defines the slope of the selected edge during its 10% to 90% (or 90% to 10%) transition.

This feature maintains the 9210 's timing accuracy within specifications over a range of temperature variation of greater than $\pm 5^{\circ} \mathrm{C}$ since the last calibration.

This is the time required for the trailing edge of the Output Pulse to make the transition from 90% to 10% of its total amplitude.

Trigger Level

Trigger Slope

Trigger Output Level

The voltage threshold that must be crossed by the External Input signal in order to trigger the 9210 . Trigger Level can be set to any value between $\pm 2.5 \mathrm{~V}$ with 20 mV resolution

The direction of the transition (Positive or Negative) through the specified Trigger Level that will trigger the generator. Trigger Slope may also be set to Disable, in which case the generator will not respond to the external input at all.

The quiescent level of the Trigger Output. Out lvl can be programmed for values between $\pm 1.5 \mathrm{~V}$ into 50Ω, with 20 mV resolution.

This is the active level of the Output Pulse if Invert is off, or the quiescent level if Invert is on.

VIow
This is the quiescent level of the Output Pulse if Invert is off, or the active level if Invert is on.

Width

This parameter directly defines the time interval during which the Output Pulse is in the active state.

Changing Repetition Rate in Width Format

By the conventionally accepted definition among programmable pulse generator manufacturers, pulse width includes the transition time from the quiescent state to the active state, and excludes the transition time from active to quiescent. This convention allows pulse duration and edge rates to be independently adjusted, without affecting one another. However, this definition can differ significantly from FWHM (Full Width, Half Max), the definition used by digital oscilloscopes for measuring pulse width, if the leading and trailing edge speeds are not equal.

Important Notice - The 9210 Programmable Pulse Generator's "touch screen" user interface utilizes infra-red transmitter and receiver diodes as the sense elements. The operation of these optical diodes can be adversely affected if the unit is operated in intense sunlight or incandescent light. Should you need to operate under such conditions and experience problems with the interface, the "touch screen" can be disabled and the "SELECT" keys (up and down arrows) can be used to select the parameters to be programmed. The "touch screen" can be disabled via the "TOUCHCRT" selection in the CONFIGURE submenu, accessible under the MORE menu, or at power-up by holding a finger on the screen while pressing the power switch. See page 46 of this manual for further details.

For Mainframe Firmware Versions 2.7 and up (Mainframes shipped after 4/10/92) - The MORE menu display was revised under 9210 Mainframe firmware version 2.7. A new submenu, CONFIG, was added. The revised MORE menu and the new CONFIGURE page are shown below.

All selections on each of these pages behave exactly as described in Chapter 5 of this manual. The new sub-menu was added to uncrowd the menu displays and to achieve a better grouping of similar functions.

Due to the above changes, the displays shown in the manual on pages 9 and 39 will not appear on the TouchCRT exactly as depicted.

For 9212 users with Module Firmware Versions 1.6 and up, and Mainframe Firmware Versions 2.8 and up (Units shipped after 6/10/92) -
A) Changes and additions to 9112 Output Module Specifications (see Appendix A of this manual, pages 93-95) -

1) Changes Specification (this information supersedes the specification stated in Appendix A of this manual, on page 93):
Minimum Pulse Width: $\leq 1.2 \mathrm{nsec}$
2) Added Specifications (this information supersedes the specification stated in Appendix A of this manual, on page 93):
Transition Time Accuracy: $\pm(20 \%$ of value $+300 \mathrm{psec})$, for values less than the maximum (see below)

$$
\begin{aligned}
\text { Transition Time Symmetry: } & \left|t_{\text {lead }}-\mathrm{t}_{\text {trail }}\right|<20 \% \text { of value } \\
& \pm 300 \mathrm{psec}:
\end{aligned}
$$

Transition Time Resolution: 50 psec steps, worst case (at the module output) Transition Time Repeatability: $\pm 100 \mathrm{psec}$ (for identical module setup)
3) Clarified Specifications (the information below supplements that given in Appendix A of this Manual, at the bottom of page 94 under the heading "Pulse Performance", and in the graph on that page):

Minimum Transition Time: $\leq 300 \mathrm{psec} @$ Lead/Trail set to 250 psec
Maximum Transition Time:
Transition Time

Amplitude(@ Lead/Trail set to 1 nsec)	
0.50 V	$\geq 450 \mathrm{psec}$
0.75 V	$\geq 540 \mathrm{psec}$
1.00 V	$\geq 580 \mathrm{psec}$
2.00 V	$\geq 675 \mathrm{psec}$
3.00 V	$\geq 720 \mathrm{psec}$
4.00 V	$\geq 745 \mathrm{psec}$
5.00 V	$\geq 750 \mathrm{psec}$

B) Additional Feature for the 9212 Output Module - Along with the new Transition Time Accuracy and Symmetry specifications (see above), a new feature has been added. The 9210 Mainframe's display will now indicate the specified Transition Time tolerances for any given setting in the 9212 . When the LEAD menu box is selected on the 9210's TouchCRT, the tolerance window will be displayed to the right of the parameter's name (where the edge symbol appears in the figure on page 28 in Chapter 3 of this Manual). for example, when LEAD is set to 0.7 nsec , the displayed tolerance window will be $\pm 440 \mathrm{psec}$. These limits will be updated as the value is varied. Note that the tolerance window applies to the trailing edge as well as the leading edge.

LeCroy 9210MOD200 100 MHz Programmable Pulse Generator Mainframe

IMPORTANT NOTE: At least one Output Module (9211MOD100 or 9215) must be installed in the 9210MOD200 Pulse Generator Mainframe in order to obtain a pulse output.

TIMING CHARACTERISTICS: Defined at 50% amplitude points and minimum transition times.

NOTE: The minimum values listed below refer to the mainframe only, and may not be achievable with all output modules.

Pulse Period:
Resolution:
Accuracy:
RMS Jitter:
Temperature Coefficient:

10 nsec to 4 sec
the greater of 0.1% of value or 10 psec
$\pm(0.5 \%$ of value $+0.2 \mathrm{nsec})$ from 3.33 nsec to 450 msec
$\leq 0.035 \%$ (350 ppm) of value +35 psec $<250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ. with Temperature Compensation ON

Frequency: \quad Alternate format for Period. Settable from 100 MHz to 250 mHz with 0.1% resolution.

Pulse Width:

Resolution:
Accuracy:
RMS Jitter:
Temperature Coefficient:
1.5 nsec to 450 msec

For Width setting $\leq 7.2 \mathrm{nsec}$, max Width $=$ Period -0.75 nsec
For Width setting $>7.2 \mathrm{nsec}$, max Width $=$ Period -2.85 nsec
the greater of 0.1% of value or 10 psec
$\pm(0.5 \%$ of value $+0.3 \mathrm{nsec})$ from 1.6 nsec to
450 msec
$\leq 0.035 \%$ of value +35 psec
$<250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ. with Temperature Compensation ON

Duty Cycle:	Alternate format for Width. Settable from 1% to 99% in 0.01% percentage of Period
Pulse Delay:	0 nsec to 450 msec measured from the leading edge of Trigger Out to beginning of leading edge of Pulse Output (relative to fixed offset $)$
For Period setting $\leq 8.0 \mathrm{nsec}:$ max Delay $=$ Period -2.6 nsec	
For Period setting $>8.0 \mathrm{nsec}: \max$ Delay $=$ Period -4.7 nsec	

Phase:

Double Pulse Delay: 4 nsec to 450 msec

Resolution:

Accuracy:
RMS Jitter:
Temperature Coefficient:
the greater of 0.1% of value or 10 psec
\pm (0.5% of value +0.3 nsec)
$\leq 0.035 \%$ of value +35 psec
$<250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ. with Temperature Compensation ON

INPUTS AND OUTPUTS:

External Input:

Input Impedance:
$10 \mathrm{k} \Omega$ or $50 \Omega \pm 5 \%$, selectable
Input Range:
Min. Detectable Amplitude:
Threshold Range and Resolution: $\quad \pm 2.5 \mathrm{~V}$ adjustable in 20 mV steps

Threshold Level Accuracy: $\quad \pm 100 \mathrm{mV}$
Max. Input Frequency: $\quad 100 \mathrm{MHz}$
Min. Pulse Width: $\quad 1.5 \mathrm{nsec}$
Min. Input Slew Rate $\quad 10 \mathrm{~V} / \mathrm{sec}$
Edge Selection:
Positive, Negative, neither edge (disabled).

Trigger Output:
 Output Levels:

Output Impedance:
$50 \Omega \pm 5 \%$
Protection:
Delay from Trigger Input:
Width:
Normal Mode:
Protected against application of $\pm 10 \mathrm{~V}$. 21 nsec typ.

Dependent on Trigger Mode
Period $\leq 7.2 \mathrm{nsec}$: Width $=1.8 \mathrm{nsec}$ typ.
$7.2 \mathrm{nsec}<$ Period < 50 nsec :
$3.6 \mathrm{nsec} \leq$ Width $\leq 7.2 \mathrm{nsec}$
Period $\geq 50 \mathrm{nsec}$: Width $=25 \mathrm{nsec}$ typ.
Single Mode:

Burst Mode:
Gate and External
Width Modes:
Nominal 1 V negative swing from base level into 50Ω. Base level adjustable over $\pm 1.5 \mathrm{~V}$ range with 20 mV resolution. (Into Hi Z: Amplitude $=-2 \mathrm{~V}$. Base level of $\pm 3 \mathrm{~V}, 40 \mathrm{mV}$ resolution) Pulse Width setting $\leq 40 \mathrm{nsec}$:

Trigger Output Width $=1.8 \mathrm{nsec}$ typ.
Pulse Width setting > 40 nsec :
Trigger Output Width $=25 \mathrm{nsec}$ typ.
Width $=$ Period \mathbf{x} (Burst Count -1)
Trigger Output Width \approx Trigger Input Width
PROGRAMMABILITY: All generator functions are programmable over GPIB. Command set conforms with IEEE 488.2-1987

TRIGGERING MODES:

Normal:

Single:

Gated:

Burst:

External Width:

Continuous pulse stream. Trigger output for each pulse output.

Each external trigger input generates a single output pulse. One Trigger output for each trigger.

Signal at external input enables period generator. The first output pulse is synchronized with the gate's leading edge. Last pulse is allowed to complete. One Trigger output for each Gate input. 20 nsec retrigger (dead) time between Gate inputs

Each external trigger input generates a pre-programmed number of pulses (3 to 4095). Minimum time between two bursts is 50 nsec . One Trigger output for each trigger.

The signal at the external input is reproduced with programmable transition times and output levels. Trigger Output for each external trigger.

OPERATING FEATURES:

Manual Trigger:

Double Pulse Mode: When double pulse is set to ON, two pulses are produced for each trigger. The first pulse begins as soon as possible after the trigger (approximately the minimum Pulse Delay time). The Delay parameter now specifies the time from the leading edge of the first pulse to the leading edge of the second pulse. One Trigger Output occurs for each pulse
pair. Compatible with all Trigger Modes except External Width.

ADDITIONAL CAPABILITIES:

Limit:	When enabled, the maximum high and low level settability of the pulse outputs is limited to protect the device under test.
Setups:	16 setup configurations can be stored and recalled using the Store and Recall keys on the front panel.
Change Format:	Enables the alternate representation of a parameter or enables an alternate mode of operation. Examples are Amplitude/Base or Amplitude/Median in lieu of VHigh/Vlow, Duty Cycle instead of Width, Phase instead of Delay, Frequency instead of Period,
Slew Rate as opposed to Transition Time.	

ENVIRONMENTAL: The following specifications apply to the 9210MOD200 mainframe and to output modules (9211MOD100, and 9215).

Storage Temperature: $\quad-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (temp above $40^{\circ} \mathrm{C}$ may degrade battery life)
Operating Temperature: $\quad 4^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ at rated specifications, operational from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Temperature \& Self-Calibration:
Generator and Output Modules will meet
specifications over $a 5^{\circ} \mathrm{C}$ range without repeating Self-Calibration

Humidity Range:

Vibration:
$<95 \%$ R.H. from $4^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Double amplitude displacement of $0.036^{\prime \prime}$ at a frequency from 5 Hz to 55 Hz non operating.
15 g for 11 msec of half-sine wave shock non operating.

POWER:
$115 / 220 \mathrm{VAC} \pm 20 \% ; 48-448 \mathrm{~Hz}$.
300 Watts Max. (180 typ)

MISCELLANEOUS:
Battery Backup Life:
10 years typ.
The following specifications apply to the 9210MOD200 mainframe and to output modules (9211MODI00 and 9215).

Recalibration Interval:
 1 year

Warmup Time (to meet specs): 15 min , after which a new Self-Calibration must be performed.

9210MOD200 Mainframe
Weight:
23 lbs . net
34 lbs. shipping
Dimensions:
Height: 5"
Width: 17"
Depth: 21"

Output Modules:
Weight:
2 lbs. net
4 lbs. shipping
Dimensions:
Height: $\quad 4.6^{\prime \prime}$
Width: 2.4"
Depth: 14.7"

OPTIONS:

9210-50/250-SM Service Manual
9210/RM Rack Mount Kit
LeCroy 921550 MHz , 15 V Amplitude Output Module
TIMING CHARACTERISTICS:
Maximum Rep Rate: 50 MHz
Minimum Pulse Width: 10.0 nsec
Fixed Delay from Trigger: $13 \mathrm{nsec} \pm 4 \mathrm{nsec}$
Output Characteristics Specified with output terminated in 50.00 ohms.
Output: Unipolar positive or unipolar negative
Short Circuit Current: ± 500 ma typical
DC Source Impedance: 50 ohms $\pm 1 \%$
Output Protection: Protected against shorts to ground for 1 minute.
Output Levels
Unipolar Positive
High Active Level: +0.2 volts to +15 volts
Low Quiescent Level: 0.0 volt to +13.9 volts
Minimum Peak to Peak: 200 mvolts
Maximum Peak to Peak: 15 volts
Unipolar Negative:
High Active Level: $\quad-0.2$ volts to -15 volts
Low Quiescent Level: 0.0 volts to -13.9 volts

Minimum Peak to Peak: 200 mvolts
Maximum Peak to Peak: 15 volts
Resolution:
Amplitude Accuracy: $\quad \pm(1 \%$ of output level $+5 \mathrm{mv})$ into 50.00 ohms

PULSE PERFORMANCE:

Slew Rate Mode:
Settable down to $0.1 \mathrm{volt} / \mathrm{msec}$ with 1% resolution and $\pm 20 \%$ accuracy (separately settable for leading and trailing edge). Maximum rate determined by amplitude setting and transition time limits.

Variable Transition Times (10% to 90%):

Leading Edge:
Trailing Edge:
Ranges:
$\leq 5 \mathrm{nsec}$ to 95 msec
$\leq 5 \mathrm{nsec}$ to 95 msec
8 ranges of $25: 1$, Min. lead to trail dynamic range $=2.5: 1$, (except for lowest range, see graph below)

9215 Transition Time Ranges

Resolution:
Accuracy:

Module Controls:

Invert:

Disable:
Display Channel:
the greater of 1% or 100 psec
$\pm(20 \%$ of value, $+0.3 \mathrm{nsec})$
The following controls are located on the front panel of the module.

Inverts normal output pulse levels. Quiescent and active levels exchanged.

Output circuitry is disconnected via relay.
Instructs the mainframe to select and display the settings and parameters for this module.

Mechanical and Environmental

Temperature:
$+4^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ operating and $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ nonoperating.

Humidity:
Up to 95% R.H. non-condensing while operating.
Double amplitude displacement of 0.036 " at a frequency from 5 Hz to 55 Hz non operating.

Shock:

Size:

Weight:
15 g for 11 msec of half-sine wave shock non operating.
$2.4^{\prime \prime}$ (61 mm) wide $\times 4.6^{\prime \prime}(117 \mathrm{~mm})$ high $\times 14.7^{\prime \prime}$ (374 mm) deep.
$2 \mathrm{lb} .(3.63 \mathrm{~kg})$.
LeCroy 9211 MOD100 100 MHz , Variable Edge Output Module
TIMING CHARACTERISTICS:
Maximum Rep Rate: 100 MHz
Minimum Pulse Width: $\leq 2.0 \mathrm{nsec}$
Fixed Delay from Trigger Out: $13 \mathrm{nsec} \pm 4 \mathrm{nsec}$
OUTPUT CHARACTERISTICS: Specified with both outputs terminated in 50.00Ω (Ratings in \{ \} are when driving an opencircuit.)
Outputs: Normal and Complementary Polarity
Short Circuit Output Current: $\pm 260 \mathrm{~mA}$ typical
DC Output Source Impedance: $50 \pm 1 \Omega$
Output Protection: Protected against application of $\leq \pm 15 \mathrm{~V}$
OUTPUT LEVELS:

High Level	-4.95 V to $+5.00 \mathrm{~V}\{-9.90 \mathrm{~V}$ to $+10.00 \mathrm{~V}\}$
Low Level	-5.00 V to $+4.95 \mathrm{~V}\{-10.00$ to $+9.90 \mathrm{~V}\}$
Output Voltage Range:	± 5 Volts $\{ \pm 10$ Volts $\}$
	Maximum amplitude of $5 \mathrm{~V}\{10 \mathrm{~V}\}$
	Minimum amplitude of $40 \mathrm{mV}\{80 \mathrm{mV}\}$

Resolution:
 $5 \mathrm{mV}\{ \pm 10 \mathrm{mV}\}$

Level Accuracy:
Normal Output: $\quad \pm(1 \%$ of output level $+5 \mathrm{mV})$ into 50.00Ω
Accuracy with Load Comp: The same accuracy as stated above will be maintained for user supplied load of 47Ω to $1 \mathrm{M} \Omega$ when load compensation feature is enabled.

Complementary Output:
Accuracy with Load Comp: $\pm(1 \%$ of Programmed Value $+3 \%$ of Amplitude +40 mV) into 50.00Ω
$\pm(3 \%$ of setting times the ratio of the load on the complemented output to the load on the normal output). Measurements for the load compensating correction factors are made on the normal output.

PULSE PERFORMANCE:

Variable Transition Times (10% to 90%):

Leading Edge:
Trailing Edge:
Ranges:
$\leq 1.2 \mathrm{nsec}$ minimum (1 nsec typ) to 10 msec
$\leq 1.2 \mathrm{nsec}$ minimum (1 nsec typ) to 10 msec

7 ranges of 25:1, Minimum lead to trail dynamic range $=2.5: 1$, except $2: 1$ at first range break (see graph, below).

9211 Transition Time Ranges
PULSE PERFORMANCE (continued):Variable Transition Times (continued):
Resolution:Accuracy:Linearity:Slew Rate mode:Overshoot and Ringing:Settling Time:
Normal to ComplementaryOutput Skew:MODULE CONTROLS:
the greater of 1% or 100 psec
$\pm(10 \%$ of value $+300 \mathrm{psec})$
$\pm 3 \%$ typ. ($10-90 \%$) for transition times $>50 \mathrm{nsec}$
Settable down to $0.1 \mathrm{~V} / \mathrm{msec}$ with 1% resolution and $\pm 10 \%$ accuracy (separately settable for leading and trailing edge) Max. rate determined by amplitude setting \& transition time limits stated above.
the greater of $\pm 8 \%$ of amplitude or $\pm 10 \mathrm{mV}$ $\leq 10 \mathrm{~ns}$ to 2% of amplitude change at fastest transition times

200 psec max
The following controls are located on the front panel of the output module.

Inverts normal output pulse levels. Quiescent and active levels exchanged.

Output circuitry is disconnected via relay.
Instructs mainframe to select and display all of the parameter settings for this module.

Specifications subject to change without notice.
[\leftarrow Digit] and [Digit \rightarrow] keys 3
\leftarrow Digit 8
Digit \rightarrow 8
2 Pulse $4,25,29,36,49,50$
9210 $1,6,9,10,12,13,30,31,33,36,37,14,41,42,43,44,46,47,50$, $51,53,55,56,57,59,60,61,62,63,64,65,67,85,95,97,101,105,106$, $119,120,141,143,145,148,149,151,156$
9210/RM 106
9210/SM 106
9211 $15,24,35,36,37,95,98,101,105,106,119,120$
9212 $15,32,33,34,35,36,37,79,80,83,84,101,105,106,111,113,119,120$
9213 $15,24,36,37,101,105,106,115,119,120$$9214 \ldots \ldots \ldots \ldots \ldots \ldots4,7,15,24,32,34,35,36,37,76,80,83,84,86,101,105,106,119,120$
*CAL 68
*CLS 91
*ESE 92
*ESR 92
*IDN 93
*LRN 93
*OPC 94
*OPT 95
*RCL 69
*RST 95
*SAV 69
*SRE 96
*STB 96
*TRG 69
*TST 70
*WAI 97
A
action key 10, 57
active level $15,17,159,169$
active state 13, 18
Addr 59
Already in local. 155
AMP $70,71,80,83,84$
Ampl. 17, 37, 59
AMPL 77
Amplitude $17,59,70$
asterisk 25
At the maximum step 153
auto level 71
Auto IVI 50
AUTOL 71
B
BAD CHAR IN COUNT 146
Base. 17, 37, 159
BASE $70,71,77,80$
Battery 106
BC 67, 72
BRI 72
Bright 61
brightness 60, 72
Burst 46, 51
burst count 46, 72
Burst Ct 36, 46, 49
Burst Mode 159
Bus Controller 12
c
Cal 10, 55
Cal Msg. 56, 57, 58, 62
calibration $2,55,56,57,68$
Can't find trigger level 157
CAN'T RECALL EMPTY FILE 149
Cancel. 10
cannot decrement 153
cannot increment 153
Center Knob 3, 8
CHANGE FORMAT $12,17,19,20,23,26$
channel parameter menu $6,16,31,33,34$
CHAR DATA TOO LONG 145
CHDR 97
Check 98
CHK 98
Clear status 91
CMD 67
COARSE 59
command 67
Command Error bit 141
Command Header 97
Commands 63
complement 74
Complementary Output 15, 80
complemented 35
complemented output 35
compound headers 64
Configuration 60
conflict. 27, 28, 146
Control Menus 6
coupled 68
CPLD 68
CRTkeys $2,7,10,59$
D
DATA OUT OF RANGE 146
DBL 73
dead time 46, 47
DEADLOCKED 148
DEGC_CHG 98
DEL 73
Delay $4,20,21,25,36,37,41,43,45,46,47,49,51$
8
delay offiset 48
Device Dependent Error bit 148
Digit \rightarrow 8
Digit select keys 8
DIS 13
DISA 74
Disable $3,5,13,35,36,57,74,80$
DISP 74
DISPLAY keys 6
Double Pulse $4,26,46,49,50,73,162$
Double Pulse Interactions 46
duration 17
DUTY 75
Duty Cy $19,20,37,45$
Duty Cycle $19,20,21,75,162,167$

E

ECL 32, 88, 90
ECL set 32
edge speed 21
enable 35
Enabling or Inverting 13
Enter/Hz 8, 9, 11
EOI. 63, 64, 93
ERR 65, 99
ERR? 141
error queue $65,99,141,148$
ESR? 141
event status register 65, 92
Execute $3,9,10,11,50,53,55,57$
Execution Error bit 146
Ext Input. $41,42,44,45,49,50,53,57,164,167$
Ext wid 48, 49
External Input. 50, 169
External Width 26, 48, 51
External Width Mode 163
F
File <number> module mismatch 156
FINE 59
Freq $12,26,37,51,75$
Frequency 75, 87, 163
front panel 151
Full Width, Half Max 18, 170
FWHM 18, 170
G
Gate 45, 51
Gate Mode 164
GPIB $12,44,59,62,63,67$
H
HARDWARE MISSING 147
headers 64
HI_Z. 53
Horiztonal Position 20
I
Identification 93
IEEE Std 488.2 $63,65,141$
impedance 37
In remote 154
In remote with lockout. 154
INCORRECT MODULE TYPE 149
information window 51
Input Z. 36, 53
installation 1
INTERRUPTED 147
INV 70, 71, 76
INVALID BLOCK DATA 145
INVALID BLOCK DATA HEADER 145
INVALID CHAR IN NUMBER 144
INVALID CHARACTER DATA 144
INVALID HEADER 143
INVALID HEADER COMPOUNDING 143
Invalid keypad entry 153
Invalid numerical string 155
INVALID PGM DATA SEP 142
INVALID STRING DATA 145
Invert. $2,13,15,17,36,159,169$
INVert. 70, 71, 76
K
key ignored 154
Key Test 59
L
Lead $4,21,23,24,29,32,36,37,73,75,76,81,82,86,87,164$
Leading edge 76
Learn. 93
Level 36, 50
LIM. 77
Limiting 32
Limits 32, 36, 77
Line Feed 63
Line switch 1
Load Compensate 79
Load Compensation 31. 79, 165
LOADC 79
Loadcomp 30, 36
LOADComp 89, 90
LOCAL 12
Local Lockout 12
Local to remote occurred 155
LON 59
LVH 77
LVL 78
M
$\mathrm{m} / \mathrm{kHz}$ 8
Main Circuit Breaker 1, 14
Mainframe 101
Manual 44
Manual trigger 51, 157, 167
MED 80
Median $17,37,70,71,77,80,165$
memory 57
message 99
MISSING PARAM 142
MOD_ID 68
Mode $36,41,43,59$
Module 101
MODULE AUTO DISABLED 150
module ID 64, 68
MODULE IS TOO HOT TO ENABLE 150
module specific commands 64
More 55
MSG 99
N
$\mathrm{n} / \mathrm{GHz}$ 8
negative voltage limit 78
No alternate format. 152
NO ERROR 141
No field selected 154
Normal $43,49,51$
NORMAL $73,75,76,81,82,83,84,86,87$
Normal Mode 3, 165
Normal Output 80
NR3 63
NRf. 63
numeric keypad 8, 9
NUMERIC OVERFLOW 144
Numeric Representation, flexible 63
0
On-Screen Operating Summary 6
On/Disable 14
Operation complete 94
Option 95
OPTIONS 106
OUT 80
Out lvi 52, 53
OUTB 80
OUTBar 80
Outer Ring Knob 2, 8
Outlvl. 36
OUTPUT 3
output 35, 36, 74
Output Enable 80
Output Module 15, 41, 44
Output Pulse 17
P
parameter conflict $27,28,146$
parameters
Adjusting with the Numeric Keypad 8
Adjusting with the Rotary Knob 8
PER 67, 81
Period $2,4,12,19,20,21,26,36,37,43,45,47,49,51$
164, 165, 166, 167
PERIOD $67,73,76,81,83,84,86,87$
PGM MNEM TOO LONG 143
PHA 82
Phase $20,21,37,45,82,167$
position 20
positive voltage limit. 77
power 1, 2
POWER 14, 61
Presets 32
Previous 9
program message 63
program message units 63
Pulse high level 89
pulse icon. 3
Pulse low level 90
Q
QRY 67
queries 63
query 67
Query Error bit 147
QUERY INDEF QUERY 148
QUERY NOT ALLOWED 143
question mark 27
quiescent level 17, 159
quiescent state. 13, 18
R
range select 8
re-trigger interval 46, 47
Recall 69
Recall Setup 3, 9,35
Recalled file 156
Recalled previous 156
Recalled standard 155
Remote LED 12
Remote operation 63
repair. 121
Reset 95
Resolution 21
response message 64
Return Authorization Number 121
Returned to local 155
Rotary Knob 8
s
Save 69
Screen Save 83
Screen Saver 60
Scrn Save 60

Index

SCRNSAVE 83
self calibration 58
Self-test. 57, 70
service 121
Service Request 65
Service Request Enable 96
settings 9
SETTINGS CONFLICT. 146
settings conflict 27, 28
settings default 36
setup 9
Single 44, 46
Single Mode 45, 167
Slew 23, 24, 37
Slew Rate $23,70,89,90,168$
Slew rate, leading edge 83
Slew rate, trailing edge 84
SLEW_L $70,83,89,90$
SLEW_T 70, 84, 89, 90
slope $23,36,48,50,168$
specifications
9211 107
9212 111
9214 118
Standard 3, 9, 35
Standard Event Status Enable 92
Standard Event Status Register $141,146,147,148$
status byte 65, 96
Step too large 153
Store Setup 9
SYNTAX ERROR 142
T
Tch Test 59
Temp Comp 61, 62
TEMPC 85
Temperature Compensation 60, 85, 168
TER 100
termination 34
TEST 59
tolerance 33
TOO MANY COMMANDS FOR HASH TABLE 149
TOO MANY DIGITS 144
TOO MANY EVENTS 141
TOO MANY HASH TBL COLLISIONS 149
TOO MANY PARAMS 142
TOO MUCH DATA 147
TOUCH 85
Touch Screen 60, 61
Touch screen enable 85
TouchCRT 2, 61
Trail. $4,21,23,24,29,32,36,37,46,168$
TRAIL $75,76,86$
Trailing edge 86
transition time $4,18,21,32,35$
trigger. 44, 69
TRIGGER 6
trigger button. 51
Trigger control menu 6
Trigger input impedance 86
Trigger is too fast 156
Trigger Level 50, 87, 164, 169
trigger mode 43, 49, 87, 165
Trigger Modes 4, 41, 20, 26
Trigger Output $20,25,41,43,44,45,46,47,48,49,52,53,88,167$
Trigger Output Voltage 88
trigger parameter menu 6, 42, 52
Trigger Slope 50, 57, 89, 164, 169
trigger threshold 5, 50
TRIGGER TOO FAST 51
TRIM 86
TRLV 87
TRMD 87
TROV 88
TROV_SET 88
TRSL 89
True Output 15
TTL 32, 88, 90
TTL set 32
U
$\mathrm{u} / \mathrm{MHz}$ 8
UNDEFINED HEADER 143
unit/entry keys 8
UNTERMINATED 147
Utilities and Features Menu 6
V
vernier knob 3
Vhigh 3
Vlow 3
vernier 8
vertical formats 17
Vhigh 169
Vlow 169
Vhigh $15,17,32,36,37$
Vlow $15,17,32,36,37$
Vmax 36
Vmin 36
voltage 15
w
Wait 97
Warmup 106
WID 67, 91
WIDTH $2,4,17,18,19,20,25,36,37,43,44,45,46,47,49,51$$67,73,75,76,81,82,84,86,87,91,164,165,167,170$

