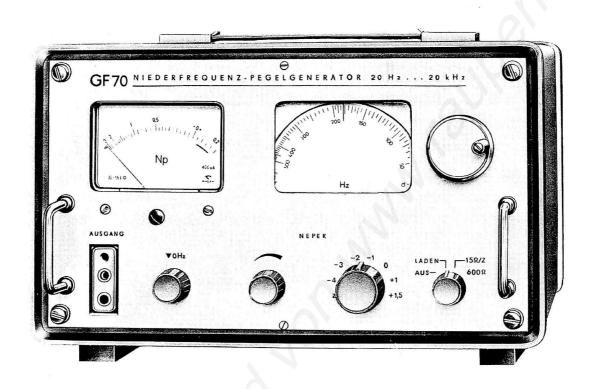
Beschreibung und Bedienungsanleitung


NIEDERFREQUENZ - PEGELSENDER

GF 70

VEB PRÄCITRONIC - DRESDEN 8016 Dresden, Fetscherstraße 72 - Telefon: 66401, Telex: 2458

Inhalt

		Seite
1.	Beschreibung	7
1.1.	Verwendungszweck	7
1.2.	Technische Kennwerte	8
1.3.	Zubehör	9
1.4.	Wirkungsweise und Aufbau	9
2.	Bedienungsanleitung	12
2.1.	Abbildung	12
2.2.	Inbetriebnahme	12
2.3.	Messen	12
2.4.	Wartung	13
2.5.	Schaltteilliste	15
2.6.	Schaltteilanordnung	25
27	Stromlaufalan	21

1. Beschreibung

1.1. Verwendungszweck

Der volltransistorisierte Pegelsender GF 70 ist als Geber für symmetrische, niederfrequente Messungen an Rundfunkübertragungseinrichtungen und Fernmeldesystemen bestimmt. In Verbindung mit einem Pegelmesser, z.B. dem MV 70, gestattet er Verstärkungs-, Dämpfungs- und Scheinwiderstandsmessungen. Eingebaute Akkumulatoren zur Stromversorgung, die bei Netzbetrieb automatisch geladen werden, geringe Masse und kleines Volumen sind besonders bei transportablem Einsatz vorteilhaft.

Seine allgemeinen guten Eigenschaften sichern dem GF 70 auch im Laboratorium oder Prüffeld als Generator für niederfrequente, symmetrische Spannungen viele Anwendungen. Der Pegelsender GF 70 kann als 2/4-Einschub, Einzelgerät oder mit dem Breitbandpegelmesser MV 70 in einem gemeinsamen Gehäuse als Meßplatz geliefert werden.

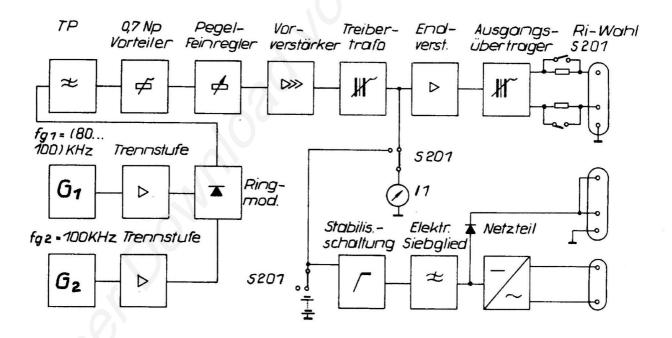
1.2. Technische Kennwerte

Frequenzbereich	20 Hz 20 kHz
Frequenzunsicherheit	
Grundunsicherheit nach Eichung	$<1,5\% \pm 4 \text{ Hz}$
Frequenzdrift nach 5 Min. Einlaufzei	t <5 Hz/h
bei Temperaturänderung	<2 Hz/°C
" bei Netzspannungsänder	ung <u>+</u> 10 % <1 Hz
Ausgang	
Pegelstufen -4	/-3/-2/-1/ <u>+</u> 0/+1/+1,5 Np
Skalenbereich des Instrumentes	-2 +0,25 Np
Innenwiderstand (umschaltbar)	≈15 Ω
	600 Ω <u>±</u> 1 %
Symmetriedämpfung	>5 Np
Klirrfaktor (Instrumentenanzeige <0	Np)
f > 30 Hz	<2 %
f > 100 Hz f > 300 Hz, f < 10 kHz	<2 % <1 % <0,5 %
	7,7
Pegelunsicherheit	
Grundunsicherheit (O Np, 1 kHz)	<0,02 Np
Stufungsfehler, bezogen auf Bereich	0 Np <0,015 Np
Frequenzgang, bezogen auf 1 kHz	
	. 10 kHz <0,02 Np
Pegelschalter > -3 Np 20 Hz Pegelschalter -4 Np 30 Hz	. 20 kHz <0,03 Np
Temperaturfehler, bezogen auf 20 °C	
Transistorspeisespannungseinfluß,	
bezogen auf $U_3 = 14 \text{ V}$	<0,005 Np / 1 V
Skalenteilungsfehler (-10+0,25	
<(0,06 0 0,01) Np
Funkentstörung	TGL 20885
Betriebsstundenzahl mit eingebautem Akk mulatorsatz ohne Nachladung Pege	u- lschalter <-1 N≈30 h
mula voi sa va oi me na oi i tatans	> ±0 N ≈ 20 h
Akkumulatorenbestückung	7 x RZP 2
Speisespannungen e und/od	ingebaute Akkumulatoren er 220 V/50 Hz/4 VA
und/oder Fre	mdbatterie (1824) V

Abmessungen

Einschub 2/4-Teileinschub nach TGL 200-7094 Einzelgerät ohne Deckel 253 x 168 x 180 mm

Masse


6 kg

1.3. Zubehör

Netzkabel
Zeichnungs-Nr.: 405-9-2/0
Sicherungen
1 x 0,05 A, 1 x 0,16 A
Skalenlämpchen:
1 Langlebensdauerglühlampe
6 V, 0,6 W, Sockel Ba 7s
1 Soffittenglühlampe
3 W, Sockel S 5,5

1.4. Wirkungsweise und Aufbau

Der Pegelsender GF 70 arbeitet nach dem Schwebungssummerprinzip. Das Zusammenwirken der Schaltungsgruppen hierbei ist aus Blockschaltbild und Stromlaufplan (S. 27) zu ersehen.

Die Spannung des durchstimmbaren Oszillators G 1 (T 401) gelangt über eine amplitudenbegrenzende Trennstufe (T 402), die

des Festoszillators G 2 (T 404) über eine selektive Trennstufe (T 403) zur Mischung in den Ringmodulator (D 401...D 404). Die in den Mischprodukten enthaltene Differenzfrequenz f2 -f1 wird im Tiefpaß herausgefiltert. Die hierdurch erhaltene Niederfrequenzspannung steuert den Vorverstärker (T 501...T 504) über den Pegelfeinregler (R 203). Vor diesem ist noch ein Vorteiler mit einer Dämpfungsstufe von 0,7 Np vorgesehen, der bei Wahl des Ausgangswiderstandes $R_i = 15 \Omega$ zur Berücksichtigung der für diesen Betriebsfall geltenden Pegeldefinition (vergl. 2.3.1.) in Funktion tritt. Die Speisung des Treibertrafos (Tr 702), der zur Pegelgrobschaltung auf der Sekundärseite Anzapfungen besitzt und an deren oberster Stufe der Anzeigekreis angeschlossen ist, erfordert bereits eine merkliche Leistung. Diese wird im Vorverstärker durch eine Kollektor-Gegentaktschaltung mit hohem Wirkungsgrad erzeugt, um den Stromverbrauch des Gerätes bei Batteriebetrieb klein zu halten. Dem gleichen Zweck dient auch die pegelabhängige Arbeitspunkteinstellung im folgenden Gegentakt-Endverstärker (T 505, T 506). Die gewählte Leistungsverstärkerschaltung erübrigt eine Phasenumkehrstufe zur Ansteuerung und vermeidet eine Trafo-Gleichstromvormagnetisierung. Der sorgfältig dimensionierte Ausgangsübertrager (Tr 703) ist zur weiteren Pegelgrobschaltung ebenfalls auf der Sekundärseite angezapft und symmetriert gleichzeitig die Ausgangsspannung. Mit dem Betriebsschalter 4 (S.12) erfolgt die Wahl des Generatorinnenwiderstandes.

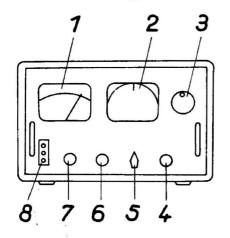
Zur Schaltungsvereinfachung wird, wie bereits erwähnt, bei der Umschaltung von $600~\Omega$ auf $15~\Omega$ mit dem Vorteiler die Spannung halbiert und die Instrumentenempfindlichkeit entsprechend verdoppelt.

Die Stromversorgung gestattet den Betrieb mit

- eingebauten Akkumulatoren
- Fremdbatterien
- Netzspannung
- Kombinationen obiger Möglichkeiten, z.B. für Ladezwecke,

so daß eine große Universalität des Einsatzes gewährleistet ist. Ein leicht auswechselbarer Akkumulatorensatz dient zur Speisung der Verstärker bei netzunabhängigen Messungen. Beim Betrieb des Pegelsenders ohne eingebaute Akkumulatoren, also mit Netz-

spannung, erfolgt die Gleichrichtung der Trafo-Sekundärspannung in einer Graetz-Schaltung und die Brummspannungssiebung mit einem elektronischen Spezialsiebglied (T 509, T 510) sowie durch die Stabilisierungsschaltung (T 507, T 508). Bei Netzbetrieb mit internen Akkumulatoren werden diese über einen strombegrenzenden Widerstand (R 532) automatisch geladen und durch die hierbei als Spannungsbegrenzer wirkende Stabilisierungsschaltung vor Überladung geschützt.


Ist ein längerer netzunabhängiger Betrieb erforderlich, kann der Pegelsender von einer Fremdbatterie über den entsprechenden rückseitigen Anschluß gespeist werden, wobei ein Germaniumgleichrichter (Gr 601) Schäden durch falsche Polung verhindert. Die eingebauten Akkumulatoren werden bei dieser Betriebsart automatisch geladen.

Für den Pegelsender GF 70 ist ein 2/4-Einschub gewählt worden, der je nach Ausführung für Gestelleinbau mit speziellen Abschirmblechen, als Einzelgerät mit separatem Gehäuse oder als "Kleine Pegelmeßeinrichtung" (Meßplatz) mit dem Breitband-Pegelmesser MV 70 im Doppelgehäuse komplettiert wird.

Das Gerät ist in Baugruppen mit gedrückter Schaltung untergliedert, so daß trotz gedrängten Aufbaues große Service-Freundlichkeit gewährleistet ist. Die Anordnung der Bedienungselemente unter Berücksichtigung formgestalterischer Prinzipien führt trotz der Kleinheit des Gerätes zu einer übersichtlichen Frontplattenaufteilung und erleichtert damit die Meßaufgaben. Die sieben eingebauten Kleinstakkumulatoren sind durch einen Preßstoffbehälter zu einem Block vereinigt, der durch eine Bodenklappe des Gehäuses bequem zugänglich ist.

2. Bedienungsanleitung

2.1. Abbildung

1	Anzeigeinstrument	J	201
2	Frequenzskala		
3	Frequenzkurbel		
4	Betriebsschalter	S	201
5	Pegel-Grobschalter	S	202
6	Pegel-Feinregler	\mathbb{R}	203
7	Schwebungs-Null-Knopf	C	202
8	Ausgangsbuchse	Bu	201

2.2. Inbetriebnahme

Verwendung des Einschubs für Einbau in

2.2.1. Einfach- oder Doppelgehäuse

Mit dem Schalter (4) ist das Gerät einzuschalten. Das Gerät ist praktisch sofort betriebsbereit. Um bei längerem Betrieb die eingebauten Akkumulatoren zu schonen, wird, soweit möglich, der Anschluß an die Netzspannung oder Fremdbatterie empfohlen. Bei Netzbetrieb wird der eingeschaltete Zustand durch die Skalenbeleuchtung angezeigt.

2.2.2. Gestell

Die Netzspeisung erfolgt über die im Stromlaufplan ersichtlichen Messerleistenkontakte. Nach dem Einschalten von Schalter (4) in Stellung "Messen" ist das Gerät praktisch sofort betriebsbereit, wobei die Instrumentenbeleuchtung diesen Zustand anzeigt. Evtl. eingebaute Akkumulatoren sind zu entfernen.

2.3. Messen

2.3.1. Pegel

Nach dem Einschalten des Gerätes und Einstellen des gewünschten Innenwiderstandes mit dem Schalter (4) muß die für Schwebungsgeneratoren charakteristische Frequenzeichung durchgeführt werden. Hierzu ist die Frequenzskala (2) mit der Kur-

bel (3) bei etwa halbem Ausschlag des Instrumentes (1) auf den Wert "O" einzustellen und der Knopf für Schwebungsnull (7) im Uhrzeigerdrehsinn so weit zu drehen, bis der Instrumentenzeiger gerade keine Pendelungen mehr ausführt. Damit ist die Frequenzskala geeicht.

An der Buchse (8) kann jetzt die mit der Kurbel (3) an der Frequenzskala (2) eingestellte Frequenz entnommen werden. Der Pegel ist mit dem Knebel (5) grob und dem Knopf (6) fein einzustellen und ergibt sich als Summe des Instrumentenanzeige-und des Pegelschalterwertes.

Der Pegel stellt bei R_i = 600 Ω die Klemmspannung bei Abschluß mit dem Wellenwiderstand, und bei R_i = 15 Ω die Leerlaufspannung dar.

2.3.2. Scheinwiderstand

In Verbindung mit dem Pegelmesser MV 70 lassen sich leicht Scheinwiderstandsmessungen durchführen (s. Bedienungsanleitung MV 70). Zur Bedienungserleichterung sind die Stellungen der Schalter (4) und (5) mit der Einstellmarke "Z" versehen. Mit dem Pegelfeinregler (6) ist auf Instrumentenanzeige O Np einzustellen.

2.4. Wartung

Die Wartung beschränkt sich im wesentlichen auf folgende Punkte, für die gegebenenfalls nach Lösen der 4 Frontplattenschrauben der Einschub aus dem Gehäuse bzw. Gestell zu ziehen ist:

2.4.1. Überwachung der Akkumulatoren

Bei netzfreiem Betrieb muß die Akkumulatorenspannung in der Kontrollstellung des Betriebsschalters (4) und bei zugedrehtem Pegelregler (6) überwacht werden. Liegt die Instrumentenanzeige unterhalb des schwarzen Bereichs, ist der Akkumulatorensatz sofort zu laden oder durch eine neue Bestückung zu ersetzen.

Die Ladung erfolgt durch mindestens 15-stündige Anschaltung des Gerätes an die Netzspannung bzw. Fremdbatterie in den Stellungen "Messen" oder "Batteriekontrolle" des Betriebsschalters. Bei voller Kapazität der Akkumulatorenbestückung steht der Zeiger in der Kontrollstellung am oberen Ende des schwarzen Berei-

ches. Eine längere Anschaltung an das Netz bzw. die Fremdbatterie ist unschädlich und führt zu keiner Überladung.

Zum Auswechseln des Akkumulatorensatzes ist die Bodenklappe zurückzukippen und der Akkukasten so weit in das Gerät zu schieben, bis der Haltebügel zurückgedrückt werden kann. Durch Nachlassen des Druckes auf den Akkukasten gleitet dieser jetzt am Haltebügel vorbei und kann herausgenommen werden.

Beim Einsetzen einer neuen Bestückung ist auf deren richtige Lage zu achten und der Kasten so weit hineinzuschieben, bis die Haltefeder einrastet.

Ist der Akkumulatorensatz vollständig entladen, so verlieren einzelne Exemplare zuweilen ihre Ladefähigkeit, so daß eine komplette neue Bestückung zweckmäßig ist. Zum Auswechseln des verbrauchten Satzes kann nach leichtem Zurückbiegen zweier Blattfedern der Batteriekastendeckel entfernt werden.

Beim Einsetzen der Akkumulatoren auf richtige Polung achten!

2.4.2. Auswechseln der Skalenlämpchen

Nach dem Herausziehen des Einschubs sind die Soffitten am oberen Teil des Instrumentes leicht zugänglich. Zum Auswechseln des Frequenzskalenlämpchens ist zunächst das Schräubchen der Bajonettfassung zu lösen.

2.4.3. Nachjustieren der Empfindlichkeit

Das Gerät wird vor Auslieferung sorgfältig abgeglichen, so daß ein Nachjustieren nur selten erforderlich ist und möglichst in Vertragswerkstätten oder im Herstellerwerk erfolgen sollte. Für Ausnahmefälle gelten folgende Hinweise:

Pegelkorrektur:

- Eine Abweichung aller Bereiche um einen bestimmten Betrag ist zunächst bei R_i = 600 Ω mit dem Regler R 512 auf der Platte 520-5 bei f^i = 1 kHz zu korrigieren.
- Die Korrektur bei $R_i=15\,\Omega$ mit dem Regler R 511 auf der gleichen Platte bei genannter Meßfrequenz darf stets nur nach erfolgtem Abgleich bei $R_i=600\,\Omega$ erfolgen.

Frequenzkorrektur:

- Sollte bei langer Betriebszeit Schwebungsnull nicht mehr einstellbar sein, ist mit D 415 auf Platte 520-4 der Einstellbereich des Schwebungsnull-Kondensators zu korrigieren.

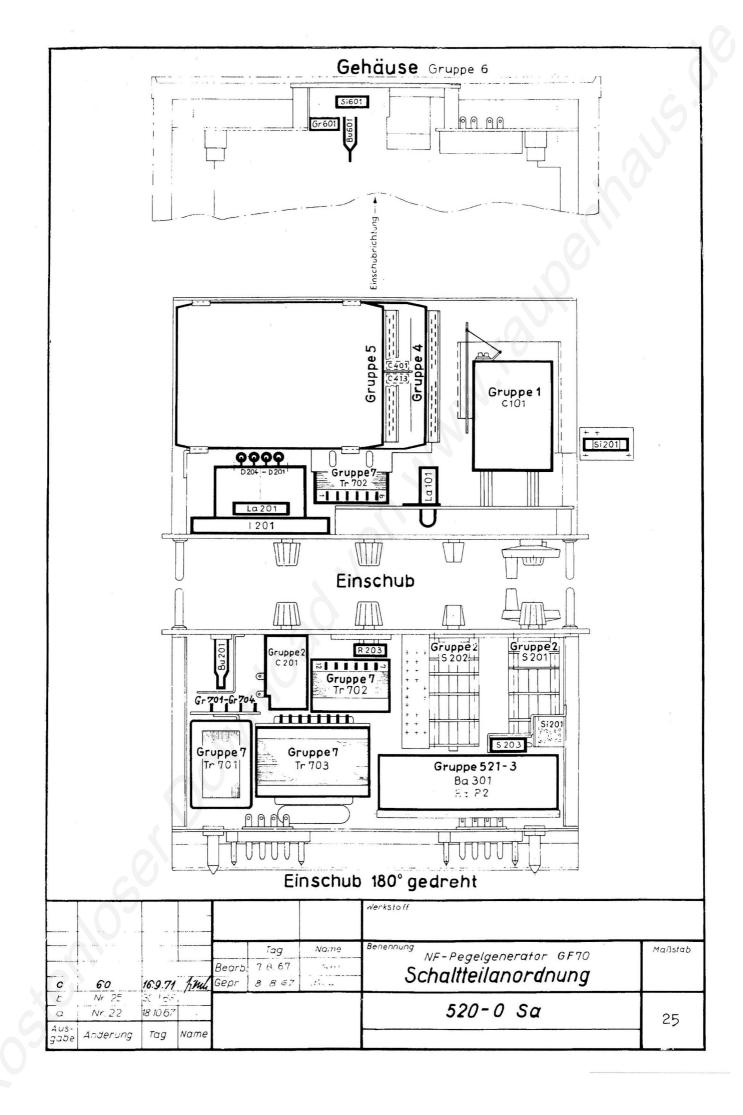
lfd.Nr.	St	Benennung	SachNr.	Bemerkung
С	101	Drehkondensator	2 x 500 pF Typ 5002 10g	
La	101	Glühlampe	6 V 0,6 W	Sockel Ba 7S

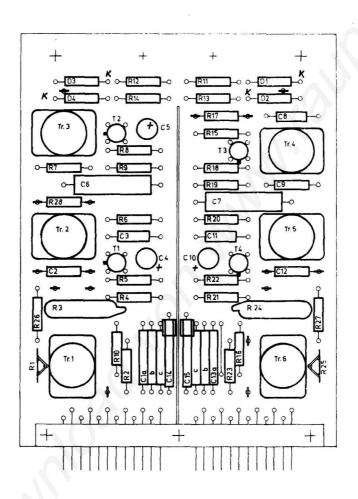
lfd.Nr.	St	Benennung	SachNr.	Bemerkung
R	201	Schichtwiderstand	7,85 kΩ 2% 25.311	TGL 8728
R	202	Schichtwiderstand	3,9 kΩ 2% 25.311	TGL 8728
R	203	Schichtdrehwiderstand	5 kΩ 1-20 A	TGL 9101 SG
R	204	Metall-Schichtwiderstand	39 kΩ 1 % 11.310	TGL 14133
R	205	Metall-Schichtwiderstand	300 Ω 0,5% 11.310	TGL 14133
R	206	Metall-Schichtwiderstand	285 Ω 0,5% 11.310	TGL 14133
R	207	Schichtwiderstand	12 Ω 5% 65.413	TGL 4616
R	208	Schichtwiderstand	16 Ω 5% 65.413	TGL 4616
R	209	Schichtwiderstand	7,5 Ω 5% 65.413	TGL 4617
R	210	Schichtwiderstand	15 kΩ 5% 25.311	TGL 8728
С	201	Drehkondensator	Typ 1002	
D	201	Germanium-Golddrahtdiode	GA 741	
D	202	Germanium-Golddrahtdiode	GA 741	
D	203	Germanium-Golddrahtdiode	GA 741	
D	204	Germanium-Golddrahtdiode	GA 741	
I	201	Drehspulinstrument	0,4 mA	Ibv. 66
S	201	Drehschalter	8B2/2x12B2/8-/1-4/12/a6x12	MSÜ Fert.Pr.1
S	202	Drehschalter	8B1/3x12B1/1-8/12/A6x12	Fert.Pr.1
S	203	Mikrotaster	Typ C 1	C-TGL 200-3600
Si	201	G-Schmelzeinsatz	0,05 C	TGL 0-41571
Bu	201	Buchse,k ungeschirmt	3050.034-00001	
		_		
La	201	Soffittenglühlampe	6 V, 3 W	Sockel S 5,5

lfd.Nr.	St	Benennung	SachNr.	Bemerkung
R	401	Schichtdrehwiderstand	Ρ 500 Ω 05-554	TGL 11886
R	402	Schichtwiderstand	6,8 kΩ 5% 25.311	TGL 8728
R	403	Thermistor	TNS 30 kΩ	
R	404	Schichtwiderstand	10 kΩ 5% 25.311	TGL 8728
R	405	Schichtwiderstand	56 kΩ 5% 25.311	TGL 8728
R	406	Schichtwiderstand	470 Ω 5% 25.311	TGL 8728
R	407	Schichtwiderstand	6,8 kΩ 5% 25.311	TGL 8728
R	408	Schichtwiderstand	39 kΩ 5% 25.311	TGL 8728
R	409	Schichtwiderstand	1 kΩ 5% 25.311	TGL 8728
R	410	Schichtwiderstand	100 Ω 5% 25.311	TGL 8728
R	411	Schichtwiderstand	3,3 kΩ 5% 25.311	TGL 8728
R	412	Schichtwiderstand	3,3 kΩ 5% 25.311	TGL 8728
R	413	Schichtwiderstand	3,3 kΩ 5% 25.311	TGL 8728
R	414	Schichtwiderstand	3,3 kΩ 5% 25.311	TGL 8728
R	415	Schichtwiderstand	3 kΩ 5% 25.311	TGL 8728
R	416	Schichtwiderstand	100 Ω 5% 25.311	♦ TGL 8728
R	417	Schichtwiderstand	10 kΩ 5% 25.311	TGL 8728
R	418	Schichtwiderstand	82 kΩ 5% 25.311	TGL 8728
R	419	Schichtwiderstand	30 kΩ 5% 25.311	TGL 8728
R	420	Schichtwiderstand	470 Ω 5% 25.311	TGL 8728
R	421	Schichtwiderstand	10 kΩ 5% 25.311	TGL 8728
R	422	Schichtwiderstand	56 kΩ 5% 25.311	TGL 8728
R	423	Schichtwiderstand	6,8 kΩ 5% 25.311	TGL 8728
R	424	Thermistor	TNS 30 kΩ	
R	425	Schichtdrehwiderstand	Ρ 500 Ω 05-554	TGL 11886
R	426	Schichtwiderstand	270 Ω 5% 25.311	TGL 8728
R	427	Schichtwiderstand	270 Ω 5% 25.311	TGL 8728

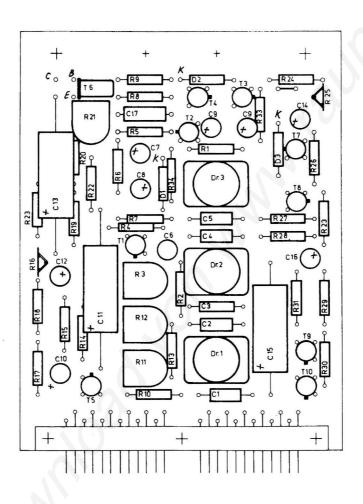
lfd.Nr.	St	Benennung	SachNr.	Bemerkung
R	428	Schichtwiderstand	180 Ω 5% 25.311	TGL 8728 AbglWert
С	401	a Rohrkondensator	NO 75-220/5-160	TGL 5345 (1
С	401	b Rohrkondensator	NO 75-220/5-160	TGL 5345 (1
С	401	c Rohrkondensator	NO 75-220/5-160	TGL 5345 (1
С	402	Polyesterkondensator	0,01/63-445	TGL 9291
С	403	Kf-Kondensator	240/2,5/63	TGL 5155
С	404	Elyt-Kondensator	5/3	TGL 7198
С	405	Elyt-Kondensator	20/10	TGL 200-8308
С	406	L-Kondensator	0,47/63	TGL 10793
С	407	L-Kondensator	0,47/63	TGL 10793
С	408	Kf-Kondensator	2200/2,5/25	TGL 5155
С	409	Polyesterkondensator	4700/63-445	TGL 9291
С	410	Elyt-Kondensator	5/3	TGL 7198 is
С	411	Kf-Kondensator	2200/2,5/25	TGL 5155
С	412	Polyesterkondensator	0,01/63-445	TGL 9291
С	413	a Rohrkondensator	NO 75-220/5-160	TGL 5345 (1
С	413	b Rohrkondensator	NO 75-220/5-160	TGL 5345 (1
С	413	c Rohrkondensator	NO 75-220/5-160	TGL 5345
С	414	Rohrtrimmer	0,6/4,5	
С	415	Rohrtrimmer	0,6/4,5	
Т	401	Transistor	GF 126	
Т	402	Transistor	GF 126	
Т	403	Transistor	GF 126	
Т	404	Transistor	GF 126	
D	401	Universaldiode	GA 108	Ausweich:
D	402	Universaldiode	GA 108	Importdiode
D	403	Universaldiode	GA 108	EFD 108
D	404	Universaldiode	GA 108	

lfd.Nr.	St	Benennung	SachNr.	Bemerkung
Tr	401	Schwingkreisspule	Bv. 297	
Tr	402	Kollektortrafo	Bv. 298	
Tr	403	Modulationstrafo	Bv. 299	
Tr	404	Modulationstrafo	Bv. 300	
Tr	405	Kollektortrafo	Bv. 301	
Tr	406	Schwingkreisspule	Bv. 311	

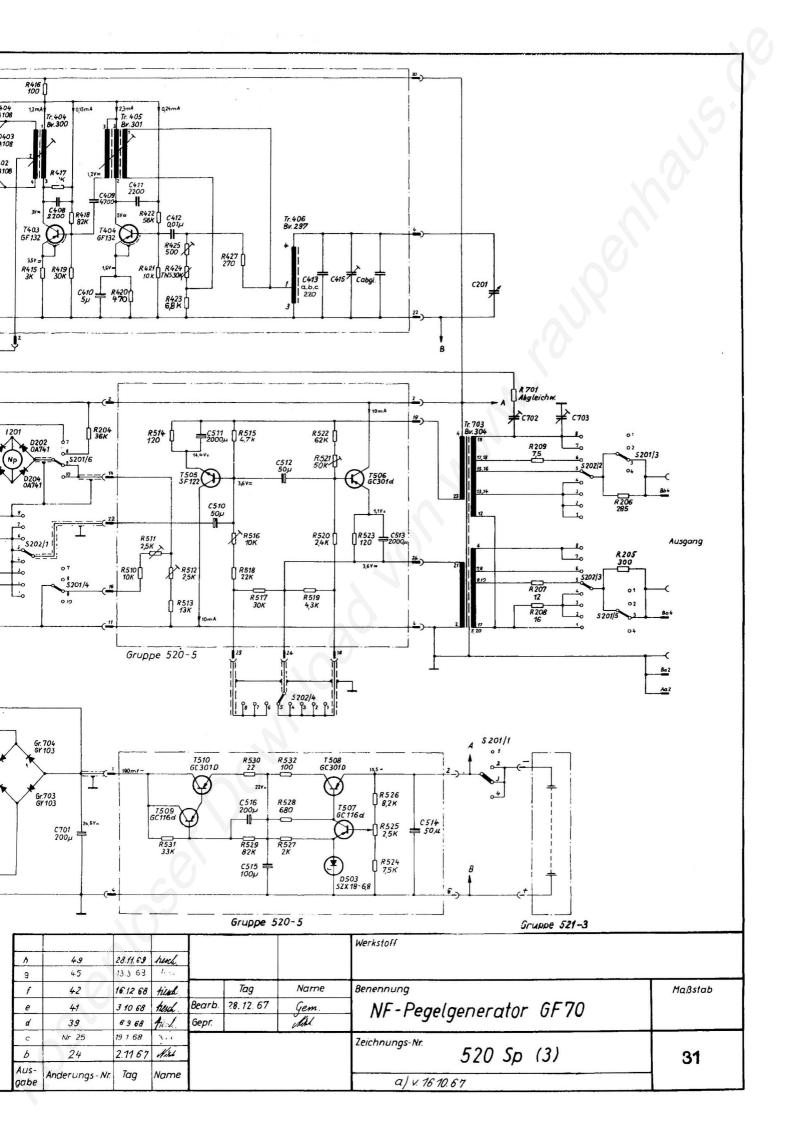

lfd.Nr.	St	Benennung	SachNr.	Bemerkung
R	501	Schichtwiderstand	10 kΩ 5% 25.311	TGL 8728
R	502	Schichtwiderstand	24 kΩ 2% 25.311	TGL 8728
R	503	Schichtdrehwiderstand	S 10 kΩ 0,5-544	TGL 11886
R	504	Schichtwiderstand	120 kΩ 5% 25.311	TGL 8728
R	505	Schichtwiderstand	270 Ω 5% 25.311	TGL 8728
R	506	Schichtwiderstand	2,4 kΩ 5% 25.311	TGL 8728
R	507	Schichtwiderstand	16 kΩ 5% 25.311	TGL 8728
R	508	Schichtwiderstand	6,2 kΩ 5% 25.311	TGL 8728
R	509	Schichtwiderstand	2,4 kΩ 5% 25.311	TGL 8728
R	510	Schichtwiderstand	10 kΩ 1% 11.310	TGL 14133
R	511	Schichtdrehwiderstand	S 2,5 kΩ 0,5-544	TGL 11886
R	512	Schichtdrehwiderstand	S 2,5 kΩ 0,5-544	TGL 11886
R	513	Metall-Schichtwiderstand	13 kΩ 1% 11.310	TGL 14133
R	514	Schichtwiderstand	120 Ω 5% 25.311	TGL 8728
R	515	Schichtwiderstand	4,7 kΩ 5% 25.311	TGL 8728
R	516	Schichtdrehwiderstand	S 10 kΩ 0,5-544	TGL 11886
R	517	Schichtwiderstand	30 kΩ 5% 25.311	TGL 8728
R	518	Schichtwiderstand	22 kΩ 5% 25.311	TGL 8728
R	519	Schichtwiderstand	4,3 kΩ 5% 25.311	TGL 8728
R	520	Schichtwiderstand	2,4 kΩ 5% 25.311	TGL 8728
R	521	Schichtdrehwiderstand	S 50 kΩ 0,5-544	TGL 11886
R	522	Schichtwiderstand	62 kΩ 5% 25.311	TGL 8728
R	523	Schichtwiderstand	120 Ω 5% 25.311	TGL 8728
R	524	Schichtwiderstand	7,5 kΩ 5% 25.311	TGL 8728
R	525	Schichtdrehwiderstand	S 2,5 kΩ 0,5-544	TGL 11886
R	526	Schichtwiderstand	8,2 kΩ 2% 25.311	TGL 8728
R	527	Schichtwiderstand	2 kΩ 5% 25.311	TGL 8728
R	528	Schichtwiderstand	680 Ω 5% 25.311	TGL 8728

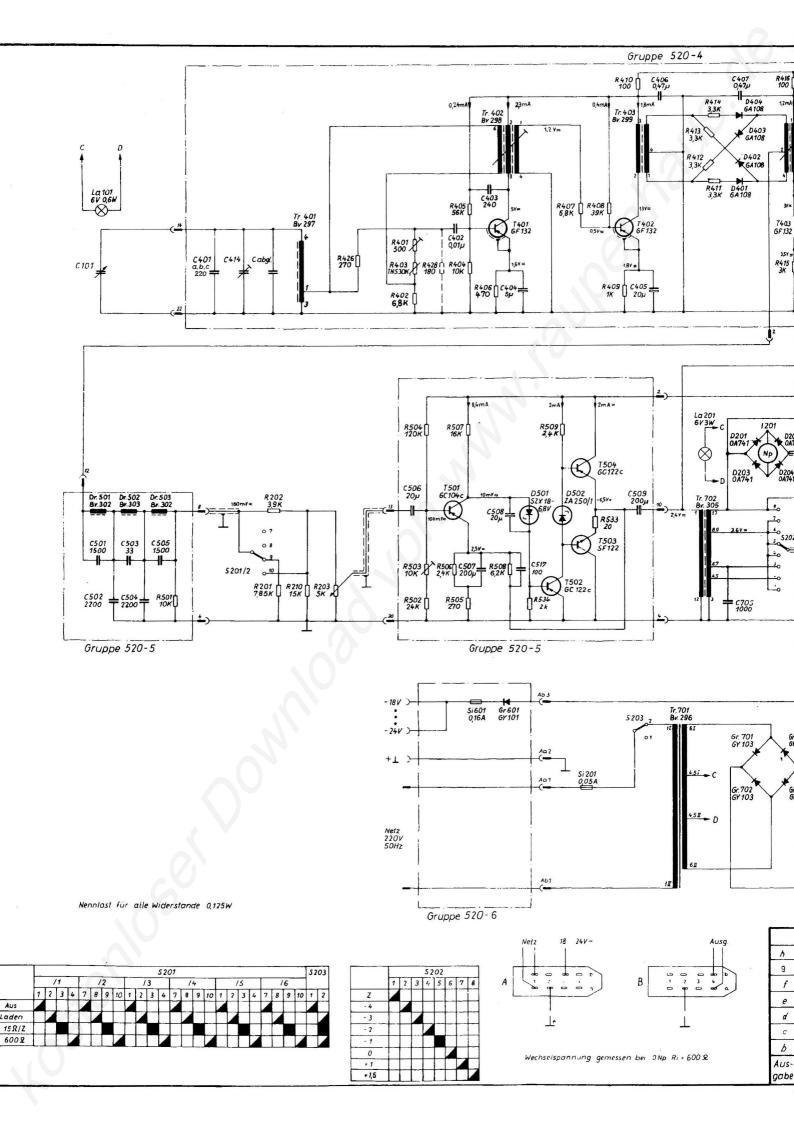

lfd.Nr.	St	Benennung	SachNr.	Bemerkung
R	529	Schichtwiderstand	82 kΩ 5% 25.311	TGL 8728
R	530	Schichtwiderstand	22 Ω 10% 25.311	TGL 8728
R	531	Schichtwiderstand	33 kΩ 5% 25.311	TGL 8728
R	532	Schichtwiderstand	100 Ω 5% 25.412	TGL 8728
R	533	Schichtwiderstand	20 Ω 5% 25.311	TGL 8728
R	534	Schichtwiderstand	2 kΩ 5% 25.311	TGL 8728
С	501	Kf-Kondensator	1500/2,5/25	TGL 5155
С	502	Kf-Kondensator	2200/2,5/25	TGL 5155
С	503	Rohrkondensator	NO 75-33/5-500	TGL 5345
С	504	Kf-Kondensator	2200/2,5/25	TGL 5155
С	505	Kf-Kondensator	1500/2,5/25	TGL 5155
С	506	Elyt-Kondensator	20/10	TGL 200-8308
С	507	Elyt-Kondensator	200/3	TGL 200-8308
С	508	Elyt-Kondensator	20/10	TGL 200-8308
С	509	Elyt-Kondensator	100/10, 2 x	TGL 200-8308
С	510	Elyt-Kondensator	50/15	TGL 200-8308
С	511	Elyt-Kondensator	2000/3	TGL 7198 is
С	512	Elyt-Kondensator	50/15	TGL 200-8308
С	513	Elyt-Kondensator	2000/3	TGL 7198 is
С	514	Elyt-Kondensator	50/15	TGL 200-8308
С	515	Elyt-Kondensator	100/25	TGL 7198 is
С	516	Elyt-Kondensator	200/3	TGL 200-8308
С	517	KF-Kondensator	100/5/160	TGL 5155

lfd.Nr.	St	Benennung	SachNr.	Bemerkung
D	501	Zenerdiode	SZX 18-6,8	
D	502	Zenerdiode	ZA 250/1	
D	503	Zenerdiode	SZX 18-6,8	
Dr	501	Tiefpaßdrossel	Bv. 302	
Dr	502	Tiefpaßdrossel	Bv. 303	
Dr	503	Tiefpaßdrossel	Bv. 302	
				.()
				- C
Т	501	Transistor	GC 100/c	Nachfolgetyp GC 103c, GC 104c
Т	502	Transistor	GC 122/c	Nachfolgetyp GC 103c, GC 104c
Т	503	Transistor	SF 122	
Т	504	Transistor	GC 122/c	Nachfolgetyp GC 103c, GC 104c
Т	505	Transistor	SF 122	
Т	506	Transistor	GC 301 D	mit Kühlkörper
Т	507	Transistor	GC 116 d	
Т	508	Transistor	GC 301 D	mit Kühlkörper
Т	509	Transistor	GC 116 d	
Т	510	Transistor	GC 301 D	mit Kühlkörper


lfd.Nr.	St	Benennung	SachNr.	Bemerkung
Gr	601	Ge-Gleichrichter	GY 101	mit Kühlschelle
Bu	601	Buchse, ungeschirmt	3050.034-00001	
Si	601	G-Schmelzeinsatz	0,16 C-TGL 0-41571	

lfd.Nr.	St	Benennung	SachNr.	Bemerkung		
R	701	Schichtdrehwiderstand	60 kΩ 100 kΩ 5% 65.413	TGL 4616 C 1		
				. ~ 0		
С	701	Elyt-Kondensator	200/25	TGL 7198		
С	702	Scheibentrimmer	B 4/12	TGL 68-103		
С	703	Scheibentrimmer	B10/40	TGL 68-103		
С	C 705 KF-Kondensator		1000/5/63	TGL 5155		
Gr	701	Germaniumgleichrichter	GY 103			
Gr	702	Germaniumgleichrichter	GY 103			
Gr	703	Germaniumgleichrichter	GY 103	.()		
Gr	704	Germaniumgleichrichter	GY 103	10		
				*		
Tr	701	Netztrafo	520-7-3/0 (3)	Bv. Nr. 296		
Tr	702	Treibertrafo	520-7-5/0 (4)	Bv. Nr. 305		
Tr	703	Ausgangsübertrager	520-7-4/0 (4)	Bv. Nr. 304		





α	60 57	16:9.71 24.6:71	hent.	Gepr N-Gepr	6.6.	Johne didaki	Schaltteilanordnung Zeichnungs-Nr. 520-4(4) Sa	1:1
				1970 Bearb	Tag 2.6	Name Johne	Denennung Oszillatorplatte	Mañstab

			1970 Bearb Gepr N:Gepr	Tag 5. 6. 6. 6	Name Johne Johnki	Verstärkergruppe Schaltteilanordnung	Maßstab 1:1
<i>a</i>	60 57	16.9.71 24.6.71				Zeichnungs-Nr. 520-5 (4) Sa	29
Aus- gabe	Anderung Tag Name			Ersatz für			

