

2230 DIGITAL STORAGE OSCILLOSCOPE SERVICE

WARNING

THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID PERSONAL INJURY, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO. REFER TO OPERATORS SAFETY SUMMARY AND SERVICE SAFETY SUMMARY PRIOR TO PERFORMING ANY SERVICE.

Please Check for CHANGE INFORMATION at the Rear of This Manual

Scans
 By
 Artek Media

Artek Media
1042 Plumper Cir. SW
Rochester, MN 55902

www.artekmedia.com

"High resolution scans of obsolete technical manuals"
If your looking for a quality scanned technical manual in PDF format please visit our WEB site at www.artekmedia.com or drop us an email at manuals@artekmedia.com and we will be happy to email you a current list of the manuals we have available.

If you don't see the manual you need on the list drop us a line anyway we may still be able to point you to other sources. If you have an existing manual you would like scanned please write for details, This can often be done very reasonably in consideration for adding your manual to our library.

Typically the scans in our manuals are done as follows;

1) Typed text pages are typically scanned in black and white at 300 dpi.
2) Photo pages are typically scanned in gray scale mode at 600 dpi
3) Schematic diagram pages are typically scanned in black and white at 600 dpi unless the original manual had colored high lighting (as is the case for some 70's vintage Tektronix manuals).

If you purchased this manual from us (typically through our Ebay name of ArtekMedia) thank you very much. If you received this from a well-meaning "friend" for free we would appreciate your treating this much like you would "share ware". By that we mean a donation of at least $\$ 5-10$ per manual is appreciated in recognition of the time (a manual can take as much as 40 hours to reproduce, book, link etc.), energy and quality of effort that went into preserving this manual. Donations via PayPal go to: manuals@artekmedia.com or can be mailed to us the address above.

Dave \& Lynn Henderson
Artek Media

Copyright © 1986 Tektronix, Inc. All rights reserved. Contents of this publication may not be reproduced in any form without the written permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and
 registered trademarks of Tektronix, Inc.

Printed in U.S.A. Specification and price change privileges are reserved.

INSTRUMENT SERIAL NUMBERS

Each instrument has a serial number on a panel insert, tag, or stamped on the chassis. The first number or letter designates the country of manufacture. The last five digits of the serial number are assigned sequentially and are unique to each instrument. Those manufactured in the United States have six unique digits. The country of manufacture is identified as follows:

B000000	Tektronix, Inc., Beaverton, Oregon, USA
100000	Tektronix Guernsey, Ltd., Channel Islands
200000	Tektronix United Kingdom, Ltd., London
300000	Sony/Tektronix, Japan
700000	Tektronix Holland, NV, Heerenveen, The Netherlands

TABLE OF CONTENTS

Page
iv
LIST OF ILLUSTRATIONS
LIST OF TABLES vi
OPERATORS SAFETY SUMMARY viii
SERVICING SAFETY SUMMARY ix
Section 1 GENERAL INFORMATION
INTRODUCTION 1-1
SPECIFICATION 1-1
Section 2 OPERATING INFORMATION
PREPARATION FOR USE 2-1
SAFETY 2-1
LINE VOLTAGE 2-1
POWER CORD 2-1
LINE FUSE 2-2
INSTRUMENT COOLING 2-2
START-UP 2-2
REPACKAGING 2-3
CONTROLS, CONNECTORS, AND INDICATORS 2-4
POWER AND DISPLAY 2-4
VERTICAL 2-4
HORIZONTAL 2-8
TRIGGER 2-12
STORAGE CONTROLS 2-15
MENU SELECTED FUNCTIONS 2-17
REAR PANEL 2-19
SIDE PANEL 2-19
CRT READOUT 2-20
OPERATING CONSIDERATIONS 2-23
GRATICULE 2-23
GROUNDING 2-23
SIGNAL CONNECTIONS 2-23
INPUT-COUPLING
CAPACITOR PRECHARGING 2-24
Page
OPERATOR'S CHECKS AND ADJUSTMENTS 2-25
INITIAL SETUP 2-25
TRACE ROTATION ADJUSTMENT 2-26
PROBE COMPENSATION 2-26
HORIZONTAL ACCURACY CHECK 2-27
Section 3 THEORY OF OPERATION
SECTION ORGANIZATION 3-1
INTEGRATED CIRCUIT DESCRIPTIONS 3-1
GENERAL DESCRIPTION 3-1
DETAILED CIRCUIT DESCRIPTION 3-7
ANALOG CIRCUITRY 3-7
VERTICAL ATTENUATORS 3.7
VERTICAL PREAMPLIFIERS 3-10
VERTICAL OUTPUT
AMPLIFIER 3-12
TRIGGERING 3-13
A SWEEP GENERATOR AND LOGIC 3-17
B TIMING AND ALTERNATE B SWEEP 3-20
HORIZONTAL 3-23
MICROPROCESSOR AND
STORE-PANEL CONTROLS 3-25
STATUS ADC AND BUS INTERFACE 3-26
STORAGE ACQUISITION 3-28
ACQUISITION MEMORY 3-30
DIGITAL TIME BASE 3-38
DIGITAL DISPLAY 3-44
VECTOR GENERATOR 3-45
POWER INPUT, PREREGULATOR AND INVERTER 3-47
POWER SUPPLY SECONDARIES,
Z-AXIS AND CRT 3-49
X-Y PLOTTER 3-51

TABLE OF CONTENTS (cont)

Page Page
Section 4 PERFORMANCE CHECK PROCEDURE
INTRODUCTION 4-1
PURPOSE 4-1
PERFORMANCE CHECK
INTERVAL 4-1
STRUCTURE 4-1
TEST EQUIPMENT REQUIRED 4-1
LIMITS AND TOLERANCES 4-1
PREPARATION FOR CHECKS 4-1
INDEX TO PERFORMANCE
CHECK STEPS 4-3
VERTICAL 4-4
INITIAL CONTROL SETTINGS 4-4
PROCEDURE STEPS 4-4
HORIZONTAL 4-12
INITIAL CONTROL SETTINGS 4-12
PROCEDURE STEPS 4-12
TRIGGER 4-17
INITIAL CONTROL SETTINGS 4-17
PROCEDURE STEPS 4-17
EXTERNAL Z-AXIS, PROBE
ADJUST, EXTERNAL CLOCK, AND X-Y PLOTTER 4-21
INITIAL CONTROL SETTINGS 4-21
PROCEDURE STEPS 4-21
Section 5 ADJUSTMENT PROCEDURE
INTRODUCTION 5-1
PURPOSE 5-1
STRUCTURE 5-1
TEST EQUIPMENT 5-1
LIMITS AND TOLERANCES 5-1
ADJUSTMENTS AFFECTED BY REPAIRS 5-1
PREPARATION FOR
ADJUSTMENT 5-1
INDEX TO ADJUSTMENT PROCEDURE STEPS 5-3
POWER SUPPLY AND CRT DISPLAY 5-4
INITIAL CONTROL SETTINGS 5-4
PROCEDURE STEPS 5-4
VERTICAL 5-6
INITIAL CONTROL SETTINGS 5-6
PROCEDURE STEPS 5-6
HORIZONTAL 5-19
INITIAL CONTROL SETTINGS 5-19
PROCEDURE STEPS 5-19
TRIGGER 5-27
INITIAL CONTROL SETTINGS 5-27
PROCEDURE STEPS 5-27
EXTERNAL Z-AXIS, PROBE
ADJUST, EXTERNAL CLOCK, AND X-Y PLOTTER 5-32
INITIAL CONTROL SETIINGS 5-32
PROCEDURE STEPS 5-32
Section 6 MAINTENANCE
STATIC-SENSITIVE COMPONENTS 6-1
PREVENTIVE MAINTENANCE 6-2
INTRODUCTION. 6-2
GENERAL CARE 6-2
INSPECTION AND CLEANING 6-2
LUBRICATION 6-5
SEMICONDUCTOR CHECKS 6-5
PERIODIC READJUSTMENT 6-5
TROUBLESHOOTING 6-5
INTRODUCTION 6-5
TROUBLESHOOTING AIDS 6-5
TROUBLESHOOTING EQUIPMENT 6-11
TROUBLESHOOTING
TECHNIQUES 6-11
DIAGNOSTICS 6-14
CORRECTIVE MAINTENANCE 6-31
INTRODUCTION 6-31
MAINTENANCE PRECAUTIONS 6-31
OBTAINING REPLACEMENT PARTS 6-31
MAINTENANCE AIDS 6-31
INTERCONNECTIONS 6-33
TRANSISTORS AND INTEGRATED CIRCUITS 6-33
SOLDERING TECHNIQUES 6-33
REMOVAL AND REPLACEMENT INSTRUCTIONS 6-34

TABLE OF CONTENTS (cont)

Page
Section 7 OPTIONS
INTRODUCTION 7-1
POWER CORD OPTIONS 7-1
OPTION 33 7-1
OPTION 10 AND OPTION 12 7-1
INTRODUCTION 7-1
STANDARD FUNCTIONS FORMATS, AND FEATURES 7-2
PERFORMANCE CONDITIONS 7-3
OPTIONS SIDE PANEL 7-3
INTERFACE STATUS
INDICATORS 7-8
MENU SELECTED FUNCTIONS 7-8
GPIB PARAMETER SELECTION 7-9
RS-232-C PARAMETER
SELECTION 7-10
MESSAGES AND COMMUNICATION PROTOCOL 7-10
COMMAND LISTS 7-12
WAVEFORM TRANSFERS 7-28
REMOTE-LOCAL
OPERATING STATES 7-31
INSTRUMENT RESPONSE TO INTERFACE MESSAGES 7-32
GPIB PROGRAMMING 7-33
RS-232-C PROGRAMMING 7-33
RESET UNDER COMMUNICATION OPTIONS CONTROL 7-34
STATUS AND ERROR
REPORTING 7-34
Page
READOUT/MESSAGE COMMAND CHARACTER SET $7-35$
ASCII CODE CHART 7-35
OPTION 10 THEORY OF OPERATION 7-40
OPTION 12 THEORY OF OPERATION 7-41
OPTION MEMORY 7-43
PERFORMANCE CHECK
PROCEDURE 7-44
ADJUSTMENT PROCEDURE $7-45$
OPTION MAINTENANCE INFORMATION 7-45
Section 8 REPLACEABLE ELECTRICAL PARTS
Section 9 DIAGRAMS
Section 10 REPLACEABLE MECHANICAL PARTS
CHANGE INFORMATION
Diagnostic Information:
Diagnostics 6-14
Diagnostic Messages 6-17
Diagnostic Tests 6-21

LIST OF ILLUSTRATIONS

Figure Page
The 2230 Digital Storage Oscilloscope x
1-1 Maximum input voltage vs. frequency derating curve for CH 1 OR X , CH 2 OR Y, and EXT INPUT connectors 1-14
1-2 Physical Dimensions of the 2230 Oscilloscope 1-15
2-1 Securing the detachable power-cord to the instrument 2-1
2-2 Optional power cord data 2-2
2-3 Fuse holder and detachable power-cord connector 2-2
2-4 Power and display controls and power-on indicator 2-5
2-5 Vertical controls and connectors 2-6
2-6 Horizontal controls 2-9
2-7 Trigger controls, connector, and indicator. 2-12
2-8 Storage controls 2-15
2-9 Rear-panel 2-19
2-10 Side Panel. 2-20
2-11 X-Y Plotter interfacing 2-21
2-12 Crt readout display 2-22
2-13 Graticule measurement markings 2-23
2-26 Probe compensation 2-26
3-1 Simplified block diagram 3-2
3-2 Block diagram of the Channel 1 Attenuator circuit 3-8
3-3 Store-Non Store Vertical Switching. 3-11
3-4 Block diagram of Trigger Amplifiers and Switching 3-14
3-5 A Sweep Generator and Logic Circuitry 3-18
3-6 Horizontal Amplifier block diagram 3-24
3-7 Sampling mode acquisition timing at $0.05 \mu \mathrm{~S}$ per division (ADCLK $=$ CONV $=20 \mathrm{MHz}$) 3-31
3-8 MIN/MAX Acquisition timing at 20μ s per division 3-33
3-9 Acquisition Memory timing 3-37
3-10 Clock timing 3-39
3-11 Simplified diagram of the Dc Restorer circuitry 3-50
6-1 Multi-connector holder orientation 6-7
6-2 Grounding the signal lines of P2111 and P2112 6-7
6-3 Isolated kernel timing 6-9
6-4 Diagnostic Menu. 6-19
6-5 Error code timing (U4119) 6-20
6-6 PU error display 6-21
6-7 Location of screws and spacers on the Storage circuit board 6-37
6-8 Recessed screw and rear hinge removal 6-38
6-9 Location of screws securing Power-Supply shield and the support bracket to the rear chassis frame 6-40

LIST OF ILLUSTRATIONS (cont)

Figure

7-1 Option side panels.
7-2 Interface status indicators.

9-1 Color codes for resistors and capacitors.
9-2 Semiconductor lead configurations.
9-3 Locating components on schematic diagrams and circuit board illustrations.
9-4 Detailed analog block diagram
9-5 Detailed storage block diagram.
9-6 A2--Attenuator board.
9-7 A14-CH 1 Logic board.
9-8 A14—CH 2 Logic board.
9-9 A1-Main board.
9-10 Circuit view of A1-Main board.
9-11 A7-Position Interface board.
9-12 A3—Front Panel board.
9-13 Circuit view of A3—Front Panel board.
9-14 A4—Timing board.
9-15 A13-Sweep Interface board.
9-16 A5_Alternate Sweep board.
9-17 A16-Sweep Reference board.
9-18 A6-Line Filter board.
9-19 A18_Thermal Shutdown board.
9-20 A7—Intensity Pot board.
9-21 A10—Storage board.
9-22 A11A1—input/Output board.
9-23 A11A2-Vector Generator board.
9-24 A20—X-Y Plotter board.
9-25 A21—RS-232 Option board.
9-26 A22-GPIB Option board.
9-27 A23-Option Memory board.

LIST OF TABLES

Table Page
1-1 Electrical Characteristics 1-3
1-2 Environmental Characteristics 1-13
1-3 Physical Characteristics 1-14
2-1 Probe Coding 2-7
2-2 Default Digital Storage Modes 2-9
2-3 Repetitive Store Sampling Data Acquisition 2-10
2-4 Auxiliary Connector 2-20
3-1 Memory Space Allocation 3-27
3-2 MIN/MAX Clock Selector Multiplexer Switching 3-32
3-3 Time Base Clock Frequencies 3-41
3-4 Time Base Divider Preload Bits 3-42
3-5 Trigger Logic Multiplexer Switching 3-43
4-1 Test Equipment Required 4-2
4-2 Deflection Accuracy Limits 4-4
4-3 Storage Deflection Accuracy 4-5
4-4 Settings for Bandwidth Checks 4-7
4-5 Settings for Timing Accuracy Checks 4-13
4-6 Settings for Delay Time Differential Checks 4-15
4-7 Switch Combinations for A Triggering Checks 4-18
5-1 Adjustments Affected by Repairs 5-2
5-2 Power Supply Limits 5-5
5-3 Deflection Accuracy Limits 5-8
5-4 Store Deflection Accuracy 5-10
5-5 Attenuator Compensation Adjustments 5-12
5-6 Settings for Bandwidth Checks 5-16
5-7 Settings for Timing Accuracy Checks 5-23
5-8 Settings for Delay Time Differential Checks 5-24
5-9 Switch Combinations for A Triggering Checks 5-28
6-1 Relative Susceptibility to Static-Discharge Damage 6-1
6-2 External Inspection Checklist 6-3
6-3 Internal Inspection Checklist 6-3
6-4 Timing Switch Interface Voltages 6-10
6-5 Vertical VOLTS/DIV Switch Interface Voltages 6-11
6-6 AC GND DC Switch Interface Voltages 6-11
6-7 Power Supply Voltage and Ripple Limits 6-12
6-8 Diagnostic Messages and Tests 6-14
6-9 Circuitry Checked by Each Test and Exerciser 6-15
6-10 U4119 Error Code Display 6-16
6-11 Diagnostic Messages 6-17
6-12 Diagnostic Acquisition Values 6-20
6-13 PU TEST Failure Codes 6-22
6-14 Acquisition Address Bus Test Patterns 6-23

LIST OF TABLES (cont)

Table Page
6-15 PRC Test Patterns 6-24
6-16 Display Format 6-28
6-17 Display Format Bit Definitions 6-28
6-18 ACQ_MEM 0x48000 6-29
6-19 ACQ_MODE 0x437BE 6-29
6-20 TB_MODE 0x407DE 6-29
6-21 TB_SWP_RATE 0x407EE 6-29
6-22 FP_A/D_CTL 0x437F6 6-29
6-23 Display Format Digit Definitions 6-30
6-24 Maintenance Aids 6-32
7-1 Function Subsets Implemented 7-2
7-2 Specific Format Choices 7-3
7-3 Implementation of Specific Features 7-3
7-4 Option Electrical Characteristics 7-4
7-5 GPIB Connector 7-5
7-6 GPIB PARAMETERS Switch 7-5
7.7 RS-232-C PARAMETERS Switch 7-6
7-8 Baud Rate 7-6
7-9 Parity Selection 7-7
7-10 RS-232-C DTE Connector 7-7
7-11 RS-232-C DCE Connector $7-7$
7-12 Numeric Argument Format for Commands 7-12
7-13 Vertical Commands 7-13
7-14 Horizontal Commands 7-14
7-15 Trigger Commands 7-15
7-16 Cursor Commands 7-16
7-17 Display Commands 7-17
7-18 Acquisition Commands 7-18
7-19 Save and Recall Reference Commands 7-20
7-20 Waveform Commands. 7-22
7-21 Waveform Preamble Fields 7-23
7-22 Service Request Group Commands 7-25
7-23 Miscellaneous Commands 7-26
7-24 RS-232-C Specific Commands 7-26
7-25 Query and Response Examples 7-27
7-26 Typical 8-Bit Binary Waveform Data 7-29
7-27 Typical 16-Bit Binary Waveform Data 7-30
7-28 Typical 8-Bit Hexadecimal Waveform Data 7-30
7-29 Typical 16-Bit Hexadecimal Waveform Data. 7-31
7-30 Typical ASCII Waveform Data 7-31
7-31 Status Event and Error Categories 7-35
7-32 Event Codes. 7-36
7-33 Readout/MESsage Command Character Set 7-38
7-34 ASCII Code Chart 7.39
7-35 GPIB Status Buffer Functions 7-41
7-36 RS-232-C Status Buffer Functions 7-43
7-37 Test Equipment Required. 7-44

OPERATORS SAFETY SUMMARY

The general safety information in this part of the summary is for both operating and servicing personnel. Specific warnings and cautions will be found throughout the manual where they apply and do not appear in this summary.

Terms in This Manual

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

Terms as Marked on Equipment

CAUTION indicates a personal injury hazard not immediately accessible as one reads the markings, or a hazard to property, including the equipment itself.

DANGER indicates a personal injury hazard immediately accessible as one reads the marking.

Symbols in This Manual

This symbol indicates where applicable cautionary or other information is to be found. For maximum input voltage see Table 1-2.

Symbols as Marked on Equipment

DANGER - High voltage.

Protective gound (earth) terminal.

ATTENTION - Refer to manual.

Power Source

This product is intended to operate from a power source that does not apply more than 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

Grounding the Product

This product is grounded through the grounding conductor of the power cord. To avoid electrical shock, plug the power cord into a properly wired receptacle before connecting to the product input or output terminals. A protecfive ground connection by way of the grounding conductor in the power cord is essential for safe operation.

Danger Arising from Loss of Ground

Upon loss of the protective-ground connection, all accessibile conductive parts (including knobs and controls that may appear to be insulating) can render an electric shock.

Use the Proper Power Cord

Use only the power cord and connector specified for your product.

Use only a power cord that is in good condition.
For detailed information on power cords and connectors, see Figure 2-2.

Use the Proper Fuse

To avoid fire hazard, use only a fuse of the correct type, voltage rating and current rating as specified in the parts list for your product.

Do Not Operate in Explosive Atmospheres

To avoid explosion, do not operate this product in an explosive atmosphere unless it has been specifically certified for such operation.

Do Not Remove Covers or Panels

To avoid personal injury, do not remove the product covers or panels. Do not operate the product without the covers and panels properly installed.

SERVICING SAFETY SUMMARY

FOR QUALIFIED SERVICE PERSONNEL ONLY

Refer also to the preceding Operators Safety Summary.

Do Not Service Alone

Do not perform internal service or adjustment of this product uniess another person capable of rendering first aid and resuscitation is present.

Use Care When Servicing With Power On

Dangerous voltages exist at several points in this product. To avoid personal injury, do not touch exposed connections or components while power is on.

Disconnect power before removing protective panels, soldering, or replacing components.

Power Source

This product is intended to operate from a power source that does not apply more than 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding connector in the power cord is essential for safe operation.

GENERAL INFORMATION

INTRODUCTION

The TEKTRONIX 2230 Oscilloscope is a combination nonstorage and digital storage dual-channel 100 MHz bandwidth instrument. It is a rugged, lightweight oscilloscope featuring microprocessor operation and alphanumeric crt readout of many of the front-panel controls. In the digital storage mode, up to three waveform sets (CH 1 and/or CH 2) may be stored in a SAVE REF memory and recalled for display at a later time. The vertical system provides calibrated deflection factors from 2 mV per division to 5 V per division. The horizontal system provides calibrated sweep speeds from 50 ns per division to 0.5 s per division for nonstorage mode with three slower sweep speeds ($1 \mathrm{~s}, 2 \mathrm{~s}$, and 5 s per division) added for store mode operation. A $\times 10$ magnifier extends the maximum sweep speed to 5 ns per division.

The digital storage sampling rate is 20 megasamples per second maximum, and the acquired record length is 4 K samples (1 K may also be selected) for a single channel or 2 K samples for dual-channel (CHOP or ALT) displays. Any contiguous 1 K sample of an acquired record is displayable. The fast sampling rate can capture a glitch with a pulse width of at least 100 ns . A 4 K compress feature enables a 4 K record length acquisition to be compressed to 1 K in length for ease in viewing or storing in the SAVE REF memory. If compression is not desired, all 4 K or any 1 K portion of a 4 K record may be stored in the SAVE REF memory. The SAVE store mode stops the waveform acquisition in progress, allowing a particular display to be stored or examined before further acquisitions cause a waveform update.

Cursors may be used to obtain voltage measurements, time difference measurements, and delay-time measurements on any of the store mode waveform displays. Delta volts, delay time, delta time, and $1 /$ delta time (either delta time or $1 /$ delta time is selectable via the MENU) are displayed in the crt readout for ease in obtaining precise measurement results. The cursors are positioned to any displayed store mode waveform to make measurements. An alternate use of the cursor-positioning control is to horizontally position the 1 K display window to any location within a 4 K record length waveform acquisition. The displayed portion of a 4 K acquisition is stored when the SAVE REF feature is used.

The instrument is shipped with the following standard accessories:

1 Operators Manual
1 Users Reference Guide
2 Probe Packages
1 Front Panel Cover
1 Accessory Pouch
Power Cord
Fuse
DB-9 Male Connector and Connector Shell
Loop Clamp
Flat Washer
Self-Tapping Screw

For part numbers and further information about both standard and optional accessories, refer to "Options and Accessories' (Section 7) of this manual. Your Tektronix representative, local Tektronix Field Office, or Tektronix products catalog can also provide additional accessories information.

SPECIFICATION

The following electrical characteristics (Table 1-1) are valid when the instrument has been adjusted at an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$, has had a warm-up period of at least 20 minutes, and is operating at an ambient temperature between $0^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$ (unless otherwise noted).

Items listed in the "Performance Requirements" column are verifiable qualitative or quantitative limits that define the measurement capabilities of the instrument.

Environmental characteristics are given in Table 1-2. This instrument meets the requirements of MIL-T-28800C for Type III, Class 5 equipment, except where noted otherwise.

Physical characteristics of the instrument are listed in Table 1-3.

Finite resolution affects any measurement using discrete numbers. All digital storage stores amplitude values as discrete numbers and associates those amplitude numbers with discretely numbered times. Many measurements must be rounded or truncated. The size of the truncation or rounding becomes a part of the measurement error. For example, the following line is 1.5 units long. If it must be drawn as a line connecting points one unit apart, then it may be drawn as a line one unit long or two units long, depending on how it occurs relative to the points.

Case 1: Line approaches three points:

$. \quad . \quad$	Input line Measurement resolution Output line

Case 2: Line approaches two points:

$\ldots \quad$| | . |
| :--- | :--- |\quad| Input line |
| :--- |
| Measurement resolution |
| Output line |

There are several places where measurements are quantified, and a one-count error in the measurement cannot be detected. The input channels are digitized to an 8bit resolution, where one division is (ignoring expansion and compression) 25 counts. This means there is an inherent error of $1 / 25$ of a division in any voltage measurement at acquisition time. Averaging can increase the resolution of a voltage measurement above the sampler's eight-bit limit. To use the increased resolution, the display has a 10-bit dynamic range in the vertical axis, as well as
the horizontal axis. An averaged signal has a resolution of 100 points per division (ignoring expansion and compression). In addition, the averaged number is stored with up to twelve bits of resolution. Expansion is required to view the eleventh and twelfth bits of increased resolution.

Time is quantified to determine when each sample occurred and which display interval gets each sample. Time is resolved by storing, for example, 4 K points. If 4 K points are stored, 4 K time intervals are represented. However, in 4 K mode, not all of the 4 K -point resolution may be displayed on the 10 -bit (1 K -point) screen. Therefore, if 4 K COMPRESS is selected to present the whole picture onscreen at once, only 1 K resolution remains in the display. When peak-detected information is acquired, events with high-frequency content such as fast steps, or short pulses, can only be located within the time interval from which the peaks came. Even though two display points result from the interval, the event cannot be tied with certainty to the first or second point in the interval.

Time is also quantified to determine where to put points in REPETITIVE acquisitions, where the points acquired at 50 ns intervals fill only part of the screen. A counting device produces a number to represent the portion of 50 ns between the samples acquired and the ones that would have included the trigger. This number ranges from 0 to about 205, which allows accurate placement into the display record. The display record will have at most 100 slots to choose from on the basis of the 0-205 number (this is where each slot represents 0.5 ns of acquisition time, and the counter's resolution is about 0.244 ns per count).

Table 1-1
Electrical Characteristics

Characteristics	Performance Requirements
VERTICAL DEFLECTION SYSTEM	
Deflection Factor	
DC Accuracy (NON STORE) $+15^{\circ} \mathrm{C} \text { to }+35^{\circ} \mathrm{C}$	Within $\pm 2 \%$.
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	Within $\pm 3 \%$. $^{\text {a }}$ For $5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div VOLTS/DIV switch settings, the gain is set at a VOLTS/DIV switch setting of $10 \mathrm{mV} / \mathrm{div}$. $2 \mathrm{mV} / \mathrm{div}$ gain is set with the VOLTS/DIV switch set to $2 \mathrm{mV} / \mathrm{div}$.
On Screen DC Accuracy (STORE) $\pm 15^{\circ} \mathrm{C} \text { to }+35^{\circ} \mathrm{C}$	Within $\pm 2 \%$.
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	Within $\pm 3 \%$. $^{\text {a }}$ STORE Mode gain set with the VOLTS/DIV switch set to $5 \mathrm{mV} / \mathrm{div}$.
Storage Acquisition Vertical Resolution	8 bits, 25 levels per division. 10.24 divisions dynamic range. ${ }^{\text {a }}$
Range of VOLTS/DIV Variable Control	Continuously variable between settings. Increases deflection factor by at least 2.5 to 1 .
Step Response (NON STORE) Rise Time $\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+35^{\circ} \mathrm{C} \\ & 5 \mathrm{mV} / \mathrm{div} \text { to } 5 \mathrm{~V} / \mathrm{div} \end{aligned}$	3.5 ns or less. ${ }^{\text {a }}$
$2 \mathrm{mV} / \mathrm{div}$	4.4 ns or less. ${ }^{\text {a }}$
$\begin{aligned} & +35^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\ & 5 \mathrm{mV} / \mathrm{div} \text { to } 5 \mathrm{~V} / \mathrm{div} \end{aligned}$	3.9 ns or less. ${ }^{\text {a }}$
$2 \mathrm{mV} / \mathrm{div}$	4.4 ns or less. ${ }^{\text {a }}$ Rise time is calculated from: $\text { Rise Time }=\frac{0.35}{\text { Bandwidth }(-3 \mathrm{~dB})}$
Step Response (STORE Mode) Useful Storage Rise Time SAMPLE	Single Trace CHOP/ALT $\frac{\text { SEC/DIV } \times 1.6}{100} \mathbf{s}^{\mathrm{a}}$ $\frac{\text { SEC/DIV } \times 1.6}{50} \mathbf{s}^{\mathrm{a}}$
PEAKDET or ACCPEAK with SMOOTH	$\frac{\text { SEC/DIV } \times 1.6}{50} \mathrm{~s}^{\mathrm{a}} \quad \frac{\text { SEC/DIV } \times 1.6}{25} \mathrm{~s}^{\mathrm{a}}$ Rise time is limited to 3.5 ns minimum with derating over temperature (see NON STORE Rise Time).

[^0]Table 1-1 (cont)

Characteristics	Performance Requirements
Aberrations (NON STORE and STORE in Default Modes) $2 \mathrm{mV} /$ div to $50 \mathrm{mV} / \mathrm{div}$	$+4 \%,-4 \%, 4 \% \text { p-p. }$ 3% or less at $+25^{\circ} \mathrm{C}$ with cabinet installed.
$0.1 \mathrm{~V} / \mathrm{div}$ to $0.5 \mathrm{~V} / \mathrm{div}$	$+6 \%,-6 \%, 6 \% \text { p-p. }$ 5% or less at $+25^{\circ} \mathrm{C}$ with cabinet installed.
$1 \mathrm{~V} /$ div to $5 \mathrm{~V} / \mathrm{div}$	$+12 \%,-12 \%, 12 \% \text { p-p. }{ }^{\text {a }}$ 10% or less at $+25^{\circ} \mathrm{C}$ with cabinet installed. Measured with a five-division reference signal, from a 50Ω source driving a 50Ω coaxial cable terminated in 50Ω at the input connector with the VOLTS/DIV Variable control in the CAL detent. Vertically center the top of the reference signal.
NON STORE Bandwidth (-3 dB) $\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+35^{\circ} \mathrm{C} \\ & 5 \mathrm{mV} / \mathrm{div} \text { to } 5 \mathrm{~V} / \mathrm{div} \end{aligned}$	DC to at least 100 MHz .
$2 \mathrm{mV} / \mathrm{div}$	DC to at least 80 MHz .
$\begin{aligned} & +35^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\ & 2 \mathrm{mV} / \mathrm{div} \text { to } 5 \mathrm{~V} / \mathrm{div} \end{aligned}$	DC to at least 80 MHz . $^{\text {a }}$ Measured with a vertically centered six-division reference signal, from a 50Ω source driving a 50Ω coaxial cable terminated in 50Ω at the input connector; with the VOLTS/DIV Variable control in the CAL detent.
NON STORE BW LIMIT (-3 dB)	$20 \mathrm{MHz} \pm 10 \%$.
AC Coupled Lower Cutoff Frequency	10 Hz or less at $-3 \mathrm{~dB}{ }^{\text {a }}$
Useful Storage Performance RECORD, SCAN and ROLL Store Modes SAMPLE Acquisition, no AVERAGE $5 \mu \mathrm{~s} / \mathrm{div}$ to $5 \mathrm{~s} / \mathrm{div}$ EXT CLOCK (up to 1 kHz)	Single Trace CHOP/ALT $\frac{10}{\text { SEC/DIV }} \mathrm{Hz}^{\mathrm{a}}$ $\frac{5}{\text { SEC/DIV }} \mathrm{Hz}^{\mathrm{a}}$ $\frac{\text { EXT }}{10} \mathrm{~Hz}^{\mathrm{a}}$ $\frac{\text { EXT }}{20} \mathrm{~Hz}^{\mathrm{a}}$ Useful storage performance is limited to the frequency where there are 10 samples per sine wave signal period at the maximum sampling rate. (Maximum sampling rate is 20 MHz in Single trace and 10 MHz in CHOP or ALT at a SEC/DIV setting of $5 \mu \mathrm{~s} / \mathrm{div}$.) This yields a maximum amplitude uncertainty of 5%. Accuracy at the useful storage bandwidth limit is measured with respect to a six-division 50 kHz reference sine wave.
PEAK DETECT	Single Trace and ALT CHOP
Sine-Wave Amplitude Capture (5% p-p maximum amplitude uncertainty)	$1 \mathrm{MHz}^{\mathrm{a}} \quad 1 \mathrm{MHz}^{\mathrm{a}}$
Pulse Width Amplitude Capture (50\% p-p maximum amplitude uncertainty)	$100 \mathrm{~ns} \quad \frac{\text { SEC/DIV }}{50}$

aPerformance Requirement not checked in Service Manual.

Table 1-1 (cont)

Characteristics	Performance Requirements
REPETITIVE Store Mode	
SAMPLE and AVERAGE	Single Trace ALT
$0.05 \mu \mathrm{~s} / \mathrm{div}$	$100 \mathrm{MHz}(-3 \mathrm{~dB})^{\mathrm{b}} \quad 100 \mathrm{MHz}(-3 \mathrm{~dB})^{\text {b }}$
$0.1 \mu \mathrm{~s} / \mathrm{div}$	$100 \mathrm{MHz}(-3 \mathrm{~dB})^{\text {a, b }} \quad 50 \mathrm{MHz}(-3 \mathrm{~dB})^{\text {a }}$
$0.2 \mu \mathrm{~s} / \mathrm{div}$ to $2 \mu \mathrm{~s} / \mathrm{div}$ (5\% maximum amplitude uncertainty)	$\frac{10}{\text { SEC/DIV }} \mathrm{Hz}^{\mathrm{a}} \quad \frac{5}{\text { SEC/DIV }} \mathrm{Hz}^{\mathrm{a}}$
ACCPEAK $0.05 \mu \mathrm{~s} / \mathrm{div}$ to $5 \mathrm{~s} / \mathrm{div}$	Same as NON STORE Bandwidth. ${ }^{\text {a }}$
AVERAGE Mode Sweep Limit	Adjustable from 1 to 2047 or NO LIMIT.
Weight of Last Acquisition	$1 / 2,1 / 4,1 / 8,1 / 16,1 / 32,1 / 64,1 / 128$, or $1 / 256$ (MENU selections). ${ }^{\text {a }}$ AVERAGE mode default weight is $1 / 4$.
Resolution	Assuming uncorrelated triggers and greater than 1 LSB of the 8bit acquisition of vertical signal noise; the averaging weight for the first acquistion is 1 , the averaging weight for the second acquisition is $1 / 2$ and for n acquisitions is $1 / 2^{n-1}$. The MENU selects the least weight used. Maximum signal-to-noise improvement is achieved after $2 \times$ (weight factor) \times (expected acquisitions to fill). ${ }^{\text {a }}$
Frequency Response	Frequency response of the AVERAGE Storage Mode is a function of the number of triggered acquisitions added to the weighted average. ${ }^{\text {a }}$ Time jitter of a signal with respect to the sample clock will produce a low-pass filter characteristic of an averaged waveform.
NON STORE CHOP Mode Switching Rate	$500 \mathrm{kHz} \pm 30 \%$. ${ }^{\text {a }}$
STORE Chop Rate SAMPLE	50/(SEC/DIV) for sweep speeds from 5 s per division to and including 10μ s per division. ${ }^{\text {a }}$
PEAK DETECT	25/(SEC/DIV) for sweep speeds from 5 s per division to and including 20μ s per division. ${ }^{\text {a }}$
$5 \mu \mathrm{~s} / \mathrm{div}$ through $0.05 \mu \mathrm{~s} / \mathrm{div}$	No CHOP mode; acts as in ALT. ${ }^{\text {a }}$
A/D Converter Linearity	Monotonic with no missing codes. ${ }^{\text {a }}$
STORE Mode Cross Talk	$<2 \%$ measured in CHOP at $10 \mu \mathrm{~s} /$ div and $10 \mathrm{mV} /$ div using a 100 kHz square wave signal vertically centered and the other input coupling set to ground.

[^1]Table 1-1 (cont)

Characteristics	Performance Requirements
NON STORE Common-Mode Rejection Ratio (CMRR)	At least 10 to 1 at 50 MHz . Checked at 10 mV per division for common-mode signals of six divisions or less with the VOLTS/DIV Variable control adjusted for the best CMRR at 50 kHz .
Input Current	1 nA or less (0.5 division or less trace shift when switching between DC and GND input coupling with the VOLTS/DIV switch set to 2 mV per division. ${ }^{\text {a }}$
Input Characteristics Resistance	$1 \mathrm{M} \Omega \pm 2 \%{ }^{\text {a }}$
Capacitance	$20 \mathrm{pF} \pm 2 \mathrm{pF} .^{\text {a }}$
Maximum Safe Input Voltage (CH 1 and CH 2)	400 V (dc + peak ac) or 800 V ac p-p at 10 kHz or less. ${ }^{\text {a }}$ See Figure 1-1 for maximum input voltage vs. frequency derating curve.
NON STORE Channel Isolation	Greater than 100 to 1 at 50 MHz .
STORE Channel Isolation	100 to 1 at 50 MHz .
POSITION Control Range	At least ± 11 divisions from graticule center.
A/B SWP SEP Control Range (NON STORE Mode Only)	± 3.5 divisions or greater.
Trace Shift with VOLTS/DIV Switch Rotation	0.75 division or less; VOLTS/DIV Variable control in the CAL detent. ${ }^{\text {a }}$
Trace Shift as the VOLTS/DIV Variable Control is Rotated	1 division or less. ${ }^{\text {a }}$
Trace Shift with INVERT	1.5 division or less. ${ }^{\text {a }}$

[^2]Table 1-1 (cont)

Characteristics	Performance Requirements
TRIGGERING SYSTEM	
A Trigger Sensitivity P-P AUTO and NORM Internal External	10 MHz $\mathbf{6 0 ~ M H z}$ $\mathbf{1 0 0} \mathbf{~ M H z}$ 0.35 div 1.0 div 1.5 div 40 mV 120 mV 150 mV External trigger signal from a 50Ω source driving a 50Ω coaxial cable terminated in 50Ω at the input connector.
HF REJ Coupling	Reduces trigger signal amplitude at high frequencies by about 20 dB with rolloff beginning at $40 \mathrm{kHz} \pm 15 \mathrm{kHz}$. Should not trigger with a one-division peak-to-peak 250 kHz signal when HF REJ is ON.
P-P AUTO Lowest Usable Frequency	20 Hz with 1 division internal or 100 mV external. ${ }^{\text {a }}$
TV LINE Internal	0.35 div. ${ }^{\text {a }}$
External	35 mV p-p. ${ }^{\text {a }}$
TV FIELD	$\geqslant 1$ division of composite sync. ${ }^{\text {a }}$
B Trigger Sensitivity (Internal Only)	10 MHz $\mathbf{6 0 ~ M H z}$ 100 MHz 0.35 div 1.0 div 1.5 div
EXT INPUT Maximum Input Voltage	$400 \mathrm{~V}(\mathrm{dc}+$ peak ac$)$ or 800 V ac p-p at 10 kHz or less. ${ }^{\text {a }}$ See Figure 1-1 for maximum input voltage vs frequency derating curve.
Input Resistance	$1 \mathrm{M} \Omega \pm 2 \%{ }^{\text {a }}$
Input Capacitance	$20 \mathrm{pF} \pm 2.5 \mathrm{pF} .^{\text {a }}$
AC Coupled Lower Cutoff Frequency	10 Hz or less at $-3 \mathrm{~dB} \mathrm{a}^{\text {a }}$
LEVEL Control Range A Trigger (NORM) INT	May be set at any voltage level of the trace that can be displayed. ${ }^{\text {a }}$
EXT, DC	At least $\pm 1.6 \mathrm{~V}, 3.2 \mathrm{~V}$ p-p.
EXT, DC $\div 10$	At least $\pm 16 \mathrm{~V}, 32 \mathrm{~V}$ p-p. ${ }^{\text {a }}$
B Trigger (Internal)	May be set at any point of the trace that can be displayed. ${ }^{\text {a }}$
VAR HOLDOFF Control (NON STORE Holdoff)	Increases NON STORE A Sweep holdoff time by at least a factor of $10 .{ }^{\text {a }}$ STORE holdoff is a function of microprocessor activity and the pretrigger acquisition. The VAR HOLDOFF control maintains some control over the STORE holdoff by preventing a new trigger from being accepted by the storage circuitry until the next (or current, if one is in progress) NON STORE holdoff has completed.
Acquisition Window Trigger Point PRETRIG	Seven-eighths of the waveform acquisition window is prior to the trigger (other trigger points are selectable via the MENU).
POST TRIG	One-eighth of the waveform acquisition window is prior to the trigger (other trigger points are selectable via the MENU).

[^3]Table 1-1 (cont)

Characteristics	Performance Requirements
HORIZONTAL DEFLECTION SYSTEM	
NON STORE Sweep Rates Calibrated Range A Sweep	0.5 sec per division to $0.05 \mu \mathrm{~s}$ per division in a 1-2-5 sequence of 22 steps. ${ }^{\text {c }}$
B Sweep	50 ms per division to $0.05 \mu \mathrm{~s}$ per division in a 1-2-5 sequence of 19 steps. ${ }^{\text {c }}$
STORE Mode Ranges REPETITIVE	$0.05 \mu \mathrm{~s}$ per division to $2 \mu \mathrm{~s}$ per division. ${ }^{\text {a, } \mathrm{d}}$
RECORD	$5 \mu \mathrm{~s}$ per division to 50 ms per division. ${ }^{\text {a, d }}$
ROLLISCAN	0.1 s per division to 5 s per division (A sweep only) ${ }^{\text {a, d }}$
NON STORE Accuracy $\begin{aligned} & +15^{\circ} \mathrm{C} \text { to }+35^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \end{aligned}$	Unmagnified Magnified Within $\pm 2 \%$ Within $\pm 3 \%$ Within $\pm 3 \%$ Within $\pm 4 \%$ a Sweep accuracy applies over the center eight divisions. Exclude the first 40 ns of the sweep for magnified sweeps and anything beyond the 100th magnified division.
STORE Accuracy	See Horizontal Differential Accuracy and Cursor Time Difference Accuracy. ${ }^{\text {a }}$
NON STORE Sweep Linearity	$\pm 5 \%$ Linearity measured over any two of the center eight divisions. Exclude the first 25 ns and anything past the 100th division of the X10 magnified sweeps.
Digital Sample Rate SAMPLE ($5 \mu \mathrm{~s} / \mathrm{div}$ to $5 \mathrm{~s} / \mathrm{div}$)	Single Trace CHOP/ALT $\frac{100}{\text { SEC/DIV }} \mathrm{Hz}^{\mathrm{a}}$ $\frac{50}{\text { SEC/DIV }} \mathrm{Hz}^{\mathrm{a}}$
PEAKDET or ACCPEAK ($20 \mu \mathrm{~s} / \mathrm{div}$ to $5 \mathrm{~s} / \mathrm{div}$)	$10 \mathrm{MHz}^{\mathrm{a}} \quad 10 \mathrm{MHz}^{\mathrm{a}}$ (50% duty factor on each channel in CHOP)
REPETITIVE Store $0.05 \mu \mathrm{~s} / \mathrm{div}$ to $1 \mu \mathrm{~s} / \mathrm{div}$ $2 \mu \mathrm{~s} / \mathrm{div}$	$20 \mathrm{MHz}^{\mathrm{a}}$ $20 \mathrm{MHz}^{\mathrm{a}}$ $10 \mathrm{MHz}^{\mathrm{a}}$ $10 \mathrm{MHz}^{\mathrm{a}}$
External Clock Input Frequency	Up to 1 kHz .
Digital Sample Rate	10 MHz in ACCPEAK and PEAKDET, otherwise it is equal to the input frequency. ${ }^{\text {a }}$
Store Rate	One data pair for every second falling edge. ${ }^{\text {a }}$
Duty Cycle	10\% or greater ($100 \mu \mathrm{~s}$ minimum hold time). ${ }^{\text {a }}$
Ext Clock Logic Thresholds	TTL Compatible. ${ }^{\text {a }}$
Maximum Safe Input Voltage	25 V (dc + peak ac) or 25 V p-p ac at 1 kHz or less. ${ }^{\text {a }}$
Input Resistance	$>20 \mathrm{k} \mathrm{R}^{\text {a }}$

[^4]Table 1-1 (cont)

Characteristics	Performance Requirements
STORE Mode Dynamic Range	10.24 divisions ${ }^{\text {a }}$
STORE Mode Resolution Acquisition Record Length	1024 or 4096 data points. ${ }^{\text {a }}$
Single Waveform Acquisition Display	1024 data points (100 data points per division across the graticule area). ${ }^{\text {a }}$
CHOP or ALT Acquisition Display	512 data points (50 data points per division across the graticule area). ${ }^{\text {a }}$
Horizontal POSITION Control Range (NON STORE)	Start of the 10th division will position past the center vertical graticule line; 100th division in X10 magnified.
Horizontal Variable Sweep Control Range NON STORE	Continuously variable between calibrated settings of the SEC/DIV switch. Extends the A and the B Sweep speeds by at least a factor of 2.5 times over the calibrated SEC/DIV settings.
STORE	Horizontal Variable Sweep has no affect on the STORE Mode time base. Rotating the Variable SEC/DIV control out of the CAL detent position horizontally compresses a 4 K point acquisition record to 1 K points in length, so that the whole record length can be viewed on screen. Screen readout is altered accordingly.
Displayed Trace Length NON STORE	Greater than 10 divisions.
StORE	10.24 divisions. ${ }^{\text {a }}$
Delay Time $0.5 \mu \mathrm{~s}$ per division to 0.5 sec per division (A Sweep) Delay POSITION Range	Less than ($0.5 \mathrm{div}+300 \mathrm{~ns}$) to greater than 10 divisions. Delay Time is functional, but not calibrated, at A Sweep speeds faster than $0.5 \mu \mathrm{~s}$ per division.
NON STORE Delay Jitter	One part or less in $5,000(0.02 \%)$ of the maximum available delay time.
Delay Time Differential Measurement Accuracy (Runs After Delay only) $+15^{\circ} \mathrm{C} \text { to }+35^{\circ} \mathrm{C}$	$\pm 1 \%$ of reading, $\pm 0.3 \%$ of full scale (10 div).
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$\pm 2 \%$ of reading, $\pm 0.3 \%$ of full scale (10 div). ${ }^{\text {a }}$ Exclude delayed operation when the A and B SEC/DIV knobs are locked together at any sweep speed or when the A SEC/DIV switch is faster than $0.5 \mu \mathrm{~s}$ per division. Accuracy applies over the B DELAY TIME POSITION control range.

[^5]Table 1-1 (cont)

Characteristics	Performance Requirements
DIGITAL STORAGE DISPLAY	
Vertical	
Resolution	10 bits (1 part in 1024). ${ }^{\text {a }}$
	Display waveforms are calibrated for 100 data points per division.
Differential Accuracy	Graticule indication of the voltage cursor difference is within 2% of the readout value, measured over the center six divisions.
POSITION Range	Any portion of a stored waveform vertically magnified or compressed up to 10 times can be positioned to the top and to the bottom of the graticule area.
Position Registration	
NON STORE to STORE	Within ± 0.5 division at graticule center at VOLTS/DIV switch settings from 2 mV per division to 5 V per division.
CONTINUE to SAVE	Within ± 0.5 division at VOLTS/DIV switch settings from 2 mV per division to 5 V per division.
SAVE Mode Expansion or Compression Range	Up to 10 times as determined by the remaining VOLTS/DIV switch positions up or down.
	2 mV per division acquisitions cannot be expanded, and 5 V per division acquisitions cannot be compressed.
Storage Display Expansion Algorithm Error	$\pm 0.1 \%$ of full scale. ${ }^{\text {a }}$
Storage Display Compression Algorithm Error	+ 0.16% of reading $\pm 0.4 \%$ of full scale. ${ }^{\text {a }}$
Horizontal	
Resolution	10 bits (1 part in 1024). ${ }^{\text {a }}$
	Calibrated for 100 data points per division.
Differential Accuracy	Graticule indication of time cursor difference is within $\pm 2 \%$ of the readout value, measured over the center eight divisions.
SAVE Mode Expansion Range	
Expansion Accuracy	Same as the Vertical. ${ }^{\text {a }}$

${ }^{\text {a }}$ Performance Requirement not checked in Service Manual.

Table 1-1 (cont)

Characteristics	Performance Requirements
DIGITAL READOUT DISPLAY	
CURSOR Accuracy Voltage Difference	Within $\pm 3 \%$ of the ΔV readout value.
Time Difference RECORD or ROLLISCAN SAMPLE or AVERAGE	± 1 display interval. ${ }^{\text {a }}$
PEAKDET or ACCPEAK	± 2 display intervals.
REPETITIVE SAMPLE or AVERAGE	\pm (2 display intervals +0.5 ns).
ACCPEAK	$\pm(4 \text { display intervals }+0.5 \mathrm{~ns}) .^{\mathrm{a}}$ A display interval is the time between two adjacent display points on a waveform.
X-Y OPERATION (X1 MAGNIFICATION ONLY)	
Deflection Factors	Same as vertical deflection system with the VOLTS/DIV Variable controls in the CAL detent position.
NON STORE Accuracy $\begin{aligned} & \text { X-Axis } \\ & +15^{\circ} \mathrm{C} \text { to }+35^{\circ} \mathrm{C} \end{aligned}$	Measured with a dc-coupled, five-division reference signal. $\text { Within } \pm 3 \% \text {. }$
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	Within $\pm 4 \%$. ${ }^{\text {a }}$
Y-Axis	Same as vertical deflection system. ${ }^{\text {a }}$
NON STORE Bandwidth (-3 dB) X-Axis	Measured with a five-division reference signal. DC to at least 2.5 MHz .
Y-Axis	Same as vertical deflection system. ${ }^{\text {a }}$
NON STORE Phase Difference Between X-Axis and Y-Axis Amplifiers	± 3 degrees or less from dc to 150 kHz . $^{\text {a }}$ Vertical Input Coupling set to DC.
STORE Accuracy X-Axis and Y-Axis	Same as digital storage vertical deflection system. ${ }^{\text {a }}$
Useful Storage Bandwidth RECORD and REPETITIVE Store Modes	$\frac{5}{\text { SEC/DIV }} \mathrm{Hz}^{\mathrm{a}}$
STORE Mode Time Difference Between Y-Axis and X-Axis Signals RECORD, SCAN, and ROLL Modes	100 ns . The X-Axis signal is sampled before the Y-Axis signal. ${ }^{\text {a }}$
REPETITIVE Store	$\frac{\text { SEC/DIV }}{100} \times 4^{\mathrm{a}}$

[^6]Table 1-1 (cont)

Characteristics	Performance Requirements
PROBE ADJUST	
Output Voltage on PRB ADJ Jack	$0.5 \mathrm{~V} \pm 5 \%$.
Probe Adjust Signal Repetition Rate	$1 \mathrm{kHz} \pm 20 \%$. ${ }^{\text {a }}$
	Z-AXIS
Sensitivity (NON STORE Only)	5 V causes noticeable modulation. Positive-going input decreases intensity. Usable frequency range is dc to 20 MHz .
Maximum Input Voltage	$30 \mathrm{~V}\left(\mathrm{dc}+\right.$ peak ac) or 30 V p-p ac at 1 kHz or less. ${ }^{\text {a }}$
Input Resistance	$>10 \mathrm{k} \Omega$. ${ }^{\text {a }}$
POWER SUPPLY	
Line Voltage Range	90 Vac to $250 \mathrm{Vac} .^{\text {a }}$
Line Frequency	48 Hz to $440 \mathrm{~Hz} .^{\text {a }}$
Maximum Power Consumption	85 watts (150 VA). ${ }^{\text {a }}$
Line Fuse	$2 \mathrm{~A}, 250 \mathrm{~V}$, slow blow. ${ }^{\text {a }}$
Primary Circuit Dielectric Requirement	Routine test to $1500 \mathrm{Vrms}, 60 \mathrm{~Hz}$, for 10 seconds without breakdown. ${ }^{\text {a }}$
CRT DISPLAY	
Display Area	$8 \mathrm{~cm} \times 10 \mathrm{~cm} .^{\text {a }}$
Standard Phosphor	P31.a
Nominal Accelerating Voltage	$14 \mathrm{kV}{ }^{\mathrm{a}}$
X-Y PLOTTER OUTPUT	
Maximum Safe Applied Voltage, Any Connector Pin	25 V (dc + peak ac) or $25 \mathrm{Vp-p} \mathrm{ac} \mathrm{at} 1 \mathrm{kHz}$ or less. ${ }^{\text {a }}$
X and Y Plotter Outputs Pen Lift/Down	Fused relay contacts, 100 mA maximum. ${ }^{\text {a }}$
Output Voltage Levels	500 mV per division $\pm 10 \%$. Center screen is $0 \mathrm{~V} \pm 0.2$ division.
Series Resistance	$2 \mathrm{k} \Omega \pm 10 \%{ }^{\text {a }}$
4.2 V Output	$4.2 \mathrm{~V} \pm 10 \%$ through $2 \mathrm{k} \Omega .{ }^{\text {a }}$

${ }^{4}$ Performance Requirement not checked in Service Manual.

Table 1-2
Environmental Characteristics

Characteristics	Performance Requirements
Environmental Requirements	Instrument meets the requirements of Tektronix Standard 062 2853-00, Class 5, except EMI. The instrument meets the following MIL-T-28800C requirements for Type III, Class 5 equipment, except where noted otherwise.
Temperature Operating	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$.
Nonoperating	$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ to $\left.+167^{\circ} \mathrm{F}\right)$. Tested to MIL-T-28800C, para 4.5.5.1.3 and 4.5.5.1.4, except that in para 4.5.5.1.3 steps 4 and 5 are performed before step 2 ($-55^{\circ} \mathrm{C}$ nonoperating test). Equipment shall remain off upon return to room ambient temperature during step 6 . Excessive condensation shall be removed before operating during step 7.
Altitude Operating	To 4,500 meters (15,000 feet). Maximum operating temperature decreases $1^{\circ} \mathrm{C}$ per 1,000 feet above 5,000 feet.
Nonoperating	To 15,000 meters (50,000 feet).
Humidity Operating and Nonoperating	5 cycles (120 hours) referenced to MIL-T-28800C para 4.5.5.1.2.2 for Type III, Class 5 instruments. Operating and nonoperating at $95 \%,-5 \%$ to $+0 \%$, relative humidity. Operating, $+30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$; nonoperating, $+30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
EMI (electromagnetic interference)	Meets radiated and conducted emission requirements per VDE 0871, Class B. To meet EMI regulations and specifications, use the specified shielded cable and metal connector housing with the housing grounded to the cable shield on the AUXILIARY CONNECTOR.
Vibration Operating	15 minutes along each of three major axes at a total displacement of 0.015 inch p-p (2.4 g at 55 Hz) with frequency varied from 10 Hz to 55 Hz to 10 Hz in one-minute sweeps. Hold for 10 minutes at 55 Hz in each of the three major axes. All major resonances are above 55 Hz .
Shock Operating and Nonoperating	30 g , half-sine, 11 ms duration, three shocks per axis each direction, for a total of 18 shocks.

Table 1-3

Physical Characteristics

Characteristics	Description
Weight With Power Cord, Cover, Probes, and Pouch	See Figure $1-2$ for dimensional drawing.
With Power Cord Only	$9.4 \mathrm{~kg}(20.7 \mathrm{lb})$.
Domestic Shipping Weight	$8.2 \mathrm{~kg}(18 \mathrm{lb})$.
Height	$12.2 \mathrm{~kg}(26.9 \mathrm{lb})$.
Width	$137 \mathrm{~mm}(5.4 \mathrm{in})$.
With Handle Without Handle	$362 \mathrm{~mm}(14.3 \mathrm{in})$.
Depth	
With Front Cover	$327 \mathrm{~mm}(12.9 \mathrm{in})$.
Without Front Cover With Handle Extended	$445 \mathrm{~mm}(17.5 \mathrm{in})$.

Figure 1-1. Maximum input voltage vs frequency derating curve for $C H 1 O R X, C H 2 O R Y$, and EXT INPUT connectors.

Dimensions are in inches [mm]

Figure 1-2. Physical dimensions of the $\mathbf{2 2 3 0}$ Oscilloscope.

OPERATING INFORMATION

PREPARATION FOR USE

SAFETY

This part of the manual tells how to prepare for and to proceed with the initial start-up of the instrument.

Refer to the Safety Summary at the front of this manual for power source, grounding, and other safety considerations pertaining to the use of the instrument. Before connecting the oscilloscope to a power source, read entirely both this section and the Safety Summary.

LINE VOLTAGE

This instrument is capable of continuous operation with input voltages that range from 90 V to 250 V with source voltage frequencies from 48 Hz to 440 Hz .

POWER CORD

A detachable three-wire power cord with a threecontact plug is provided with each instrument for connecting to both the power source and protective ground. The power cord may be secured to the rear panel by a cord-set-securing clamp (see Figure 2-1). The protective-ground contact in the plug connects (through the protectiveground conductor) to the accessible metal parts of the instrument. For electrical-shock protection, insert this plug only into a power-source outlet that has a properly grounded protective-ground contact.

Instruments are shipped with the power cord specified by the customer. Available power-cord information is presented in Figure 2-2, and part numbers are listed in "Options and Accessories" (Section 7). Contact your Tektronix representative or local Tektronix Field Office for additional power-cord information.

Figure 2-1. Securing the detachable power-cord to the instrument.

| Plug | | | |
| :---: | :---: | :---: | :---: | :---: |
| Configuration | Usage | Line
 Voltage | Reference
 Standards |
| | North
 American
 $120 V$ | 120 V | ANSI C73.11
 NEMA5-15-P
 IEC 83 |

(2931-21)4204.53
Figure 2-2. Optional power-cord data.

LINE FUSE

The instrument fuse holder is located on the rear panel (see Figure 2-3) and contains the line-protection fuse. The following procedure may be used either to verify that the proper fuse is installed or to install a replacement fuse.

1. Unplug the power cord from the power-input source (if plugged in).
2. Press in the fuse-holder cap and release it with a slight counterclockwise rotation.
3. Pull the cap (with the attached fuse inside) out of the fuse holder.
4. Verify that the proper fuse is installed (see the rearpanel fuse nomenclature).

Figure 2-3. Fuse holder and detachable power-cord connector.
5. Reinstall the proper fuse in the fuse cap and replace the cap and fuse in the fuse holder by pressing in and giving a slight clockwise rotation of the cap.

INSTRUMENT COOLING

To prevent instrument damage from overheated components, adequate internal airflow must be maintained at all times. Before turning on the power, first verify that both the fan-exhaust holes on the rear panel and the air-intake holes on the side panel are free from any obstructions to airflow. After turning on the instrument, verify that the fan is exhausting air.

START-UP

The instrument automatically performs power-up tests of the digital portion of the circuitry each time the instrument is turned on. The purpose of these tests is to provide the user with the highest possible confidence level that the instrument is fully functional. If no faults are encountered during the power-up testing, the instrument will enter the
normal operating mode. If the instrument fails one of the power-up tests, the instrument attempts to indicate the cause of the failure.

If a failure of any power-up test occurs, the instrument may still be useable for some applications, depending on the nature of the failure. If the instrument functions for your immediate measurement requirement, it may be used, but refer it to a qualified service technician for repair of the problem at the earliest convenience. Consult your service department, your local Tektronix Service Center, or your nearest Tektronix representative if additional assistance is required.

REPACKAGING

If this instrument is shipped by commercial transportation, use the original packaging material. Unpack the instrument carefully from the shipping container to save the carton and packaging material for this purpose.

If the original packaging is unfit for use or is not available, repackage the instrument as follows:

1. Obtain a corrugated cardboard shipping carton having inside dimensions at least six inches greater than the instrument dimensions and having a carton test strength of at least 275 pounds.
2. If the instrument is being shipped to a Tektronix Service Center for repair or calibration, attach a tag to the instrument showing the following: owner of the instrument (with address), the name of a person at your firm who may be contacted if additional information is needed, complete instrument type and serial number, and a description of the service required.
3. Wrap the instrument with polyethylene sheeting or equivalent to protect the outside finish and prevent entry of packing materials into the instrument.
4. Cushion the instrument on all sides by tightly packing dunnage or urethane foam between the carton and the instrument, allowing for three inches of padding on each side (including top and bottom).
5. Seal the carton with shipping tape or with an industrial stapler.
6. Mark the address of the Tektronix Service Center and your return address on the carton in one or more prominent locations.

CONTROLS, CONNECTORS, AND INDICATORS

The following descriptions are intended to familiarize the operator with the location and function of the instrument's controls, connectors, and indicators.

POWER AND DISPLAY

Refer to Figure 2-4 for location of items 1 through 9.

Internal Graticule-Eliminates parallax viewing error between the trace and the graticule lines. Rise-time amplitude and measurement points are indicated at the left edge of the graticule.

POWER Switch—Turns instrument power on or off. Press in for ON; press again for OFF.
(3)

Power On Indicator-Lights up while instrument is operating.

FOCUS Control—Adjusts for optimum display definition. Once set, proper focusing is maintained over a wide range of display intensity.

STORAGE/READOUT INTENSITY Control-Adjusts the brightness of the STORE mode displayed waveforms and the readout intensity in both STORE and NON STORE mode. The fully counterclockwise position of the control toggles the STORE/NON STORE readout on and off.

BEAM FIND Switch-Compresses the vertical and horizontal deflection to within the graticule area and intensifies the display to aid in locating traces that are overscanned or deflected outside of the crt viewing area.

TRACE ROTATION Control-Permits alignment of the trace with the horizontal graticule line. This control is a screwdriver adjustment that, once set, should require little attention during normal operation.
(8) A INTENSITY Control-Adjusts the brightness of all NON STORE displayed waveforms. The control has no effect on the STORE mode displays or the crt readouts.
(9) B INTENSITY Control-Adjusts the brightness of the NON STORE B Delayed Sweep and the Intensified zone on the A Sweep. The control has no effect on STORE mode displays or crt readouts.

VERTICAL

Refer to Figure 2-5 for location of items 10 through 19.
(10) VOLTS/DIV Switches-Select the vertical channel deflection factors from 2 mV to 5 V per division in a $1-2-5$ sequence. The VOLTS/DIV switch setting for both channels is displayed in the crt readout. The VOLTS/DIV control settings for displayed waveforms containing cursor symbols are shown in the crt readout.

In STORE mode, SAVE waveforms and waveforms waiting to be updated between trigger events may be vertically expanded or compressed by up to a factor of 10 times (or as many VOLTS/DIV switch positions remaining-whichever is less) by switching the corresponding VOLTS/DIV control (waveforms acquired at $2 \mathrm{mV} / \mathrm{div}$ cannot be expanded and waveforms acquired at $5 \mathrm{~V} / \mathrm{div}$ cannot be compressed). The VOLTS/DIV readout reflects the vertical scale factor of the displayed waveform. If the VOLTS/DIV switch is switched beyond the available expansion or compression range, the readout is tilted to indicate that the VOLTS/DIV switch setting and the VOLTS/DIV readout no longer agree.

1X PROBE—Front-panel marking that indicates the deflection factor set by the VOLTS/DIV switch when a X1 probe or a coaxial cable is attached to the channel input connector.

10X PROBE-Front-panel marking that indicates the deflection factor set by the VOLTS/DIV switch when a properly coded 10X probe is attached to the channel input connector.

Figure 2-4. Power and display controls and power-on indicator.

Figure 2-5. Vertical controls and connectors.

If properly coded probes (1X, 10X, or 100X, see Table 2-1) are connected to a channel input connector, the crt VOLTS/DIV readout will reflect the correct deflection factor of the display.

Table 2-1 Probe Coding

Probe	Coding Resistance
1 X	Infinite
10 X	$11 \mathrm{k} \Omega \pm 10 \%$
100 X	$5.6 \mathrm{k} \Omega-10 \%$ to $6.2 \mathrm{k} \Omega+10 \%$
IDENTIFY	0Ω or none of the above

Variable VOLTS/DIV Controls-Provide continuously variable uncalibrated deflection factors between the calibrated positions of the VOLTS/DIV controls. The VOLTS/DIV sensitivity is reduced by up to at least 2.5 times the sensitivity at the fully counterclockwise position of the variable knob. A detent at the fully clockwise position indicates the calibrated VOLTS/DIV position of the variable knob. The uncalibrated condition is indicated by a greaterthan symbol ($>$) in front of the affected VOLTS/DIV readout.

AC-GND-DC (Input Coupling) Switches-Select the method of coupling the input signal to the CH 1 and CH 2 vertical amplifiers and the storage acquisition system.

AC-Capacitively couples the input signal to the vertical deflection and signal acquisition systems. The DC component of the input signal is blocked. The lower -3 dB bandpass is 10 Hz or less. Selection of AC input coupling is indicated in the readout by a tilde symbol (\sim) over the V on the associated channel's VOLTS/DIV readout.

GND-Grounds the input of the vertical amplifier; provides a zero (ground) reference voltage display (does not ground the input signal). In STORE mode, the ground reference is acquired and displayed in the first sample location of the acquisition waveform display. When GND input coupling is selected, a ground symbol is displayed in the associated VOLTS/DIV readout.

DC-All frequency components of the input signal are coupled to the vertical deflection and signal acquisition systems. When DC input coupling is selected, no additional indicators are displayed with the associated VOLTS/DIV readout.

CH 1 OR X and CH 2 OR Y Input ConnectorsProvide for application of signals to the inputs of the vertical deflection system and the storage acquisition system.

Coding-ring contacts on each of the input connectors are used to automatically switch the scale factor displayed by the crt readout when a properly coded probe is attached to the input connector. Displayed STORE mode waveforms are reformatted to maintain the correct deflection as indicated by the VOLTS/DIV readout on the affected channel(s). In X-Y mode, the signal connected to the $\mathrm{CH} 1 \mathrm{OR} X$ input controls the horizontal deflection, and the signal connected to the CH 2 OR Y input controls the vertical deflection.

CH 2 INVERT Switch—Inverts the Channel 2 display and STORE mode Channel 2 acquisition signal when pressed in. An invert symbol (\downarrow) is displayed with the CH 2 VOLTS/DIV readout when CH 2 is inverted. With CH 2 inverted, the oscilloscope may be operated as a differential amplifier when the Vertical MODE of BOTH-ADD is selected.
(15) VERTICAL MODE Switches-Select the mode of operation for the vertical amplifier. There are two three-position switches and one two-position switch that determine display and acquisition modes and one two-position push-button switch that controls the nonstore bandwidth.

CH 1-Selects only the Channel 1 input signal for acquisition or display.

BOTH—Selects a combination of Channel 1 and Channel 2 input signals for acquisition or display. The CH 1-BOTH-CH 2 switch must be in the BOTH position for ADD, ALT, and CHOP operation.

CH 2-Selects only the Channel 2 input signal for acquisition or display.

ADD-Displays (NON STORE) or acquires and then displays (STORE) the sum of the Channel 1 and Channel 2 input signals when BOTH is also selected. The difference of the Channel 1 and Channel 2 input signals is displayed (NON STORE) or acquired and then displayed (STORE) when the Channel 2 signal is inverted.

ALT-Alternately displays the nonstore Channel 1 and Channel 2 input signals. The nonstore alternation occurs during retrace at the end of each sweep. ALT Vertical MODE is most useful for
acquiring and viewing both channel input signals at sweep rates of 0.5 ms per division and faster. Channel 1 and Channel 2 STORE mode signals are acquired on alternate acquisition cycles at one-half the sampling rate of a single-channel acquisition.

CHOP-Switches the nonstore display between the Channel 1 and Channel 2 vertical input signals during the sweep. The chopped switching rate for NON STORE mode (CHOP frequency) is approximately 500 kHz . Chopped STORE mode signals are acquired on alternate time-base clock cycles with each channel being acquired at onehalf the sampling rate of a single-channel acquisition. In STORE mode at sweep speeds of $5 \mu \mathrm{~S}$ per division or faster, CHOP becomes ALT mode.

BW LIMIT Switch-When pressed in while in NON STORE mode, the bandwidth of the vertical amplifier system and the A Trigger system is limited to approximately 20 MHz . This reduces interference from unwanted high-frequency signals when viewing low-frequency signals. In STORE mode, pressing in the BW LIMIT switch reduces only the trigger bandwidth. Press the switch a second time to release the switch and regain full bandwidth.

X-Y Switch—Automatically selects X-Y mode when pressed in. The CH 1 input signal provides horizontal deflection for X - Y displays, and the CH 2 input signal provides vertical deflection. In STORE mode, CH 1 and CH 2 signals are acquired in a chopped manner with no more than 100 ns between corresponding sample points on opposite channels, with the CH 1 signal being sampled before the CH 2 signal. The sampling mode and sampling rate are controlied by the A or the B SEC/DIV switch (depending on the Horizontal Display mode). The X-Y waveform is acquired in SAMPLING mode and displayed with dots. Set the SEC/DIV controls to obtain at least 10 samples per cycle of the highest frequency component in both the X and the Y input signals. The sampling rate is determined by the formula 50/(SEC/DIV) Hz.

Vertical POSITION Controls-Control the vertical display position of the CH 1 and CH 2 signals.

In STORE mode, the controls determine the vertical position of displayed waveforms during acquisition and in SAVE mode. Any portions of a signal being acquired that are outside the dynamic range of the A/D converter are blanked when positioned on screen. The Vertical POSITION controls can also reposition a vertically expanded SAVE waveform so that portions of the waveform outside the graticule area can be observed.

In NON STORE X-Y mode, the CH 2 POSITION control vertically positions the display, the horizontal POSITION control positions the display horizontally, and the CH 1 POSITION control is not active. In STORE mode, the CH 1 POSITION control is active, and both it and the Horizontal POSITION control affect the horizontal position of the displayed waveform.

A/B SWP SEP Control (NON STORE only)—While in NON STORE mode, vertically positions the B Sweep trace with respect to the A Sweep trace when the HORIZONTAL MODE is BOTH.
(18) PRB ADJ Connector-Provides an approximately 0.5 V , negative-going, square-wave voltage (at approximately 1 kHz) for compensating voltage probes and checking the operation of the oscilloscope's vertical system. It is not intended to verify the accuracy of the vertical gain or the horizontal time-base circuitry.
(19) GND Connector-Provides an auxiliary ground connection directly to the instrument chassis via a banana-tip jack.

HORIZONTAL

Refer to Figure 2-6 for location of items 20 through 26.
(20) SEC/DIV Switches-Determine the SEC/DIV setting for both the NON STORE sweeps and the STORE mode waveform acquisitions. To obtain calibrated A and B NON STORE sweeps, the Variable SEC/DIV control must be in the CAL detent.

In STORE mode, the SEC/DIV switches determine the default acquisition and display modes, set the sampling rate, and establish the seconds-per-division scale factor of the displayed waveforms. The SEC/DIV parameters displayed on the crt readout are for the waveforms identified by CURSORS.

Table 2-2 lists the default Storage and Display modes with respect to the SEC/DIV switch setting and the selected Trigger mode. The default modes may be changed by selecting the Acq Mode Setup Table in the menu. Waveforms of SCAN, and ROLL displays are updated one data point at a time. All data points of a RECORD display are updated at the same time (total record replacement).

A SEC/DIV Switch-Selects the calibrated A Sweep rates from 0.5 s to $0.05 \mu \mathrm{~s} / \mathrm{div}$ in a 1-2-5 sequence of 22 steps for the A Sweep generator and sets the delay time scale factor for delayedsweep operation.

In STORE mode, the A SEC/DIV switch controls the default Storage, Acquisition, Process, and Display modes when making acquisitions using the A Time Base. It also selects the external clock signal, from the EXT CLK input, for the storage acquisition circuitry.

B SEC/DIV Switch-Selects the calibrated B Sweep rates from $50 \mathrm{~ms} /$ div to $0.05 \mu \mathrm{~s} / \mathrm{div}$ in a 1-2-5 sequence of 19 steps.

In STORE mode, the B SEC/DIV switch controis the default Storage, Acquisition, Process, and Display modes when making acquisitions using the B Horizontal mode.

UNTRIGGERED mode performs acquisitions without reference to the trigger circuit, and there is no trigger marker on the screen. Triggers are ignored in STORE mode at SEC/DIV settings of 5 s per division to 0.1 s per division under the following conditions:

ROLL is selected. Selecting ROLL forces the screen to continuously update as on a chart recorder. Triggers would stop the display. ROLL is operational at sweep speeds slow

Figure 2-6. Horizontal controls.

Table 2-2
Default Digital Storage Modes

	UN-TRIG ${ }^{\text {a }}$ 5 s to 0.1 s or EXT CLK	TRIG ${ }^{\text {b }}$ 5 s to 0.1 s or EXT CLK	SLOW RECORD $50 \mathrm{~ms} \text { to } 20 \mu \mathrm{~s}$	FAST RECORD $10 \mu \mathrm{~s}$ to $5 \mu \mathrm{~s}$	$\begin{aligned} & \text { REPETITIVE } \\ & 2 \mu \mathrm{~s} \text { to } 0.05 \mu \mathrm{~s} \end{aligned}$
SAMPLE ${ }^{\text {c }}$	OFF	OFF	OFF	ON	OFF
AVERAGEC	-	OFF	OFF	OFF	ON
ACCPEAK ${ }^{\text {c }}$	-	OFF	OFF	OFF	OFF
PEAKDETC	ON	ON	ON	-	-
SMOOTH ${ }^{\text {d }}$	ON	ON	ON	OFF	OFF
VECTORS	ON	ON	ON	ON	DOTS only

esee the "UNTRIGGERED" discussion.
bSee the "TRIGGERED" discussion.
©These Storage modes are mutually exclusive.
dWorks with ACCPEAK and PEAKDET only.
enough that the acquisition can manually be stopped when events of interest are observed.

P-P AUTO is selected. P-P AUTO provides a baseline in the absence of triggers from the input signal. The circuit considers the absence of triggers to be about half of a second without a trigger. Below 50 ms per division, the triggers are prevented for longer than that by the sweep time itself, therefore triggers are ignored.

TRIGGERED mode performs triggered acquisitions in STORE mode at SEC/DIV settings of 5 s per division to 0.1 s per division when triggers can be meaningful. Triggers are meaningful in SCAN mode if the A TRIGGER mode is NORM or SGL SWP. Triggers are not meaningful in ROLL mode or in the A TRIGGER Mode of P-P AUTO.

REPETITIVE Store mode ($2 \mu \mathrm{~S} /$ div to $0.05 \mu \mathrm{~S} / \mathrm{div}$) requires a repetitive trigger signal. Sampling occurs at the maximum A/D conversion rate. If a control affecting an acquisition parameter or function is changed, the acquisition is reset, and the waveform being acquired is cleared on the next sample acquired. On each valid trigger, 10 or more equally spaced samples are acquired and displayed on the waveform record, depending on the SEC/DIV setting (see Table 2-3). The random time delay from the trigger to the following sample clock transition is measured by the Clock Delay Timer circuit and used to place the acquired waveform samples in the correct display memory location. Any display location is equally likely to be filled. Table 2-3 gives the statistically expected number of trigger events required to completely fill the display, assuming a uniform distribution of trigger events relative to the sample interval.

FAST RECORD Storage mode ($5 \mu \mathrm{~S} /$ div to $10 \mu \mathrm{~s} / \mathrm{div}$) updates a full record of the acquired waveform.

SLOW RECORD Storage mode ($20 \mu \mathrm{~s} / \mathrm{div}$ to $50 \mathrm{~ms} / \mathrm{div}$) updates a full record of the acquired waveform.

SCAN Storage mode (for NORM TRIGGER mode and $0.1 \mathrm{~s} / \mathrm{div}$ to $5 \mathrm{~s} /$ div or EXT CLOCK) updates pretrigger data when a trigger is received. The waveform display then scans to the right from the trigger point to finish the post-trigger acquisition and then freezes.

SCAN Storage mode (for P-P AUTO TRIGGER mode with auto triggers disabled and $0.1 \mathrm{~s} /$ div to 5 s/div or EXT CLOCK) continuously updates the display serially as each data point is acquired. It writes over previous data from left to right.

ROLL Storage mode (P-P AUTO TRIGGER mode and $0.1 \mathrm{~s} /$ div to $5 \mathrm{~s} /$ div or EXT CLOCK) continuously acquires and displays signals. Triggers are disabled. The waveform display scrolls from right to left across the crt with the latest samples appearing at the right edge of the crt.

SCAN-ROLL-SCAN Storage mode (SGL SWP TRIGGER mode and $0.1 \mathrm{~s} / \mathrm{div}$ to $5 \mathrm{~s} /$ div or EXT CLOCK) serially updates the display. The waveform display SCANS left to right until the pretrigger record is filled, and then ROLLS right to left until a trigger is received. It then SCANS left to right again to fill the post-trigger acquisition record and then freezes (see SGL SWP description for further details).

PEAKDET Acquisition mode digitizes and stores, in acquisition memory as a data pair, the minimum and maximum levels of the input signal within the time represented by $1 / 50$ of a division UN-MAG ($1 / 25$ division in CHOP or ALT).

SAMPLE samples the signal at a rate that produces 100 samples per graticule division. In the RECORD Sampling modes, the displayed sample points are displayed by vectors or dots. For REPETITIVE Store mode, the sample points are displayed as dots.

Table 2-3
Repetitive Store Sampling Data Acquisition

SEC/DIV Switch Setting	Samples Per Acquisition		Expected Acquisitions Per Waveforma	
	1K Mode	4K Mode	1 Channel	2 Channels
$0.05 \mu \mathrm{~S}$	10	40	519	450
$0.1 \mu \mathrm{~S}$	20	80	225	191
$0.2 \mu \mathrm{~s}$	40	160	96	83
$0.5 \mu \mathrm{~S}$	100	400	30	23
$1 \mu \mathrm{~S}$	200	800	12	11
$2 \mu \mathrm{~S}$	200	800	12	11

${ }^{\text {a }}$ Expected acquisitions per waveform for a $\mathbf{5 0 \%}$ probability of fill.

AVERAGE Acquisition mode can be used for multiple record averaging. A normalized algorithm is used for continuous display of the signal at full amplitude during the averaging process. The amplitude resolution increases with the number of weighted acquisitions included in the display. The default mode for REPETITIVE Store mode is AVERAGE. The averaging weight (the number of weighted waveform acquisitions included in each average display) is MENU selectable. The default average weight is $1 / 4$. The number of sweeps (SWP LIMIT) allowed to occur before averaging stops is also MENU selectable. The averaging process is reset by changing any control that causes an acquisition reset.

ACCPEAK Acquisition mode causes accumulation of peaks over multiple acquisitions. The largest maximum and smallest minimum samples are retained for each trigger-referenced acquisition record. For $20 \mu \mathrm{~s}$ per division to 5 s per division, hardware peak detection is used, updating maximum and minimum samples within each time base clock period. The ACCPEAK display is reset by changing any control that causes an acquisition reset. ACCPEAK mode is valid for triggered acquisitions only and is not operational in untriggered modes (see Table 2-2).

SMOOTH Processing mode reorders acquired data for correct slope and interpolates the data for drawing a smooth waveform. Smoothing looks at the change in data point values between adjacent sample intervals. If the change in value does not exceed certain limits, the values are interpreted as a continuous slope for drawing vectors or dots. If the value change exceeds the interpreted "no-change" limit, the data point value is not modified, and the vectors drawn in the display will show a discontinuity in the waveform. This method of display of the waveform data provides a smoothed display of the waveform, yet retains the glitch-catching capabilities of PEAKDET or ACCPEAK modes.
(21) STORE Mode A SEC/DIV Multiplier-Functions only in the STORE mode at SEC/DIV switch settings of $0.1,0.2$, and $0.5 \mathrm{~s} / \mathrm{div}$. When pressed in, the A Sweep time base of these three settings is increased by a factor of 10 to $1 \mathrm{~s} / \mathrm{div}, 2 \mathrm{~s} / \mathrm{div}$, and $5 \mathrm{~s} / \mathrm{div}$. Releasing the button returns the STORE mode time base to X 1 . The X 10 MAG control is still functional on waveforms acquired at the slow STORE mode SEC/DIV settings.

Variable SEC/DIV and 4K COMPRESS ControlControls the NON STORE sweep time per division and compresses STORE mode waveform records.

> Variable SEC/DIV-Continuously varies the uncalibrated NON STORE sweep time per division to at least four times the calibrated time per division set by the SEC/DIV switch (increases the slowest NON STORE A Sweep time per division to at least 2 s). The Variable SEC/DIV control does not affect the storage time base for acquiring or displaying signals.

4K COMPRESS-If the Variable SEC/DIV control is rotated out of the CAL detent position during waveform acquisitions or SAVE mode, a 4 K record is compressed by a factor of four (4 K COMPRESS) to display the acquired data in one display window. For 4 K COMPRESS the SEC/DIV is further multiplied by 4. In PEAKDET or ACCPEAK acquisition modes, peaks are acquired but not displayed when 4K COMPRESS is selected.
(23) X10 Magnifier Switch-Magnifies the NON STORE displays or expands the STORE acquisition and SAVE waveform displays by 10 times. STORE mode displays are expanded when the Variable SEC/DIV knob is pulled to the out position (X10 PULL). The SEC/DIV scale factor readouts are adjusted to correspond to the correct SEC/DIV of the displayed waveform (either NON STORE or STORE). Magnification of the NON STORE displays occurs around the center vertical graticule division; STORE mode displays are expanded around the active CURSOR. The display window for STORE mode X10 expanded waveforms may be positioned using the CURSORS Control to view any one-window portion of the acquisition record.
(24) HORIZONTAL MODE Switch-Determines the operating mode of the horizontal deflection system in both NON STORE and STORE. For STORE mode, the switch selects the acquisition time base and storage mode (either A SEC/DIV or B SEC/DIV).

A-Only the A Sweep is displayed. NON STORE time base and STORE acquisitions are controlled by the A SEC/DIV switch. The A SEC/DIV switch setting is displayed on the crt readout.

BOTH-Alternates the NON STORE display between the A Intensified and B Delayed Sweeps.

The STORE mode display is the A Intensified trace only. The intensified zone on the A trace indicates the approximate delay position and length of the B Delayed Sweep. The displayed position of the intensified zone is updated after each trigger. The A SEC/DIV, B SEC/DIV, and B DELAY TIME POSITION settings are displayed on the crt readout. In BOTH, STORE mode acquisitions are controlled by the A SEC/DIV switch.

B-Displays either the NON STORE or the STORE B Sweep trace. The A SEC/DIV, B SEC/DIV, and B DELAY TIME POSITION settings are displayed on the crt readout, just as in BOTH. The STORE mode waveform acquisitions are controlled by the B SEC/DIV switch.
(25) B delay time position Control-Adjusts the delay between the start time of the A Sweep and the time that the B Sweep either starts (RUNS AFTER DLY) or can be triggered (Triggerable After Dly). (The A Sweep does not have to be displayed.) The delay time is variable from 0.5 to 10 times the A SEC/DIV, plus 300 ns .

In Triggerable After Delay, the delay time readout indicates the time that must elapse after the A trigger before the delayed sweep or delayed acquisition can be triggered; not the actual position of the trigger point. However, the readout of the delay time on the crt follows the setting of the B DELAY TIME POSITION control in either B Trigger mode.

The setting of the $1 \mathrm{~K} / 4 \mathrm{~K}$ switch affects the delay time position setting for STORE mode displays by a factor of approximately four times. When switching between 1 K and 4 K record lengths, the delay time position setting must be readjusted to obtain the same delay time.

Horizontal POSITION Control-Positions all the NON STORE waveforms horizontally over a one-sweep-length range (either X1 or X10 Magnified). Using the Horizontal POSITION control, STORE mode waveforms may be positioned over a range of only one display window. When a STORE mode acquisition display is longer than one screen (as in 4 K records and/or X10 MAG), the CURSORS POSITION control is used to position the display window to any position of the acquisition record. The Horizontal POSITION control does not position the crt readout displays.

TRIGGER

Refer to Figure 2-7 for location of items 27 through 38.

NOTE

The Trigger controls affect the acquisition of the next waveform. They are inactive in SAVE Acquisition mode.
(27) A TRIGGER Mode Switches-Determine the NON STORE A Sweep triggering mode. STORE mode triggering depends on the position of the A SEC/DIV, the SCAN/ROLL switch, and the A Trigger mode. The trigger position is marked by a T on acquired waveforms.

Figure 2-7. Trigger controls, connector, and indicator.

NORM—Permits triggering at all sweep rates (an autotrigger is not generated in the absence of an adequate trigger signal). NORM Trigger mode is especially useful for low-frequency and low-repetition-rate signals.

In STORE mode, the last acquired waveform is held on display between triggering events. The pretrigger portion of the acquisition memory is continually acquiring new pretrigger data until a trigger event occurs. How the waveform display is updated after the trigger occurs, depends on the SEC/DIV setting. From 5 s per division to 0.1 s per division, the pretrigger portion of the displayed waveform is updated by the pretrigger data in the acquisition memory, then the posttrigger data points are placed in the display as they are acquired. For faster sweep speeds, the post-trigger data points are acquired in the acquisition memory prior to completely updating the waveform display, using the newly acquired data.

P-P AUTO-TV LINE-In NON STORE mode, triggering occurs on trigger signals having adequate amplitude and a repetition rate of about 20 Hz or faster. In the absence of a proper trigger signal, an autotrigger is generated, and the sweep free runs.

In STORE mode, for SEC/DIV settings of 5 s per division to 0.1 s per division, the P-P AUTO trigger mode is disabled, and the acquisition freeruns. At faster SEC/DIV settings, triggered acquisitions occur under the same conditions as NON STORE mode P-P AUTO triggering, and the acquisition free-runs if proper triggering conditions are not met. The manner in which the display is filled and updated is the same as for NORM triggering.

For either NON STORE or STORE mode, the range of the A TRIGGER LEVEL control is automatically restricted to the peak-to-peak limits of the trigger signal for ease in obtaining triggered displays and acquisitions. P-P AUTO is the usual Trigger mode selection to obtain stable displays of TV Line information.

TV FIELD-Permits stable triggering on a television field (vertical sync) signal when the P-P AUTO and the NORM Trigger buttons are pressed in together. In the absence of an adequate trigger signal, the sweep (or acquisition) free-runs. The instrument otherwise behaves as in P-P AUTO.

SGL SWP—Arms the A Trigger circuit for a single sweep in NON STORE or a single acquisition in STORE. Triggering requirements are the same as in NORM Trigger mode. After the completion of a triggered NON STORE sweep or a STORE SGL SWP acquisition, pressing in the SGL SWP button rearms the trigger circuitry to accept the next triggering event or start the next storage acquisition.

In STORE mode, when the SGL SWP is armed, the acquisition cycle begins, but the READY LED does not come on until the pretrigger portion of the acquisition memory is filled. At the time the READY LED comes on, the acquisition system is ready to accept a trigger. When a trigger event occurs, the post-trigger waveform data is stored to complete the single-sweep acquisition. After the acquisition is completed, the READY LED goes out, and the single sweep can be rearmed.

The SEC/DIV switch setting and the STORE mode determine how the display is updated. For settings of 5 s per division to 0.1 s per division, a storage process known as SCAN-ROLL-SCAN is used. The last acquired waveform is erased when SGL SWP is armed, then the pretrigger acquisition scans from the left edge to the trigger position. At that point, the pretrigger portion of the display is rolled left from the trigger position until a triggering event occurs. Upon receiving an adequate trigger, the post-trigger portion of the display scans from the trigger point to the right until the remaining data points are filled, and then the display freezes.

For SEC/DIV settings of 0.05 s per division and faster, the display is updated as a full record. The previously displayed waveform remains on the crt until the post-trigger portion of the acquisition memory is filled after a triggering event. Then the waveform display is updated with the newly acquired data in its entirety.
(28) READY-TRIG'D Indicator-A dual-function LED indicator. In P-P AUTO and NORM Trigger modes, the LED is turned on when triggering occurs. In SGL SWP Trigger mode, the LED turns on when the A Trigger circuit is armed, awaiting a triggering event, and turns off again after the single sweep (or acquisition) completes.

In STORE mode, pressing the SGL SWP button to arm the trigger circuitry does not immediately turn on the READY LED. The pretrigger portion of the acquisition memory starts filling after the SGL SWP
button is pressed in; the READY LED is turned on when the filling is completed. The storage acquisition system is then ready to accept a triggering event. The READY LED is turned off after an acquisition is completed.
(29) A TRIGGER LEVEL Control-Selects the amplitude point on the A Trigger signal that produces triggering. The trigger point for STORE mode is identified by a T on the acquired waveform.
(30) HF REJECT Switch—Rejects (attenuates) the highfrequency components (above 40 kHz) of the trigger signal when the control is in the ON posiltion.
(31) A TRIGGER SLOPE Switch-Selects either the positive or negative slope of the trigger signal to start the NON STORE A Sweep or to reference the next STORE mode acquisition cycle.
(32) A\&B INT Switch-Determines the source of the internal trigger signal for both the A and the B Trigger Generator circuits.

CH 1-Trigger signal is obtained from the CH 1 input.

VERT MODE-Trigger signal is obtained alternately from the CH 1 and CH 2 input signals if the VERTICAL MODE is ALT. In the CHOP VERTICAL MODE, the trigger signal is the sum of the CH 1 and CH 2 input signals.

CH 2-Trigger signal is obtained from the CH 2 input. The CH 2 INVERT switch also inverts the polarity of the internal CH 2 trigger signal so the displayed slope agrees with the Trigger SLOPE switch.
(33) A SOURCE Switch-Determines if the SOURCE of the A Trigger signal is internal, external, or from line.

INT—Routes the internal trigger signal selected by the A\&B INT switch to the A Trigger circuit.

LINE—Routes a sample of the ac power source to the A Trigger circuit.

EXT—Routes the signal applied to the EXT INPUT connector to the A Trigger circuit.
(34) A EXT COUPLING Switch—Determines the method of coupling the signal applied to the EXT INPUT connector to the input of the A Trigger circuit.

AC-Input signal is capacitively coupled, and the dc component is blocked.

DC-All frequency components of the external signal are coupled to the A Trigger circuit.

DC $\div 10$-Attenuates the external signal by a factor of 10 before application to the A Trigger circuit. As with DC COUPLING, all frequency components of the input signal are passed.
(35) EXT INPUT Connector-Provides for connection of external signals to the A Trigger circuit.

36 B TRIGGER (INT SOURCE ONLY) SLOPE Switch-Selects either the positive or the negative slope of the B Trigger signal that starts the NON STORE sweep or completes the STORE acquisition.
(37) B TRIGGER LEVEL Control-Selects the amplitude point on the B Trigger signal where triggering occurs in Triggerable After Delay mode. The B Trigger point is displayed as a T on the STORE mode waveform display when in B Horizontal mode. The fully clockwise position of the B TRIGGER LEVEL Control selects the Runs After Delay mode of operation for the B Trigger circuitry. Out of the cw position, B Sweep is triggerable after the delay time.
(38) VAR HOLDOFF Control-Adjusts the NON STORE Variable Holdoff time over a 10 to 1 range. NON STORE Variable Holdoff starts at the end of the A Sweep. STORE mode Holdoff starts at the end of the acquisition cycle, and ends after the waveform data has been transferred from the acquisition to the display memory and the pretrigger portion of the acquisition memory has been filled. After STORE mode Holdoff ends, the next acquisition can be triggered after the next (or current, if one is in progress) NON STORE Variable Holdoff ends. STORE mode Holdoff may be many times the length of the A Sweep time so that several NON STORE Holdoffs may occur during STORE Holdoff time. This ensures that STORE mode triggering is controllable by the VAR HOLDOFF control and will be stable if the NON STORE display is stable.

STORAGE CONTROLS

See Figure 2-8 for the location of items 38 through 42.

STORE/NON STORE Switch-Selects either the NON STORE or the STORE waveforms for display. The STORE acquisition system is turned off while NON STORE is selected, keeping the last-acquired STORE waveform in memory. Selects NON STORE when out and STORE when pressed in.

ACQUISITION Controls-Determine the method of acquiring and displaying the acquired STORE waveform.

1K/4K Switch (Record Length)-Selects an acquisition record length of either one screen (1K) or four screens (4K). Pressing the button in selects 1 K record length, and pressing it again to release it returns to 4 K record length acquisitions. In either case, the displayed waveform has 100 data points per horizontal graticule division (50 if two channels are acquired).

When a waveform is acquired using the B time base, switching between record lengths also changes the delay time position setting by the same factor of four. The B DELAY TIME POSITION control must be repositioned to obtain the same delay.

When the 4 K record length is selected, a onescreen (1 K) window of the acquisition is displayed, and a bar graph is used to indicate the position of the displayed window within the record. Turn the CURSORS Position control to move the display window to any position within the record.

The 4 K acquisition record can be compressed to a length of 1 K by rotating the Variable SEC/DIV
control out of the CAL detent position. The SEC/DIV readout is adjusted to reflect the correct time per division of the displayed waveform. The acquisition record may be magnified using the X10 Magnifier.

PRETRIG/POST TRIG Switch—Positions the trigger point for acquisitions either near the end (PRETRIG) or the beginning (POST TRIG) of the waveform. A T is displayed on the waveform to indicate the trigger point. Pressing the button in sets the trigger point to PRETRIG; out is the POST TRIG position.

ROLL/SCAN Switch-Selects either ROLL or SCAN acquisition and display mode. When pressed in (ROLL mode), at SEC/DIV switch settings from 0.1 s per division to 5 s per division the triggers are disabled for NORM and P-P AUTO Trigger modes, and the signals are continuously acquired and displayed. The waveform display scrolls from right to left across the crt with the latest samples appearing at the right edge of the crt. At SEC/DIV switch settings from 0.1 s per division to 5 s per division in SGL SWP Trigger mode, SCAN/ROLL/SCAN storage mode is selected.

At SEC/DIV switch settings of 0.05 s per division and faster, the ROLL/SCAN switch is not functional, and waveform samples require a triggering event to complete the acquisition before the display is updated.

When the ROLL/SCAN switch is in the out position (SCAN mode), the A TRIGGER Mode controls are functional. For NORM Trigger mode, the pretrigger waveform is updated by the trigger and the post trigger scans from the trigger position to the right. For SGL SWP, SCAN mode is overridden by SCAN/ROLL/SCAN. Triggers are disabled in P-P AUTO and TV FIELD Trigger modes.

Figure 2-8. Storage controls.

SAVE/CONTINUE Switch-Stops the current acquisition and display update in progress when pressed in. Pressing the SAVE/CONTINUE switch a second time releases it and restarts (CONTINUE) the acquisition process. If the SEC/DIV switch setting is 0.1 s per division or slower, the SAVE state is entered immediately upon pressing the button. At SEC/DIV settings of 50 ms per division and faster, if an acquisition has been triggered, the acquisition is allowed to complete before the SAVE state is entered.

The pretrigger portion of an untriggered acquisition stops filling in SAVE mode. When leaving SAVE, a new acquisition is started, and a trigger is not accepted until the pretrigger portion again refills.

CURSORS Controls-These controls apply to all displayed STORE mode waveforms. Delta Volts, Delta Time, One Over Delta Time, and Delay Time measurements of the STORE displays are made using the CURSORS controls. Positioning of the display window within a 4 K acquisition record length is done using the CURSORS Position control. See the "Crt Readout" description for the cursor readout display.

POSITION CURS/SELECT WAVEFORM

Switch-Determines the function of the CURSORS Position control. When pressed in (POSITION CURSORS mode), the CURSORS Position control functions as a cursor horizontal positioning control. When the push button is in the out position (SELECT WAVEFORM mode), the CURSORS Position control or the C1/C2 switch may be used to position the cursor to the desired waveform(s).

CURSORS Position Control-Provides for either horizontal positioning of the active cursor (or active cursors when there are two waveforms displayed in a display set) or for switching the cursors between waveform display sets. When cursors are positioned to a new waveform set, they return to the position that they had when they were last on that waveform set. Cursor positioning continues to function during SAVE mode, and measurements can be made on any displayed waveform. When an acquisition control is changed, the cursors return to the acquisition waveform set.

Cursors are placed on all waveforms in a display set. A display set is one or both waveforms from the following: Acquisition, CH 1 and CH 2 ; Reference 1, CH 1 and CH 2; Reference 2, CH 1 and

CH 2 ; and Reference 3, CH 1 and CH 2. Cursors move to the acquisition waveform if they were on a SAVE REF waveform that is turned off. The acquisition parameters of the waveform set in which the cursors are located are displayed in the crt readout. Cursors movable by the CURSORS Position control are enclosed in a box.

When the displayable acquisition record length is greater than one screen, a one-screen window of the record is displayed. A bar graph indicates the position of the display window within the acquisition record. The position of the display window is adjusted to provide a display of the cursor position. If the displayed cursor is positioned to either edge of the display window, further positioning starts the waveform display scrolling in the opposite direction as the display-window position moves. Display-window positioning can be continued to the ends of the record, allowing observations and measurements to be made over the entire acquisition record.

SELECT C1/C2 (Cursor-Select) Switch—In Position CURS mode this switch selects the cursor(s) that can be positioned by the CURSORS Position control. Cursors are activated alternately with each press of the C1/C2 button. Each selected cursor is enclosed in a box. In Select Waveform mode, pressing the C1/C2 switch moves the cursor set between displayed waveforms.

MEMORY and Menu Controls-These switches control MENU operation while the MENU is displayed, and they control the storage and display of the SAVE Reference waveforms when the MENU is not displayed.

WAVEFORM REFERENCE/MENU SELECT

 Switch-Selects either the MENU or SAVE REF MEMORY displays. In Waveform Reference mode, the MEMORY switches control the Save Reference Memory. In MENU mode, the MEMORY switches control the Menu, allowing selection of alternate parameters and modes that override the default front-panel settings.SAVE REF MEMORY CONTROL-When the WAVEFORM REFERENCE/MENU SELECT switch is in the WAVEFORM REFERENCE position (button in), the MEMORY switches control the Save Reference Memory.

SAVE REF $/ \rightarrow$ Switch—Pressing this button just prior to pressing one of the DISPLAY ON/OFF buttons writes the displayed acquisition waveform into the selected Save

Reference memory. The written waveform remains displayed on the crt. A control change or a delay of five seconds between pressing the SAVE REF button and selecting a memory location cancels the SAVE request.

In 4K acquisition mode, a choice may be made to save the entire 4 K acquisition or the 1 K display window. To save a 4 K acquisition, press SAVE REF, then press DISPLAY ON/OFF 1 twice. The 4 K record fills MEMORY 1, 2, and 3. To save only the 1 K displayed window, press SAVE REF, then press DISPLAY ON/OFF 1, then DISPLAY ON/OFF 2. The 1 K display window may also be saved in MEMORY 2 or 3 by pressing SAVE REF, then the desired DISPLAY ON/OFF button.

Menu Select/DISPLAY ON/OFF
Switches-These buttons select one of three memories that is either written to for saving a 1 K acquisition waveform (if SAVE REF has been pressed) or toggles the reference memory display on or off (if the SAVE button has not been pressed). The stored waveforms of all three memories can be displayed at the same time. Two channels acquired in CHOP or ALT may be stored in a SAVE REF memory.

MENU CONTROL—When the WAVEFORM REFERENCE/MENU SELECT switch is in the MENU SELECT position (button out), the MEMORY switches control Menu Operation. Waveforms are only displayed with menus when a menu choice requires a waveform be displayed in order to perform the selected change. The Menu allows selection of alternate parameters and modes that override the default front-panel settings.

SAVE REF $/ \rightarrow$ Switch-When pressed, the next (to the right) Menu level is entered.

Menu Select/DISPLAY ON/OFF

Switches-These three buttons select choices presented in the MENU. The + button recalls the previous (to the left, higher) Menu level. The \uparrow button selects the previous entry in the current Menu level. The \downarrow button selects the next entry in the current Menu level.

MENU SELECTED FUNCTIONS

This part describes the Menu selected functions that provide selection of parameters, settings, and features not controlled by the front-panel switches.

ACQ MODE SETUP TABLE

ACQ MODE SETUP TABLE controls the acquisition mode setup using a table.

SELECT MODE—Displays the acquisition modes in a table. The desired modes for each sweep speed may be selected using the SEC/DIV switch to select the column, the CURSORS Position control selects the row, and the SELECT C1/C2 switch toggles the choice for the table position that is enclosed in a box.

SWP LIMIT-Selects the number of acquisitions before the acquisition system halts. SWP LIMIT may be reset by changing any control that affects acquisition parame-
ters.

WEIGHT-Selects the weight of the last sample in AVERAGE mode.

A TRIG POS

A TRIG POS selects the number of points acquired prior to or following the trigger.

DISPLAY

DISPLAY controls the selection of display parameters.

DELTA T MODE—Selects either DELTA TIME or ONE OVER DELTA TIME for display in the readout.

VECTORS ON/OFF-Selects either DOTS or VECTORS as the waveform display mode. Vectors are not allowed in REPETITIVE mode.

SMOOTH ON/OFF-Selects the process with which the vector displays are produced when in PEAKDET or ACCPEAK.

With SMOOTH OFF, no reordering of the data points is done, and vectors are drawn between all of the minimum and maximum data points.

With SMOOTH ON, data points are reordered for correct slope and interpolated for drawing a smooth waveform. Smoothing looks at the change in value of
reordered data points between adjacent sample intervals. If the change in value does not exceed certain limits, the values are interpreted as a continuous slope for drawing either vectors or dots. If the value change exceeds the interpreted "no-change" limit, the data point value is not modified, and the vectors drawn in the display show a discontinuity in the waveform. This method of display of the waveform data provides a smoothed display of the waveform, yet retains the glitch-catching capabilities of PEAKDET or ACCPEAK modes.

DEFAULT

Selects the default acquisition modes for all sweep speeds (see Table 2-2 for the default modes).

FORMATTING

FORMATTING selects a SAVE REF memory for formatting. The vertical gain, horizontal gain, and vertical position of the selected reference waveform may be changed. The acquisition mode used to store the waveform may also be displayed.

TARGET REFERENCE-Selects one of the SAVE REF memories for formatting.

VGAIN-Allows adjustment of the vertical gain of SAVE REF memories.

VPOSITION—Allows adjustment of the vertical position of SAVE REF memories.

HMAG-Turns X10 horizontal magnification of SAVE REF memories on or off.

MODE—Displays the parameters used to acquire a SAVE REF memory.

PLOT

PLOT controls the transmission of waveforms over the X-Y Plotter output.

START-Initiates the transmission of a waveform over the X-Y Plotter output.

GRATICULE ON/OFF—Enables or disables plotting of the graticule.

SET UP-Allows calibration of analog plotter gain and offset.

SPEED-Allows selection of plotter pen speed.

ADVANCED FUNCTIONS

REFERENCE-Allows a SAVE REF memory to be Erased or Copied when one of the communication options is installed.

ERASE-Selects and erases a nonvolatile SAVE REF memory.

COPY-Selects and copies one nonvolatile SAVE REF memory to another SAVE REF memory.

COMM-Allows the selection of parameters for optional communications options, when they are present.

ACQ MODE SETUP TREE-Controls the acquisition mode setup using a tree. This provides control of the same functions as the ACQ MOD SETUP TABLE.

DEFAULT-Selects the default acquisition modes for all sweep speeds (see Table 2-2 for the default modes).

REPETITIVE-Selects the acquisition modes for sweep speeds from 0.05μ s to 2μ s per division.

FAST RECORD-Selects the acquisition modes for sweep speeds from 5μ s to 10μ s per division.

SLOW RECORD-Selects the acquisition modes for sweep speeds from $20 \mu \mathrm{~s}$ to 50 ms per division.

SLOW TRIGGERED-Selects the triggered acquisition modes for sweep speeds from 0.1 to 5 s per division or EXT CLOCK.

SLOW UNTRIGGERED-Selects the untriggered acquisition modes for sweep speeds from 0.1 to 5 s per division or EXT CLOCK.

DIAGNOSTICS-Controls the selection of diagnostic TESTS, EXERCISERS, and PICTURES.

Acquisition Modes

PEAK DETECT (PEAKDET) and SAMPLE—Select how samples are processed on successive acquisitions. See Table 2-2 for the default modes set by the SEC/DIV switch.

In Peak Detect mode, the minimum and maximum levels of the input signal within the time represented by $1 / 50$ of a division unmagnified (1/25 of a division in CHOP or ALT) are digitized and stored in acquisition memory as a data pair. The displayed data points are connected by vectors.

In Sample mode, the signal is sampled at a rate that produces 100 samples per graticule division. In RECORD sampling, the displayed sample points are connected by either vectors or dots. For REPETITIVE Storage mode, the sample points are displayed as dots.

ACCPEAK-Will cause displays to accumulate. The largest maximum and smallest minimum sample acquisitions are retained for each trigger-referenced sample record over multiple acquisition cycles. When ACCPEAK is used with hardware peak detection ($50 \mu \mathrm{~s}$ per division to 0.1 s per division), updating of maximum and minimum samples also occurs within each timebase clock period. Changing any switch that affects the acquisition parameters resets ACCPEAK displays. ACCPEAK mode is valid for triggered acquisitions only and is not operational in any mode that does not allow triggers (see Table 2-2).

AVERAGE-Is used for multiple record averaging. Whenever AVERAGE is selected, SAMPLING is also selected automatically. When on, a normalized algorithm is used for continuous display of the signal at full amplitude during the averaging process. Averaging is the default for REPETITIVE Store mode only. The amplitude resolution increases with the number of weighted acquisitions included in the display. The number of weighted acquisitions included in the AVERAGE display is Menu selectable. The default weight of AVERAGE mode is $1 / 4$. Other choices are Menu selectable. The number of sweeps (SWP LIMIT) allowed to occur before averaging stops is also Menu selectable.

REAR PANEL
Refer to Figure 2-9 for location of items 43 through 45.

EXT Z-AXIS Input Connector-Provides an input connector allowing external signals to be applied to the Z-Axis circuit to intensity modulate the NON STORE waveform display. Applied signals do not affect the display waveshape. External signals with fast rise and fall times provide the best defined intensity modulation. Noticeable intensity modulation is produced at normal viewing intensity levels by a 5 V p-p signal. The Z-Axis signals must be timerelated to the trigger signal to obtain a stable intensity-modulation pattern on the displayed waveform.

Figure 2-9. Rear Panel.
(44) Fuse Holder-Contains the ac-power-source fuse. See the rear panel nomenclature for fuse rating and line voltage range.
(45) Detachable Power Cord Receptacle—Provides the connection point for the ac-power source to the instrument.

SIDE PANEL

The standard side panel includes one AUXILIARY CONNECTOR. Refer to Figure 2-10 for the location of item 46.
(46) AUXILIARY CONNECTOR—Provides connections for an X-Y Plotter and an External Clock input (see Table 2-4).

NOTE

To meet EMI regulations and specifications, use the specified shielded cable and metal connector housing with the housing grounded to the cable shield for connections to the AUXILIARY CONNECTOR.

Figure 2-10. Side Panel.

X-Y Plotter Connections-Provide connections for X-Axis output, Y-Axis output, and Pen Lift control to drive an external X-Y Plotter. All displayed waveforms and the crt readout are transmitted over the Plotter Interface. The settling time allowed for each movement is approximately proportional to the distance of the movement. Connections for Signal Ground and Shield Ground are also provided for grounding between the instrument and the external X-Y Plotter. Waveforms and the Readout are plotted on the crt while a plot is in progress.

To be fully compatible, the X-Y Plotter used must have X and Y inputs with sensitivity control and penlift control.

Signals available at the AUXILIARY CONNECTOR allow the Pen Lift circuit to be wired for a plotter with either active HI or active LO drive requirements and several logic families. Examples for both an active HI and an active LO TTL drive are shown in Figure 2-11.

EXT CLK Input—Provides an input for EXT CLOCK signals (up to 1000 samples per second) to the storage acquisition circuitry in conjunction with the EXT CLK position of the A SEC/DIV switch. Samples are referenced by falling edges. Input is TTL compatible. Samples become visible by pairs, as SCAN or ROLL. Several clocks are required before the point associated with the first clock is visible.

Table 2-4
Auxiliary Connector

Pin Number	Function
1	EXT CLK Input
2	Pen Lift, Normally Closed
3	X Output
4	SHIELD GND
5	Y Output
6	+4.2 V
7	Pen Lift, Normally Open
8	Pen Lift, Relay Common
9	SIG GND

CRT READOUT

The Readout System provicies an alphanumeric display of information on the crt along with the waveform displays. The readout (non MENU) is displayed in three rows of characters. Two rows are within the top graticule division, and the other row is within the bottom graticule division. The locations and types of information displayed under normal operating modes are illustrated in Figure 2-12.

NON STORE Mode

In NON STORE mode the current settings of the VOLTS/DIV and SEC/DIV switches are displayed. Greater-than symbols ($>$) are used to indicate uncalibrated VOLTS/DIV and SEC/DIV switch settings. A down-arrow symbol (1) is used in front of the CH 2 VOLTS/DIV readout to indicate CH 2 INVERT. For Horizontal Display Mode of BOTH and B only, the DELAY TIME POSITION readout is also displayed. The AC-GND-DC input coupling selection is indicated in the associated VOLTS/DIV readout with a tilde symbol (\sim) above the volts symbol for AC, a ground symbol (1) for GND, and no extra symbol for DC input coupling.

Figure 2-11. X-Y Plotter interfacing.

STORE Mode

In STORE mode, many of the crt readout displays are associated with the parameters of stored waveforms.

PARAMETER READOUT. Displays the VOLTS/DIV, SEC/DIV and B DELAY TIME settings of the displayed waveforms on which the cursors are placed. The AC-GND-DC input coupling selection is indicated in the associated VOLTS/DIV readout with a tilde symbol () above the volts symbol for AC, a ground symbol (\pitchfork) for GND, and no extra symbol for DC input coupling. If the VOLTS/DIV switch is switched beyond the available expansion or compression range, the readout is tilted, indicating that the VOLTS/DIV switch setting and the VOLTS/DIV readout no
longer agree. In 4K COMPRESS, a c is displayed in front of the SEC/DIV readout.

CURSOR READOUT. Displays the voltage difference (either $\Delta V 1$ or $\Delta V 2$) and the time difference between cursors. When either BOTH or B HORIZONTAL mode is selected, the DELAY TIME POSITION is displayed. Independent fields for CH 1 VOLTS/DIV, CH 2 VOLTS/DIV, A SEC/DIV, and B SEC/DIV are provided. When making ground referenced voltage measurements (ground dot displayed and cursor on ground dot) the Δ symbol is replaced by a ground symbol (\dagger).

When the acquisition record length is longer than one screen, a bar graph is used to indicate the position of the display window within the acquisition record.

Figure 2-12. Crt readout display.

OPERATING CONSIDERATIONS

This part contains basic operating information and techniques that should be considered before attempting to make any measurements with the instrument.

GRATICULE

The graticule is internally marked on the faceplate of the crt to eliminate parallax-viewing errors and to enable measurements (see Figure 2-13). The graticule is marked with eight vertical and ten horizontal major divisions. In addition, each major division is divided into five subdivisions. The vertical deflection factors and horizontal timing are calibrated to the graticule so that accurate measurements can be made directly from the crt. Also, percentage marks for the measurement of rise and fall times are located on the left side of the graticule.

Figure 2-13. Graticule measurement markings.

GROUNDING

The most reliable signal measurements are made when the oscilloscope and the unit under test are connected by a common reference (ground lead) in addition to the signal lead or probe. The probe's ground lead provides the best grounding method for signal interconnection and ensures the maximum amount of signal-lead shielding in the probe cable. A separate ground lead can also be connected from the unit under test to the oscilloscope GND receptacie located on the oscilloscope's front panel.

SIGNAL CONNECTIONS

Probes

Generally, the accessory probes supplied with the instrument provide the most convenient means of connecting a signal to the vertical inputs of the instrument. The probe and probe lead are shielded to prevent pickup of electromagnetic interference, and the 10X attenuation factor of the probe offers a high input impedance that minimizes signal loading in the circuitry under test. The attenuation factor of the standard accessory probe is coded so that the VOLTS/DIV readout seen on the crt is automatically switched to the correct scale factor when the probe is attached.

Both the probe itself and the probe accessories should be handled carefully at all times to prevent damage to them. Avoid dropping the probe body. Striking a hard surface can cause damage to both the probe body and the probe tip. Exercise care to prevent the cable from being crushed or kinked. Do not place excessive strain on the cable by pulling.

The standard-accessory probe is a compensated 10 X voltage divider. It is a resistive voltage divider for low frequencies and a capacitive voltage divider for highfrequency signal components. Inductance introduced by either a long signal or ground lead forms a series-resonant circuit. This circuit will affect system bandwidth and will ring if driven by a signal containing significant frequency

Operating Information-2230 Service

components at or near the circuit's resonant frequency. Oscillations (ringing) can then appear on the oscilloscope waveform display and distort the true signal waveshape. Always keep both the ground lead and the probe signalinput connections as short as possible to maintain the best waveform fidelity.

Misadjustment of probe compensation is a common source of measurement error. Due to variations in oscilloscope input characteristics, probe compensation should be checked and adjusted, if necessary, whenever the probe is moved from one oscilloscope to another or between channels. See the probe compensation procedure in "Operator's Check and Adjustments", or consult the instructions supplied with the probe.

Coaxial Cables

Cables may also be used to connect signals to the vertical input connectors, but they may have considerable effect on the accuracy of a displayed waveform. To maintain the original frequency characteristics of an applied signal, only high-quality, low-loss coaxial cables should be used. Coaxial cables should be terminated at both ends in their characteristic impedance. If this is not possible, use suitable impedance-matching devices.

INPUT-COUPLING CAPACITOR PRECHARGING

When the Input Coupling switch is set to the GND position, the input signal is connected to ground through the input-coupling capacitor and a high resistance value. This series combination forms a precharging circuit that allows the input-coupling capacitor to charge to the average dc voltage level of the signal applied to the input connector. Thus, any large voltage transients that may accidentally be generated are not applied to the vertical amplifier's input when the input coupling is switched from GND to AC. The precharging network also provides a measure of protection to the external circuitry by reducing the current level that is drawn from the external circuitry while the inputcoupling capacitor is charging.

If AC input coupling is in use, the following procedure should be followed whenever the probe tip is connected to a signal source having a different dc level than that previously applied. This procedure becomes especially useful if the dc-level difference is more than ten times the VOLTS/DIV switch setting.

1. Set the AC-GND-DC (input coupling) switch to GND before connecting the probe tip to a signal source.
2. Touch the probe tip to the oscilloscope GND connector.
3. Wait several seconds for the input-coupling capacitor to discharge.
4. Connect the probe tip to the signal source.
5. Wait several seconds for the input-coupling capacitor to charge to the dc level of the signal source.
6. Set the AC-GND-DC switch to AC. A signal with a large dc component can now be vertically positioned within the graticule area, and the ac component of the signal can be measured in the normal manner.

OPERATOR'S CHECKS AND ADJUSTMENTS

To verify the operation and basic accuracy of your instrument before making measurements, perform the following checks and adjustment procedures. If adjustments are required beyond the scope of these operator's checks and adjustments, refer the instrument to qualified service personnel.

For new equipment checks, before proceeding with these instructions, refer to "Preparation for Use" in this manual to prepare the instrument for the initial start-up before applying power.

INITIAL SETUP

1. Verify that the POWER switch is OFF (switch is in the out position), then plug the power cord into the ac power outlet.
2. Press in the POWER switch (ON) and set the instrument controls to obtain a baseline trace:

Display

A and B INTENSITY	Midrange
STORAGE/READOUT	
INTENSITY	Midrange (with READOUT on)
FOCUS	Best defined display

Horizontal

HORIZONTAL MODE	A
A SEC/DIV	0.5 ms
Var Sec/Div	CAL (in detent)
POSITION	Midrange
X10 Mag B DELAY TIME	Off (Var Sec/Div knob in)
POSITION	

Triggers

VAR HOLDOFF	NORM (fully counterclockwise)
A\&B INT	VERT MODE
A SOURCE	INT
A Mode	P-P AUTO
A LEVEL	For a stable display
	(with signal applied)
A SLOPE	OUT (plus-button out)
B LEVEL	B RUNS AFTER DELAY
	(fully clockwise)
B SLOPE	OUT (plus-button out)
HF REJECT	OFF (fully counterclockwise)

Storage

STORE/NON STORE SAVE/CONTINUE PRETRIG/POST TRIG ROLLISCAN $1 \mathrm{~K} / 4 \mathrm{~K}$ POSITION CURS/
SELECT WAVEFORM WAVEFORM REFERENCE/MENU SELECT

NON STORE (button out) CONTINUE (button out) POST TRIG (button out) SCAN (button out) 4K (button out)

POSITION CURS (button in)
WAVEFORM REFERENCE (button in)
3. Adjust the INTENSITY and FOCUS controls for the desired display brightness and best focused trace.
4. Adjust the Vertical and Horizontal POSITION controls to position the trace within the graticule area.
5. Allow the instrument to warm up for 20 minutes before commencing the adjustment procedures. Reduce the INTENSITY levels during the waiting time.

TRACE ROTATION ADJUSTMENT

 NOTE

 NOTE}

Normally, the trace will be parallel to the center horizontal graticule line, and TRACE ROTATION adjustment is not required.

1. Preset the instrument controls and obtain a baseline trace as described in "Initial Setup."
2. Use the Channel 1 POSITION control to move the baseline trace to the center horizontal graticule line.
3. If the baseline trace is not parallel to the center horizontal graticule line, use a small-bladed screwdriver or alignment tool to adjust the TRACE ROTATION control to align the trace with the graticule line.

PROBE COMPENSATION

Misadjustment of probe compensation is a source of measurement error. The attenuator probes are equipped with a compensation adjustment. To ensure optimum measurement accuracy, always check probe compensation before making measurements. Probe compensation is accomplished by:

1. Preset the instrument controls and obtain a baseline trace as described in "Initial Setup."
2. Connect the two 10 X probes (supplied with the instrument) to the CH 1 OR X and CH 2 OR Y input connectors. Observe that the CH 1 VOLTS/DIV readout changes from 5 mV to 50 mV when the 10 X probe is attached to the CH 1 OR X input.
3. Remove the hook tip from the end of each probe.

NOTE

While the probe tip is in the PRB ADJ connector, use care not to to break off the probe tip.
4. Insert the Channel 1 probe tip into the PRB ADJ connector.
5. Use the CH 1 POSITION control to vertically center the display. If necessary, adjust the A TRIGGER LEVEL control to obtain a stable display on the plus (OUT) SLOPE.
6. Check the waveform display for overshoot and rounding (see Figure 2-14); if necessary, use a smallbladed screwdriver to adjust the probe compensation for a square front corner on the waveform.
7. Remove the Channel 1 probe tip from the PRB ADJ connector.
8. Insert the Channel 2 probe tip into the PRB ADJ connector.
9. Set the VERTICAL MODE to CH 2.
10. Set the A TRIGGER A\&B INT switch to CH 2.
11. Use the CH 2 POSITION control to vertically center the display.
12. Check the waveform display for overshoot and rounding (see Figure 2-14); if necessary, use a smallbladed screwdriver to adjust the probe compensation for a square front corner on the waveform.

NOTE

Refer to the instruction manual supplied with the probe for more complete information on the probe and probe compensation.

Figure 2-14. Probe compensation.

HORIZONTAL ACCURACY CHECK

A check of the horizontal timing can be made using the time measurement capability of the CURSOR measurement mode:

1. Preset instrument controls and obtain a baseline trace as described in "Initial Setup".
2. Set:

CH 1 AC-GND-DC	GND
STORE/NON STORE	STORE (button in)
A SEC/DIV	1 ms
PRETRIG/POST TRIG	POST TRIG (button out)
POSITION CURS/	
SELECT WAVEFORM	POSITION CURS (button in)

3. Turn the Horizontal POSITION control to align the start of the trace to the first vertical graticule line.
4. Turn the Vertical POSITION control to align the baseline trace with the center horizontal graticule line.
5. Position the active cursor to the second vertical graticule line using the CURSORS Position control.
6. Push the SELECT $\mathrm{C} 1 / \mathrm{C} 2$ switch to activate the other cursor.
7. Position the active cursor to the tenth vertical graticule line using the CURSORS Position control for a spacing of eight divisions between cursors.
8. Check that the Delta Time readout is $\geqslant 7.84 \mathrm{~ms}$ and $\leqslant 8.16 \mathrm{~ms}$.
9. Verify that the CH 1 probe tip is in the PRB ADJ connector.
10. Set the CH 1 AC -GND-DC switch to $D C$.
11. Adjust the SEC/DIV switch setting for a display of at least one full period of the probe adjust signal (0.1 or 0.2 ms per division).
12. Use the Vertical and Horizontal POSITION controls to center the display.
13. Use the CURSORS Position control and the CURSORS SELECT C1/C2 button to align the cursors with the rising edges of the PRB ADJ signal (measurement is of the probe adjust signal period). Note the cursor time difference readout and the graticule measurement (horizontal distance between rising edges as taken from the graticule markings) of the signal for later reference.
14. Check that the cursor readout of the probe adjust signal period and the graticule measurement of the calibrator period are within $\pm 2 \%$.
15. Set the STORE/NON STORE switch to the NON STORE position (button out).
16. Determine the horizontal graticule measurement of the probe adjust signal period. Note the reading for later reference.
17. Check that the NON STORE Mode probe adjust signal period measurement obtained from the graticule markings is within $\pm 3 \%$ of the STORE Mode probe adjust signal period obtained in step 13.
18. Set the X10 MAG switch to on (pull Var Sec/Div knob out) and set the A SEC/DIV switch setting to obtain a display of at least one full period of the probe adjust signal (0.1 or 0.2 ms per division).
19. Check that the magnified NON STORE Mode probe adjust sugnal period measurement obtained from the graticule markings is within $\pm 4 \%$ of the STORE Mode probe adjust signal period obtained in step 13.

THEORY OF OPERATION

SECTION ORGANIZATION

This section contains a functional description of the 2230 Digital Storage Oscilloscope. The discussion begins with a summary of instrument functions. Following the general description, each major circuit is explained in detail. Functional block diagrams and schematic diagrams are used to show the interconnections between parts of the circuitry, to indicate circuit components, and to identify interrelationships with the front-panel controls.

Schematic diagrams and the overall block diagrams are located in the tabbed "Diagrams" section at the back of this manual. The schematic diagram associated with each description is identified in the text and indicated on the tab of the appropriate foldout page by a numbered diamond symbol. For best understanding of the circuit being described, refer to both the appropriate schematic diagram and the functional block diagram.

INTEGRATED CIRCUIT DESCRIPTIONS

Digital Logic Conventions

Digital logic circuits perform many functions within the instrument. Functions and operation of the logic circuits are represented by logic symbology and terminology. Most logic functions are described using the positive-logic convention. Positive logic is a system where the more positive of two levels is the TRUE (or 1) state; the more negative level is the FALSE (or 0) state. In this logic description, the TRUE state is HI, and the FALSE state is LO. The specific voltages which constitute a HI or a LO state vary between specific devices. For specific device characteristics, refer to the manufacturer's data book.

Linear Devices

The operation of individual linear integrated circuit devices is described in this section using waveforms or graphic techniques to illustrate their circuit action.

GENERAL DESCRIPTION

Introduction

In the following overall functional description of the instrument, refer to the basic block diagram, Figure 3-1, and to the detailed block diagrams located in the "Diagrams" section of this manual. Each major block in the diagram represents a major circuit within the instrument. in Figure 3-1, the numbered diamond symbol in each block indicates the schematic diagram number. Much of the analog portion of the oscilloscope operates without direction from the Microprocessor circuitry. These portions of the instrument are described first, with appropriate references to areas that either provide information to the Microprocessor or are controlled by the instrument's storage circuitry. The Microprocessor and Storage circuit descriptions follow the more conventional portions of the instrument's circuitry.

Vertical

Signals to be displayed on the crt (cathode-ray tube) are applied to either or both the $\mathrm{CH} 1 \mathrm{OR} X$ and the CH 2 OR Y input connectors. The signals may be coupled to the attenuator either directly (DC) or through an input-coupling capacitor (AC). The inputs may also be disconnected, and the input to the attenuators grounded, by switching to the GND position of the input coupling switch. In the GND position, the ac-coupling capacitor is allowed to precharge to the dc level present at the input connector. This precharging prevents large trace shifts of the display when switching from GND to AC coupling. The Attenuators are switched by the front-panel VOLTS/DIV switches and scale the applied signal level to obtain the desired display amplitude. Information about the Input Coupling switch and the channel VOLTS/DIV switch positions is read by the Microprocessor. These signals control the STORE mode ground-reference acquisition and the crt readout displays of the Input Coupling and VOLTS/DIV switch settings of the active channel(s).

Scaled output signals from the Attenuators are applied to the Vertical Preamplifiers for amplification. The Channel 2 Preamplifier has additional circuitry, permitting the operator to invert the Channel 2 display on the cathoderay tube (crt). Trigger pickoffs in each channel supply a

Figure 3-1. Simplified block diagram.
trigger signal to the Trigger Amplifier when internal triggering is selected. Other signal pickoffs provide vertical position information to the Position Signal Conditioning circuitry for vertically positioning the stored signal. The final stage of the Vertical Preamplifier for each channel provides one of two signals; either the vertical channel signal for the analog presentation on the crt or the vertical acquisition signal to be digitized by the storage circuitry.

Channel signals either for direct analog presentation on the crt or for application to the Storage digitizing circuitry are selected by the analog Channel Switch under control of the front-panel VERTICAL MODE switches. The switching signals from the Channel Switch Logic control a diode gate (Channel Switch) that selects the channel signal(s) to be applied to the Delay-line Driver. If ADD is selected, both channel signals are applied to the Delay-line Driver where the signals are summed together. The Delay-Line Driver provides the proper signal-driving level and impedance match to the Delay Line, where the vertical signal is delayed approximately 100 ns with respect to the trigger signal. The vertical signal delay allows time for the Horizontal circuitry to start the sweep before the vertical signal is applied to the crt.

Whenever STORE mode is selected, analog signals from the Storage circuitry are supplied to the Channel Switch circuit. Under control of the Channel Switch Logic, which is in turn switched by signals from the Display Controller, the analog display signal out of the final Vertical Preamplifier stage in each channel is biased off. The Channel 1 and Channel 2 Acquisition signals from the final preamplifiers are then biased on to pass the signals to be digitized to the Storage circuitry. At the same time, the Channel Switch (diode gate) is switched to pass the Storage vertical signal to the Delay Line Driver input.

Final amplification of the vertical signal (either STORE or NON STORE) is done by the Vertical Output Amplifier. This stage produces the signal levels that vertically deflect the crt electron beam. This amplifier stage also contains the vertical trace separation circuitry that separates the Nonstore A Intensified trace from the B Delayed trace when Alt Horizontal display mode is selected. The amount of trace separation is controlled using the front panel TRACE SEP knob. Another circuit feature in the Vertical Output Amplifier is the nonstore bandwidth limit (BW LIMIT) circuitry that follows the Delay Line. Either the full 100 MHz bandwidth or the limited 20 MHz bandwidth for the nonstore signal display may be selected. STORE mode signals are picked off in the Preamplifier and are not bandwidth limited by the BW LIMIT switch.

Triggering

The Triggering circuitry uses either the Internal Trigger signal obtained from the input signal(s), an External

Trigger signal, or a Line Trigger signal derived from the ac-power-source to develop trigger signals for the Sweep Generator. The Auto Trigger circuit sets the range of the Trigger Level to conform approximately to the peak-topeak amplitude of the selected trigger signal when either Auto or TV Field Trigger mode is selected. In Norm mode, the TRIGGER LEVEL control must be adjusted to the signal level before a sweep will be triggered. ROLL Storage (selectable at the slower sweep speeds in STORE mode) overrides the triggering circuit functions; a continuous signal acquisition is made and the signal displayed without the need of a trigger signal.

The triggering circuitry contains the TV Field Sync circuit. This circuit provides stable triggering on television vertical-sync pulses when in the TV Field triggering mode. TV Line triggering is possible using P-P AUTO trigger mode.

Signal pickoffs from the Internal Trigger circuitry provide the X -Axis signal for the nonstore X - Y display mode and the B trigger signal for triggered B Sweeps.

A Sweep

The A Sweep Generator and Logic circuits control the nonstore sweep generation and both the Store and the nonstore A Sweep timing. When the A TRIGGER mode switches are set to either P-P AUTO or TV FIELD and no trigger signal is present, the Auto Baseline circuit causes the Sweep Logic circuit to produce a sweep for reference purposes. In the NORM setting, the Auto Baseline circuit is disabled and nonstore sweeps are not generated until a trigger event occurs. NORM trigger mode is used to obtain stable triggering on low-repetition rate signals that do not provide a trigger before an auto baseline is generated. SGL SWP (single sweep) trigger mode allows only one sweep to be generated after being reset and is used to obtain the waveform from a one-shot event.

ROLL and SCAN Storage modes are useful in capturing low-frequency and low-repetition rate waveforms. In SCAN mode, receiving a trigger causes the pretrigger portion of the waveform to update as a block. The posttrigger waveform updates from the trigger point to the right edge of the screen as new data is acquired. ROLL Storage acquisitions differ from the Nonstore sweeps and SCAN Storage mode in that a trigger signal is not used for acquisition of the signal or displaying the waveform. The A Sweep Logic circuitry provides gating and holdoff signals used by the Storage circuitry to control its acquisition and display cycles for all storage modes, except ROLL.

The $\overline{\text { A Gate }}$ signal applied to the A Miller Sweep Generator circuit starts the Nonstore linear sweep with a ramp time that is controlled by the A SEC/DIV switch setting.

Switch position pickoffs supply the SEC/DIV switch setting information to the Microprocessor for use in STORE mode horizontal timing. The A SEC/DIV switch setting is also displayed on the crt for both Store and Nonstore operation.

B Sweep

The Alternate B Sweep Circuitry controls the Nonstore BOTH and B Delayed Horizontal mode displays. This circuitry includes the B Miller Sweep Generator and B Sweep Logic circuitry. STORE mode B timing is controlled by the B SEC/DIV switch. BOTH Horizontal mode is not available with STORE. In STORE mode, the BOTH selection displays an A Intensified Trace only. The intensified zone on the A trace indicates the position and approximate amount of the A trace that is displayed by the B Delayed Display.

Horizontal

Nonstore A and B Sweep signals (or the X-Axis signal from the $X-Y$ Amplifier in the nonstore $X-Y$ Display mode) are applied to the Horizontal Preamplifier where one is selected and amplified. Gain in the Preamplifier is switchable between X1 and X10. The X10 gain is used for Nonstore X10 Magnification. STORE mode X10 expansion is done digitally and reflected in the horizontal deflection signals supplied after the Horizontal Preamplifier. Horizontal positioning of both the Store and the nonstore display is done by applying a horizontal position dc offset to the Horizontal Preamplifier. The amplified nonstore horizontal signal is applied to the Horizontal Mux circuit where it is available for selection.

STORE mode horizontal deflection signals are also applied to the Horizontal Mux. Selection of either the nonstore sweep signals or the store deflection signals is done by control signals from the Channel Switch Logic in the Vertical circuitry. The selected horizontal deflection signals are then amplified by the Horizontal Output Amplifier to the levels needed to drive the crt's horizontal deflection plates.

Microprocessor

The Microprocessor (MPU) controls the digital storage and display sections of the oscilloscope. Under firmware control (firmware is the programmed instructions contained in read-only memory), the Microprocessor monitors the operation of the instrument and sets up the circuitry to perform as dictated by the front-panel control settings. Data transfer to and from the Microprocessor and address selection of a device to be communicated with are done over a 20 -line I/O bus. The lower eight lines (ADO through AD7) form a combined address/data bus while the remaining 12 lines (A8 through A19) are for addressing only. Timing for the execution of instructions, addressing, and data
transfers is provided by an external, crystal-controlled oscillator that drives the Microprocessor clock generator. The Microprocessor clock circuit further divides the input clock frequency to generate two lower clock frequencies. The clock circuit also generates the Ready and Reset control signals to the Microprocessor.

Storage front-panel control settings are passed to the Microprocessor via eight-bit bus drivers. Settings of the analog front-panel controls and switches are also provided to the MPU, but via different bus drivers. The Status ADC and Bus Interface circuitry provides the interfaces from the analog front-panel controls to the data bus.

Status ADC and Bus Interface

Switch settings and status bits are applied directly to bus drivers. Each data bit then corresponds to a switch setting (either open or closed) or a status bit logic level (either HI or LO). Analog front-panel information is multiplexed to an analog-to-digital converter where it is converted to a digital value and applied to a bus driver. When the Microprocessor reads the bus, it obtains a data byte that represents the position value for a single control rather than the switch or status data bits of the digitaltype information. The Microprocessor determines the control settings from the value of the data bytes or status bits received and sets up the digital storage circuits accordingly.

Storage Acquisition

Input signals to be digitized are selected by the Channel Switch. Either or both (for ADD) of the input signals picked off from the Vertical Preamplifier may be selected. The differential output signal from the Channel Switch is converted to a single-ended signal for application to the Sample-and-Hold amplifier. The input diode bridge in the Sample-and-Hold circuit is strobed to pass a sample of the signal to charge the hold capacitor. While the signal sample is held for conversion, the diode bridge is reverse biased, and the charge on the Hold capacitor remains at a fixed level. The sample buffer amplifier applies the voltage level on the Hold capacitor to the Analog-to-Digital Converter stage for conversion to an eight-bit digital signal. The output signals are then shifted from the emittercoupled logic (ECL) level obtained from the ADC to the transistor-transistor-logic level (TTL) and passed to the digitized signal bus for transfer to the Acquisition Memory.

Digital Acquisition

Digitized waveforms are transferred from the ECL-toTTL level shifters via the digitized data bus to the A / D Buffer of the Acquisition Memory circuit. The buffered data is applied to two identical registers; the Min Register and the Max Register. Data is alternately clocked into the registers by the MINCLK and MAXCLK clock signals. The
actual clocking that occurs depends on the sampling mode (Min/Max, Sampling, or X-Y). The same waveform data is also applied to opposite comparator inputs of two eight-bit magnitude comparators. Output data from the Min and Max Registers is applied to the other comparator's input pins, with the Min Register data going to the Min Comparator and the Max Register data going to the Max Comparator.

In Min/Max mode, the first data byte taken in a sample window (set by the SEC/DIV switch setting) is clocked into both registers. That data byte is then compared with the next data sample or samples (determined by the sample window) being applied to the inputs of the Min and Max Registers. If the data byte is either smaller in magnitude than the last clocked minimum or greater in magnitude than the last clocked maximum, a NEWMIN or a NEWMAX signal is generated. The signal is routed through the Min/Max Clock Selector back to the clock input of the Min or Max Register (Min if it is a new minimum amplitude or Max if it is a new Maximum amplitude) and the new signal is clocked into the register. At the end of a Min/Max sample window, the data present at the output of the Min and Max Registers is clocked into the Swap Registers to be transferred to the Acquisition Memory.

When record sampling mode is selected, each waveform sample is successively clocked into the Min and Max Registers on alternate ODDCLK and $\overline{O D D C L K}$ signals. When $X-Y$ mode is selected, the Channel 1 and Channel 2 waveforms are sampled in a chopped manner, with samples of the two channel signals being taken with less time between the samples than in normal record sampling mode. Channel 1 data is clocked into the Min Register, and Channel 2 data is clocked into the Max Register.

Four eight-bit Swap Registers are used to reorder the Max and Min data obtained from each sample window. The Max Register data is clocked into two of the registers in parallel, and the Min Register data is clocked into the other two registers in parallel. The Min and Max data output from one of the Swap Registers in each set of two is applied to two busses going to the Acquisition Memory. If the Max and Min data is to be reversed to maintain the correct time order of the samples before being stored, the alternate swap register in each set of two is enabled, and the Max and Min data is applied to the opposite busses to memory.

Acquisition mode is controlled in part by the Microprocessor via data latched into the Acquisition Mode Register (see also, "Time Base Mode Register" in this section). These data bits select the channel or channels to be acquired, enable the XY mode, enable MIN/MAX acquisition, control the Swap function for reordering data, and select the Test function for diagnostics. Acquisition clock
signals generated by the Acquisition Clock Decoder transfer the data from stage to stage in the digital acquisition circuitry in a pipe-line fashion.

A Diagnostics Code Generator is included as a troubleshooting aid. When in the Test mode, the A/D Buffer is disabled, and the Code Generator places its counteroutput bytes on the input bus to the Max and Min Registers.

Acquisition Memory

The Acquisition Memory is composed of two, 2-K by 8bit random-access memory devices. One memory stores the Odd data bytes and the other stores the Even data bytes. The Odd and Even data can be swapped between the Swap Registers and the Acquisition Memory.

A programmable address counter is loaded with the number that is the amount of pretrigger data bytes needed to fill the pretrigger portion of the waveform acquisition. The PREFULL signal is sent to the Trigger Mux circuitry when the pretrigger count is full. That signal enables the Trigger Mux circuitry to accept a trigger signal. The remaining output bits from the Address Counter select the storage location for waveform data storage in the Acquisition Memory.

When waveform data is to be read out of the Acquisition Memory, the Address Counter is loaded with the address of the data for the waveform. The Microprocessor sequences through the addresses reading out the data bytes. Data transceivers allow data to be read from the memory to the bus or written from the bus to the memory.

Memory Address Registers place the address count on the bus along with bits that indicate the trigger status (TRIGD), the B trigger status (BTRIGD), the end-of-record status (ENDREC), and the byte-interrupt status (BYTEINT). These accompanying bits are used in establishing display attributes.

Memory writes, memory reads, and address counter load enabling and clocking are controlled by a quad, two-line-to-one-line multiplexer (Memory Control). Read and write signals from the Microprocessor control bus and write clocks are used to transfer the waveform data between the devices.

Digital Time Base

An accurate frequency source for synchronizing the Microprocessor with the other digital devices on the bus is provided by a 40 MHz oscillator. That frequency is divided
down by the Clock Generator to produce the various clocking rates. The Time Base Mode Register latches control data bits from the Microprocessor data bus to set the operating mode of the time base. These control bits switch the Trigger Mux circuit to either A or B Trigger, enable the trigger logic circuit, switch the clock multiplexer to change the clocking rate, start a storage acquisition, and enable interrupts to the Microprocessor. The programmable Time Base Divider, under control of the Microprocessor via the Time Base Divider Register, generates a sampling rate that corresponds to the front-panel SEC/DIV switch setting.

A Clock multiplexer at the end of the Time Base Divider chain selects the output of the Time Base Divider, the $\overline{\text { WRITECLK, }}$ the CONV clock, or an external clock signal to generate the SAVECLK signal.

The Digital Time Base Trigger Logic circuit looks at whether the pretrigger data portion of the record has been filled. If the pretrigger portion is full, then the A or B Gate generates the trigger. When a trigger is generated in Repetitive Storage mode, the Clock Delay Timer measures the time delay between the arrival of the trigger and the convert clock. The time difference value is used by the Microprocessor to accurately position the acquired data with respect to the actual trigger point.

The delay difference between the start of the acquisition and the occurrence of the B trigger is also measured. This value is only used in BOTH HORIZONTAL MODE when running the B Horizontal display in Triggerable After Delay to provide a readout of the time delay between the A Trigger and the B Trigger points.

Acquisitions are counted to determine when a full record of data has been stored (ENDREC) and to keep track of the beginning and ending memory locations of the record. The Record Counter is also programmable to provide for the different record lengths for one-channel or two-channel acquisitions, different Pretrigger selections, and either $4 K$-byte or 1 K-byte record length.

Digital Display

A custom IC handles the digital display generation. The Display Controller functions as an interface between the processor bus, display memory (RAM), and vector generators to form waveform and character displays on the crt. The controller reads a display list from the Display Memory and drives X - and Y -Vector Generators to create the waveform and readout displays. Z-Axis control signals are also generated to drive the crt Z-Axis Amplifier for Stored waveform and Readout intensity control. Control signals to the Microprocessor and Display Memory are generated in response to a processor read/write request.

Digital-to-analog converters take the digital data bytes supplied from the Display Memory via the Display Controller and change them to the X - and Y -Axis analog signals that drive the Horizontal and Vertical Vector Generators. The vector signals are applied to the Horizontal and Vertical Output Amplifiers to produce the STORE mode deflection signals and NON STORE mode character readout.

The Display Memory is six 16-K \times 4-bit dynamic random access memories (RAM). Four of the RAMs provide the 8-bit data bytes of the stored waveform, and the remaining RAMs store each data-byte's intensity and Status attributes. A 4-bit word in each RAM is selected by latching a row address followed by a column address. Data is either stored or read out (as the operation in progress requires).

Vector Generator

X - and Y -Axis analog signals from the Digital Display are converted by the Vector Generators into the vector signals used to drive the crt deflection plates. Vector signals are produced for the stored waveforms, the menu displays, and the readouts. The Vector Generator is switched to the dot-display mode for equivalent-time sampling waveforms and $X-Y$ displays.

The X-Y Plotter driver circuit is included in this portion of the circuitry. When the X-Y Plotter is enabled, x-axis and y-axis signals are switched via the plot multiplexer to the x-axis and y-axis plot amplifiers. The VECT SMPL signal is switched via the same multiplexer to drive the PenDown amplifier.

Z-Axis

The Z-Axis Amplifier has input signals from multiple sources that control the crt intensity on a time-shared basis. Nonstore intensity signals are the level inputs from the A and B INTENSITY controls that are controlled by the Alternate Display switching and B Z-Axis Logic circuits. Additional Z-Axis drive current is supplied during the intensified portion of an A trace during the B Sweep when BOTH Horizontal display mode is selected. The remaining nonstore signals that have control of the display brightness are the EXT Z-AXIS INPUT signal, the CHOP mode blanking signal, and the $\overline{X Y}$ control signal. All of these sources are added to provide the time-shared nonstore displays.

For the Store waveform and the Menu and Readout character displays, an additional Z-Axis drive signal from the STORAGE/READOUT INTENSITY control is switched on and off by the Display Controller. The controller signals determine when the stored waveforms and the readout
characters are turned on and if any portions of the display will be intensified more than the rest. Further amplification of the combined signal sources provides the amplitude levels required to drive the crt.

The Z-Axis signal is applied to the crt DC Restorer circuit where it is shifted to the large negative potential used by the crt. The potential controls the amount of current supplied by the electron beam to the crt phosphors.

Power Supply

Operating potentiais for the instrument are obtained from a power supply that consists of the Preregulator, Inverter and Transformer, and Rectifiers and Filters. Approximately +42 V is supplied by the Preregulator to drive the 20 kHz Inverter stage through the Transformer primary windings. The transformer secondary windings produce the various ac levels that are rectified and filtered
to provide the supply voltages for the instrument's circuitry. A High Voltage Multiplier circuit produces the accelerating, focus, and cathode potentials used by the crt.

Probe Adjust

A front-panel PROBE ADJUST output is provided for use in adjusting probe compensation. The voltage at the PROBE ADJUST connector is a negative-going square wave that has a peak-to-peak amplitude of approximately 0.5 V with a repetition rate of approximately 1 kHz .

Communications Options

Options for this instrument provide a choice of either an IEEE-488 GPIB (General Purpose Interface Bus) or an RS-232-C serial output port. The options allow the transfer of stored waveforms and the control of certain instrument functions.

DETAILED CIRCUIT DESCRIPTION

The detailed circuit description of the 2230 first describes the analog operating portion of the oscilloscope followed by the digital portion. During the description of the analog circuitry, references are made to circuitry that either provides information to the Microprocessor or is controlled by the instrument's storage circuitry.

ANALOG CIRCUITRY

The instrument has full conventional oscilloscope capabilities with all the associated analog circuitry. Signal pickoff points and signal insertion points connect the analog portion of the instrument to the digital operating system to acquire and display the stored waveforms. The digital circuitry enhances the analog display by providing crt readouts of the VOLTS/DIV, SEC/DIV, and Delay Time Position control settings.

VERTICAL ATTENUATORS

The Channel 1 and Channel 2 Attenuator circuits, shown on Diagram 1, are identical with the exception of the additional Invert circuitry in the Channel 2 Paraphase Amplifier. Therefore, only the Channel 1 Attenuator is described, with the Invert circuitry of Channel 2 discussed separately.

The Attenuator circuit and switches (see Figure 3-2) provide control of the input coupling, the vertical deflection factor, and the variable volts/division gain. Vertical input signals for display on the crt or for acquisition by the storage circuitry may be connected to either or both the CH 1 OR X and the CH 2 OR Y input connectors. In the $X-Y$ mode of operation, the signal applied to the CH 1 OR X connector provides horizontal (X-axis) deflection for the display, and the signal applied to the CH 2 OR Y connector provides the vertical (Y-axis) deflection for the display.

Switch contacts on the A14 CH 1 Logic board are read by the Microprocessor to find the CH 1 VOLTS/DIV switch and Input Coupling switch settings. A switch contact associated with CH 1 CAL control R43 (Variable Volts/Div) is also read to see whether that control is in or out of the calibrated (CAL) detent.

Input Coupling (AC-GND-DC)

A signal from the CH 1 OR X input connector may be ac or dc coupled to the High-Impedance Attenuator circuit or disconnected completely by the Input Coupling Switch. Signals from the CH 1 OR X input connector are routed through resistor R1 to Input Coupling switch S1. When S1 is set for dc coupling, the Channel 1 signal goes directly to the input of the High-Impedance Attenuator stage. When

Figure 3-2. Block diagram of the Channel 1 Attenuator circuit.
ac coupled, the input signal must go through dc-blocking capacitor C2. The blocking capacitor stops the dc component of the input signal from reaching the Attenuator circuit. When switched into the signal path, attenuators AT1 and AT2 attenuate the input signal by factors of 100 and 10 respectively. When S 1 is set to GND, the input of the Buffer Amplifier is connected to ground. This provides a ground reference for the analog display and the Microprocessor without removing the applied signal from the input connector. The coupling capacitor precharges through R2, R4, and R8 to prevent large trace shifts when switching from GND to AC.

A probe coding ring on the CH 1 OR X input connector is used to read the attenuation factor of the attached probe to automatically adjust the VOLTS/DIV scale factors in the readout. The default setting is for X1 attenuation when either coaxial cables or uncoded probes are connected to the vertical inputs.

Buffer Amplifier and Low-Impedance Attenuator

The Buffer Amplifier presents a high-impedance, lowcapacitance load to the signal from the High-Impedance Attenuator and a low output impedance to the LowImpedance Attenuator. The dual-path buffer amplifier (slow path and fast path) combines good dc stability with highspeed performance.

The input signal goes to the gate of source-follower Q13 through R6 and C6, the fast path, and to the inverting input of operational amplifier U 10 from the resistive voltage divider formed by R3 and R5, the slow path. Source-follower Q13 and emitter-follower Q18 have highimpedance inputs that isolate the applied signal from the loading effects of the Low-Impedance Attenuator. A voltage divider formed by R46, R47, and R48 at the emitter output of Q18 applies feedback to the noninverting input of slow-path amplifier U10. The two input voltages to amplifier U10 are compared, and the conductivity of current-source transistor Q15 is changed to correct for any frequency-gain error at the source of Q13. The bandwidth of U10 is limited by capacitor C10 so that the slow path responds only to frequencies below 100 kHz . Input offset voltage compensation for U10, provided by R10, eliminates trace shift between VOLTS/DIV switch settings. Gain in both paths is matched by adjusting MF/LF Gain Bal potentiometer R47. The path gains then remain matched by the corrective action of U10 and Q15 if gain differences in the two paths start to develop.

Low-Impedance Attenuator R19 divides down the Buffer Amplifier output signal for application to Paraphase Amplifier U30. The attenuator's output impedance is 75 ohms at all VOLTS/DIV switch settings. The VOLTS/DIV
switch (S10) determines whether the Paraphase Amplifier receives a signal attenuated by a factor of 1 (no attenuation), 2, 4, or 10.

Paraphase Amplifier

Paraphase Amplifier U30 converts the single-ended signal from the Low-Impedance Attenuator into a differential signal for the Vertical Preamplifier. Included in the circuitry is switching that provides extra gain for the 2 mV position of the VOLTS/DIV switch, adjustments for amplifier dc balance, and circuitry for the Variable Volts/Div function. Additionally, Channel 2 Paraphase Amplifier U80 contains circuitry to invert the Channel 2 display.

The signal from the Low-Impedance Attenuator goes to the base of one transistor in U30. The other input transistor is biased by the divider network formed by R30, R31, and R33 to a level that produces a null between the outputs of U30 (no trace shift on the crt screen) when the VOLTS/DIV control is switched between 5 mV and 2 mV . Emitter current for the two input transistors is supplied by R21, R22, R23, and VAR-BAL potentiometer R25. Resistor R29 is the gain-setting resistor between the two emitters. High-frequency compensation of the amplifier is provided by the series combination of R27 and C27 shunting R29. In the 2 mV position, amplifier gain is increased because contact 15 of S10 is closed to place 2 mV Gain potentiometer R26 and compensating capacitor C26 in parallel with R29.

The collector current from the two input transistors serves as emitter current for the two differential output transistor pairs. Base-bias voltages for the two output pairs are developed by the divider network formed by R39, R41, R42, and Variable Volts/Div potentiometer R43. The transistors of U3O have matched characteristics, so the ratio of currents in the two IC diodes connected to pin 11 determines the current ratios in the output transistor pairs. As Variable Volts/Div potentiometer R43 is rotated from calibrated to uncalibrated, the conduction level of the transistors connected to R35 increases. Since the transistor pairs are cross-connected, the increased conduction in one pair subtracts from the output current produced by the transistor pair connected to R38, and the overall gain of the amplifier decreases. VAR-BAL potentiometer R25 is adjusted to balance the amplifier for minimal dc trace shift as the Variable Volts/Div control is rotated.

Incorporated in the Channel 2 Paraphase Amplifier is circuitry that allows the user to invert the polarity of the Channel 2 signal. When INVERT switch S90 is out, the transistor pairs in U80 are biased as they are in U30, and CH 2 trace is not inverted. For the IN position of S90, connections to the bases of the output transistor pairs are
reversed, reversing the polarity of the output signal to produce an inverted Channel 2 trace and Channel 2 storage acquisition signal. The inverted/noninverted state is read by the Microprocessor, and an indicator is displayed in the crt readout adjacent to the CH 2 VOLTS/DIV readout to indicate to the user when INVERT is in effect. Invert Bal potentiometer R75 is adjusted for minimal dc trace shift when the INVERT button is changed between IN and OUT.

VERTICAL PREAMPLIFIERS

The Channel 1 and Channel 2 Vertical Preamplifiers, shown on Diagram 2, are identical in operation. Operation of the Channel 1 amplifier is described. Differential signal current from the Paraphase Amplifier is amplified to produce drive current to the Delay Line Driver and supply the Channel 1 signal to the Storage Acquisition circuitry. Internal trigger signals for the Trigger circuitry are picked off prior to the Vertical Preamplifier. The Channel Switch circuitry controls channel selection for the Nonstore crt display. STORE mode signal acquisition and display, and the selection of either STORE or NON STORE, is controlled by the Display Controller circuitry.

Common-base transistors Q102 and Q103, which complete the Paraphase Amplifier portion of the circuitry shown on Diagram 1, convert differential current from the Paraphase Amplifier into level-shifted voltages that drive the bases of the input transistors of Vertical Preamplifier U130. Differential internal trigger signals are picked off at this point from the collector signals of Q102 and Q103 before Vertical POSITION dc offset is added to the input signals.

The collector current of each input transistor of U130 is the emitter current for two of the differential output transistors. One of the collectors of each output pair supplies one side of the differential Nonstore signal to the Delay Line Driver, and the other collector in each pair supplies one side of the differential Channel signal to the Storage Acquisition circuitry. The base bias voltages of the output transistors are controlled by the Channel Switch Logic circuitry. The switching circuitry determines which channel is active (CH 1, CH 2 or both for ADD) in NON STORE, and which channel supplies the Storage Acquisition signal in STORE.

Vertical POSITION control R112 adds an offset voltage to the pair of differential transistors, Q114 and Q115, that supply the emitter current to the Preamplifier input transistors. Unequal collector currents from Q114 and Q115 go to the input transistors to introduce the vertical position offset to the Channel 1 NON STORE signal. Output signals from Q114 and Q115 are applied to a Storage

Vertical Position conditioning circuit where dc offset adjustments provide tracking corrections between the vertical positions of the NON STORE and the STORE signals.

When Channel 1 is selected to drive the Delay Line Driver, the Q output (pin 5) of U540A is HI. That HI is switched through U7201 to the bases of the nonstore signal transistors (connected to pin 14 of U130). These transistors are then forward-biased, and the Channel 1 signal is conducted to the Channel Switch circuit. If Channel 1 is not selected, then the Q output of U540A is LO, and the nonstore signal transistors are reverse-biased to prevent the Channel 1 nonstore signal from being displayed. The gain of the Preamplifier is set by adjusting R145 to control the signal current that is shunted between the two differential outputs. Amplifier gain is reduced by the current shunted between the two halves of the Preamplifier.

Channel Switch Logic

The Channel Switch Logic circuitry, shown on Diagram 2, utilizes the front-panel VERTICAL MODE and STORE/NON STORE mode switches to select the crt display format. See Figure 3-3 for a block diagram of the circuit.

When any display mode other than $X-Y$ is selected, the XY line connected to S550 is at ground potential. VERTICAL MODE switches S545 and S550 control the connection between the XY control line and the Set and Reset inputs of flip-flop U540A for the nonstore display formats.

CHANNEL 1 DISPLAY ONLY. The CH 1 position of S550 grounds the Set input (pin 4) of U540A while the Reset input (pin 1) is held HI by pull-up resistor R539. This produces a HI and a LO on the Q and \bar{Q} outputs of U540A respectively. The levels are selected by multiplexer U7201, biasing on the Channel 1 nonstore output transistors in U130, allowing the Channel 1 input signal to drive the Delay Line Driver. The Channel 2 Preamplifier nonstore output transistors in U180 are biased off.

CHANNEL 2 DISPLAY ONLY. The CH 2 position of S550 holds the Reset input of U540A LO through CR538, and the Set input is held HI by pull-up resistor R538. The outputs of U540A are then Q LO and $\bar{Q} \mathrm{HI}$ biasing on the Channel 2 Preamplifier nonstore output transistors (in U180) and biasing off the Channel 1 Preamplifier nonstore output transistors (in U130). Channel 2 then supplies the signal to drive the Delay Line Driver.

To display the ADD, ALT, or CHOP formats, S550 must be in the BOTH position to ground the A, C, and F pins of S545.

Figure 3-3. Store-Non Store Vertical Switching.

ADD DISPLAY. In the ADD position of S545, both the Set and Reset inputs of U540A are held LO by CR534 and CR537. The Q and $\overline{\mathrm{Q}}$ outputs of U540A are then both HI, and signal currents from the Channel 1 and Channel 2 Preamplifiers add together to drive the Delay Line Driver.

CHOP DISPLAY. In the CHOP position, the CHOP ENABLE line is held LO, keeping the Q output of flip-flop U540B HI. This enables CHOP multivibrator U537D to begin switching. The switching rate is determined primarily by the component values of R544, R545, and C545. The output of U537C (the inverted output of the multivibrator circuit) drives U537A and supplies the CHOP clock to flip-flop U540A. The output of U537C also drives U537B, the CHOP Blanking Pulse Generator (see Diagram 9).

Coupling capacitor C547 and resistors R547 and R548 on pin 5 of U537B (see Diagram 9) form a differentiating circuit that produces short duration pulses during the switching of U540A. These pulses are inverted by U537B to generate the Chop Blank signal to the Z-Axis Amplifier. The pulses blank the crt during CHOP switching times.

The Alt Sync signal on pin 2 of U537A (see Diagram 2) is HI except during hold off. While pin 2 is HI , the output of U537C is inverted and passed by U537A to the clock input (pin 3) of U540A. Since the \bar{Q} output of U540A is connected back to the D input, and both the Set and Reset inputs are HI, the outputs of U540A switch (change states) with each clock input. The Delay Line Driver is then supplied alternately from the Channel 1 and Channel 2 Preamplifiers at the CHOP rate.

ALTERNATE DISPLAY. In ALT, the CHOP ENABLE line is held HI , disabling CHOP multivibrator U537D. The output of U537C, the chop blanking signal, is HI. Input signals to U537A are the HI from U537C and ALT SYNC from the Hold-Off circuitry in the A Sweep Generator. The output of U537A is then the inverted ALT SYNC signal that clocks Channel Select flip-flop U540A. The ALT SYNC clock toggles the outputs of U540A at the end of each sweep so that the Channel 1 and Channel 2 Preamplifiers alternately drive the Delay Line Driver.

STORE MODE DISPLAYS. Under direction from the Display Controller, multiplexer U7201 selects either nonstore or store signals to drive the Delay Line Driver. In NON STORE, the multiplexer switches the \mathbf{Q} and \bar{Q} outputs of U540A to the Channel Switch to allow the switching sequences just described. However, when STORE is selected, the nonstore analog signal to the Channel Switch is turned off, and the store vertical deflection analog signals are applied to the Delay Line Driver input. The store waveform display is determined by the Display Controller.

The nonstore output transistors are biased off by setting pins 9 and 12 of U7201 LO. The forward bias is removed, and the nonstore path is disabled. Pin 7 of U7201 is switched LO in STORE mode. Inverter U7202B inverts the LO, supplying forward bias to the store output transistors in both Preamplifiers. Selection of either channel signal for digitizing is done by a channel switch IC in the Storage Acquisition circuit (Diagram 10).

The HI STORE ENABLE signal from U7202B also goes to the Sweep Sep circuit to disable that circuit during STORE mode and to Horizontal Diode Gate circuit (Diagram 7) to block the nonstore sweep signals from going to the Horizontal Output Amplifier. To complete the switching to STORE mode, Pin 4 of U7201 is switched HI and applied to Inverier U7202B. The LO output signal from U7202B (STORE) is applied to the Vertical Channel Switch circuit to pass the STORE mode vertical deflection signal to the Delay Line Driver. That same LO signal also goes to the Horizontal Mux to pass the STORE mode horizontal deflection signal to the Horizontal Output Amplifier.

A Z-Axis disabling signal $\overline{\overline{D I S} Z}$ applied to NAND-gate U537B (see Diagram 9) disables the Chop Blanking circuitry for STORE mode displays. (DIS Z) holds the output of the Chop Blanking circuit HI to block the nonstore Z axis signals from the Z-Axis Amplifier.

VERTICAL OUTPUT AMPLIFIER

Vertical Output Amplifier circuitry, shown on Diagram 3, amplifies the vertical signal and drives the crt deflection plates. The Delay Line Driver converts the signal into a signal voltage to drive the Delay Line. Delay Line DL9210 delays the vertical signal so that the leading edge of the triggering signal can be viewed. The BW LIMIT switch reduces the bandwidth of the Amplifier when required by the application. The Vertical Output Amplifier drives the vertical deflection plates of the crt. The A/B Sweep Separation circuit vertically positions the Nonstore B trace with respect to the Nonstore A trace in Alt Horizontal mode displays.

Delay Line Driver

The Delay Line Driver converts the signal current from the Vertical Preamplifiers or the Store mode Vector Generator circuitry into a signal voltage to drive the Delay Line. Transistors Q202, Q203, Q206, and Q207 form a differential shunt feedback amplifier with the gain controlled by feedback resistors R216 and R217. Amplifier compensation is provided by C210 and R210, and output common-mode dc stabilization is provided by U225. Should the dc voltage at the junction of R222 and R223 move off zero, U225 changes the base current supplied to

Q202 and Q203 through R202 and R203 to return the output of the Delay Line Driver to an average dc voltage of zero.

Delay Line DL9210 adds about 90 ns of delay to the vertical signal. In that time, the Sweep Generator has sufficient time to start producing a sweep before the vertical signal that triggered the sweep reaches the crt. This permits viewing the leading edge of the triggering signal.

Bandwidth Limit

BW LIMIT switch S226, C228, C229, and the diode bridge formed by CR226, CR227, CR228, and CR229 reduce the bandwidth of the amplifier when desired. With full 100 MHz bandwidth, R226 is grounded through BW LIMIT switch S226, and the nonconducting diode bridge isolates C228 and C229 from the vertical signal. With limited bandwidth on, R226 is connected to the +8.6 V supply, and the diode bridge is forward biased. The two bandwidth limiting capacitors are then in the vertical signal path, and high-frequency signals (above about 20 MHz) are attenuated.

Vertical Output Amplifier

The Vertical Output Amplifier drives the vertical deflection plates of the crt. Signals from the Delay Line go to a differential amplifier formed by Q230 and Q231 with low- and high-frequency compensation provided by the RC networks between the emitters. Thermal compensation is provided by thermistor RT236, and overall circuit gain is set by R233. The output stage of the Amplifier is two totem-pole transistor pairs, Q254-Q256 and Q255-Q257, that convert the collector currents of Q230 and Q231 to proportional output voltages. Resistors R256, R258, R257, and R259 are feedback elements and bias voltage dividers. Biasing is set so each transistor in a pair develops one-half the final output voltage on a side. The amplifier output signals drive the Vertical crt deflection plates.

> Beam Find is used to keep the vertical trace within the graticule area for locating off-screen and over-scanned traces. When the front-panel BEAM FIND switch opens the contacts of S390 (found on Diagram 9), the direct -8.6 V supply to R261 is removed, and emitter current goes through R261 and R262 in series. The added series resistance reduces the amount of available emitter current and limits the amplifier's dynamic range. In normal amplifier operation, S390 connects the -8.6 V supply directly to R261, and full emitter current is possible in the output transistors.

A/B Sweep Separation Circuit

The circuit formed by Q283, Q284, Q285, and associated components acts to vertically position the Nonstore B
trace with respect to the Nonstore A trace in BOTH Horizontal mode. In the B Sweep interval, the $\overline{\mathrm{SEP}}$ signal from the Alternate Display Switching circuit (Diagram 6) is LO, and Q283 is biased off. This puts A/B SWP SEP potentiometer R280 in the circuit where it can affect the bias level on one side of the differential current source formed by Q284 and Q285. Changing the bias adds a dc offset current to the Vertical Output Amplifier that moves the B trace vertically with respect to the A trace.

During the Nonstore A sweep interval, the $\overline{\text { SEP }}$ signal is HI , and Q283 is turned on to isolate potentiometer R280 from the biasing circuit of Q284. The base voltages of Q284 and Q285 are then equal. With the same bias to both sides of the Vertical Output Amplifier, no offset is added to the A trace. In STORE mode, the HI STORE signal placed on the base of Q282 keeps Q283 off, and the A/B Sweep Sep circuit on.

TRIGGERING

The Trigger Amplifiers, shown on Diagram 4, provide trigger signals to the Sweep Generators from either the Vertical Preamplifiers, the EXT INPUT connector, or the power line. The A\&B INT switch selects either Channel 1 or Channel 2 as the trigger source, and the A SOURCE switch selects between internal, line, or external trigger sources. See Figure 3-4 for the block diagram of the trigger amplifiers and switching circuitry.

Internal Trigger Pickoff

Signals from the Vertical Preamplifiers drive the CH 1 and CH 2 Internal Trigger Amplifiers with channel selection determined by the VERTICAL and HORIZONTAL MODE switches. Trigger signal pickoff from Channel 1 is done by Q302 and Q303, and Q327 and Q328 pick off the Channel 2 internal trigger signal. The circuitry associated with Channel 2 is the same as that for Channel 1 except for a trigger offset adjustment. Channel 1 trigger signal circuitry is described; equivalent components in Channel 2 perform identically.

Differential vertical signals from the Channel 1 Preamplifier go to Q302 and Q303. These emitter-follower transistors each drive one input transistor in trigger preamplifier IC U310. The collectors of the U310 input transistors in turn supply emitter current to a pair of two current-steering transistors. A compensation and biasing network is connected between the emitters of the input transistors. Trigger Offset potentiometer R309 in the emitter circuit adjusts the bias levels of the two input transistors of U310 to match the dc offsets of the Channel 1 and Channel 2 Trigger Amplifiers.

Figure 3-4. Block diagram of Trigger Amplifiers and Switching.

One transistor in each side of the output differential amplifier pairs of U310 has its base bias set to a fixed level by the divider network formed by R321 and R322. The bias voltage of the other transistor in each pair is controlled by the $\overline{\mathrm{CH}} 1$ TRIG signal from the Trigger Switch circuitry. When the $\overline{\mathrm{CH}} 1$ TRIG signal is HI , the transistors in each output pair with the collectors connected together (pin 6 and pin 14) are biased on, and the other transistors in the output pairs are off. The collector signal currents of the conducting transistors are equal in amount but of opposing polarity, so the signal is canceled. When the $\overline{\mathrm{CH}} 1 \mathrm{TRIG}$ signal is LO, the other transistors in each pair are biased on, and a differential signal is developed across output load resistors R314 and R315 to drive the Internal Trigger Amplifier.

Internal Trigger Amplifier

The Internal Trigger Amplifier converts the differential trigger signals from the Vertical Preamplifiers into a single-ended signal that drives the X-Axis Amplifier and the A and B Trigger Level Comparators.

Differential signal current is applied to the emitters of U350D and U350E. The collector current of U350D is changed to a voltage signal and inverted by U350C. The opposite-phase collector current of U350E produces a voltage drop across R359 which is in phase with and adds to the voltage across R360 at the collector of U350C. The summed voltages appear at the base of U350A. Feedback resistor R357 provides thermal bias stabilization for U350C.

Emitter-follower U350A buffers the signal and shifts the dc level back to 0 V . The emitter output signal of U350A drives the X -Axis Amplifier, the B Trigger Level Comparator, and the base of emitter-follower U350B. The emitter signal of U350B in turn supplies the A Internal Trigger signal. The circuit arrangement of U350A and U350B, with the common collector current path through R363, produces thermat bias stabilization of the two transistors.

Trigger Switching Logic

Either Channel 1, Channel 2, or VERT MODE Internal Trigger signals may be selected by A\&B INT switch S555 when A SOURCE switch S392 is set to INT. The INT position of the A SOURCE switch applies a voltage that reverse biases both CR393 and CR399 to stop the external trigger signal and the line trigger signal from reaching the A Trigger Level Comparator. The A Internal Trigger Signal from the emitter of U350B is passed to the A Trigger Level Comparator through forward-biased diode CR372.

CHANNEL 1. For triggering from Channel 1, the A\&B INT switch is set to CH 1. The XY line connected to S555 is at ground potential, holding pin 4 of U555B LO. The output of U555B is then also LO, and the Channel 1 signal has a path through U310. At the same time, the Channel 2 signal path through U335 is shut off by the outputs of U555C and U565B both being HI.

CHANNEL 2. For triggering from Channel 2, the A\&B INT switch is set to CH 2, and U555C pin 10 and U555D pin 12 are LO. The outputs of both AND-gates are then forced LO. A LO output from U555C enables the Channel 2 signal path through U335, and the HI outputs from U555B and U565C disable the Channel 1 path through U310.

VERT MODE. When the A\&B INT switch is set to VERT MODE, the trigger source is selected by the two VERTICAL MODE switches. For all VERTICAL MODE switch combinations except BOTH-CHOP, the base of Q541 is HI. The inputs and outputs of U555B, U555C, and U555D are then all HI , and trigger signal selection is done by flip-flop U540A in the Channel Switch Logic circuit (Diagram 2) using the CH 1 ON and CH 2 ON control signals going to U565B and U565C.

With Channel 1 selected (VERTICAL MODE switch set to CH 1), both inputs to NAND-gate U565C are HI. The output of U565C is then LO, and U310 is biased on to select Channel 1 as the Internal Trigger signal source. The LO CH2 ON signal from the $\overline{\mathrm{Q}}$ output of U540A is applied to U565B, and the $\overline{\mathrm{CH}} 2$ TRIG line at the output of U565B is forced HI to shut off the Channel 2 Trigger signal path.

When Channel 2 is selected (VERTICAL MODE switch set to CH 2), the outputs of U540A, U565B, and U565C will be the reverse of the states described for Channel 1 selection. The Channel 2 signal is then selected as the Internal Trigger signal source, and the Channel 1 Trigger signal path through U310 is shut off.

With ALT VERTICAL MODE selected, the inputs of NAND-gates U565B and U565C toggle (change state) with each sweep. The outputs of the two gates also toggle, and U310 and U335 are alternately biased on to select the displayed channel signal as the Internal Trigger source.

In the ADD VERTICAL MODE position, both inputs to U565B and to U565C are HI , making the outputs of both gates LO. Both the Channel 1 and the Channel 2 signal path are turned on by biasing on U310 and U335 together. The output currents of both Trigger Preamplifiers are summed in the Internal Trigger Amplifier to produce the Internal Trigger signal.

The CHOP VERTICAL MODE position grounds the base of Q541 and puts a LO on an input of both U555B and U555C. The outputs of these two gates are then LO, and the signal to the Internal Trigger Amplifier is the summed Channel 1 and Channel 2 trigger signals, the same as with ADD VERTICAL MODE.

A External Trigger Amplifier

The A External Trigger Amplifier buffers signals from the EXT INPUT connector to drive the A Trigger Level Comparator. Input signal coupling is determined by A EXT COUPLING switch S380 which selects AC, DC, or DC $\div 10$ coupling.

When S 380 is in the AC position, the input signal is accoupled through C376. In the DC position, the input signal is connected directly to the Amplifier. The DC $\div 10$ position attenuates the input signal by a factor of 10 through the compensated divider formed by R377, R378, C380, and C381.

Line Trigger Amplifier

The Line Trigger Amplifier supplies a line-frequency trigger signal to the A Trigger Level Comparator when the A SOURCE switch is in the LINE position. Transformer T390 in the Power Supply (Diagram 8) provides the linefrequency trigger signal through R397 to Q397. Diode CR399 is forward biased when S392 is in the LINE position, and the emitter signal of Q397 drives the A Trigger Level Comparator.

Trigger Signal BW Limit and HF REJ

The upper frequency of the trigger signal and the vertical channel bandpass are limited to 20 MHz when the front-panel BW LIMIT switch is pressed in. The BW Limit signal voltage forward biases Q419, and capacitor C419 shunts the higher trigger signal frequencies to ground through the transistor. With full 100 MHz bandwidth, Q419 is biased off to remove the shunting effect from the trigger signal line.

An additional bandwidth limiting circuit provides highfrequency rejection of the trigger signal. HF REJ is enabled when the center knob of the A TRIGGER LEVEL control is rotated clockwise. With HF REJ, Q7362 is biased on, and capacitor C7362 shunts trigger signal frequencies above about 50 kHz to ground through the transistor.

P-P Auto Trigger Level

The P-P Auto Trigger Level circuit sets voltage levels at the ends of the A TRIGGER LEVEL potentiometer (R438) as a function of the A Trigger mode selection and the trigger signals selected by the A SOURCE switch.

In the P-P AUTO and TV FIELD Trigger modes, Q413 is biased off, and CR414 and CR415 are reverse biased. Trigger signals selected by the A SOURCE switch are sent to peak detector circuits formed by Q420-Q422 and Q421-Q423 via R420. These peak detectors track dc levels and have high voltage-transfer efficiency. The circuit arrangement of the transistors produces very low thermal drift and reduces the effect of differences in transistor characteristics.

The positive- and negative-peak signal levels are stored by hold capacitors C414 and C415. The charge on the capacitors is held near the peak voltage levels between trigger signal peaks by the long time constant discharge path through R426 and R427. Amplifiers U426A and U426B are voltage followers with feedback supplied by transistors Q428 and Q429. These feedback transistors compensate the P-P Auto Trigger Level circuit for any thermal drift of Q420 and Q421 and shift the output levels of the voltage followers back to the original dc levels of the input trigger signal peaks. The output of U426A is the positive peak voltage of the input trigger signal, and the output of U426B is the negative peak voltage. Auto Level Adjustment potentiometers R434 and R435 provide dc offset corrections to make certain that the output voltages applied to the ends of LEVEL potentiometer R438 remain at or just below the actual peaks of the input trigger signal. In this way, the range of the LEVEL control is held within the peak-to-peak limits of the applied trigger signal for ease in triggering the oscilloscope.

In NORM Trigger mode, +8.6 V is applied to the junction of R411 and R414. Diode CR414 is forward biased. Transistor Q413 is also turned on inverting the applied signal and forward biasing CR415. Input transistors Q420 and Q421 are then biased off, and no trigger signals reach the P-P Auto Trigger Level circuit. In this case, the inputs to U426A and U426B are fixed voltages, and the voltage levels applied to the ends of the LEVEL potentiometer are independent of trigger-signal amplitude. The user must then adjust the LEVEL control to the correct level to obtain triggering.

The Microprocessor is informed of the trigger mode by Q7440 and its associated biasing resistors. When the $\overline{\mathrm{P}-\mathrm{P}}$ signal line is a LO at -8.3 V (indicating that the P-P AUTO Trigger mode is in effect), Q7440 is biased off, and its collector (and the PP signal line to the I/O circuit board) is pulled up to the +5 V supply via R 7442 . When the $\overline{P-P}$ signal is a HI at +8.5 V for NORM Trigger mode, Q7440 is biased on, and the PP signal is pulled LO by the conducting transistor.

A Trigger Level Comparator and Schmitt Trigger

The A Trigger Level Comparator compares the level of trigger signals selected by the A TRIGGER SOURCE
switch to the voltage set by the A TRIGGER LEVEL control and produces an output trigger signal at the correct level. Rising or falling slope triggering is selected by the front-panel A TRIGGER SLOPE switch.

Integrated circuit U460, contains the A Trigger Level Comparator and Schmitt Trigger circuitry. The output voltage of the trigger amplifiers are applied to U460 pin 4. The other input to the comparator is the wiper voltage on the A Trigger LEVEL control, applied to pin 2 of U460. The resistor R452 and the voltage at pin 5 of U 460 sets the emitter current for the comparator.

The Trigger Slope is determined by the relative voltages on U 460 pins 7 and 8 . If pin 8 is at a higher level than pin 7 , the plus output of U 460 will change to a HI state when a positive-going input signal crosses the threshold at pin 2 of U460. With pin 8 more negative than pin 7, the Schmitt fires on a negative-going input. The voltage at pin 7 is fixed, while that at pin 8 is selected by the A TRIGGER SLOPE switch S460 through R459, R461, and R462.

The sensitivity of the Schmitt Trigger is controlled by the current at pin 9. The setting of R471 determines the circuit hysteresis.

The outputs of the Schmitt Trigger are at pins 10 and 12 of U460. The outputs are at ECL levels and are from emitter followers internal to U460. Collector voltage to U460 is supplied through pins 11 and 14. When TV Field is not selected, the $\overline{\mathrm{SS}}$ line connected to CR476 and R473 is LO. Transistors Q473 and Q474 are biased off which also biases Q487 off. Resistor R477 biases CR467 and CR477 on and the +Out Trigger signal from pin 10 of U460 passes through the diodes to U506-6 of the A Sweep Generator.

TV Trigger Circuit

When TV FIELD mode is selected the $\overline{\mathrm{SS}}$ line is HI . This disconnects the high-speed trigger path by reversebiasing CR467 and CR477. Setting the A Trigger level threshold near the center of the horizontal-sync-pulse swing establishes the untriggered level. This in combination with the peak detectors makes the circuit insensitive to the video information. The A TRIGGER and LEVEL controls are set to provide a pulse-train corresponding to the sync pulses of the TV signal. This pulse train is filtered by R467, C467, R468, R469, C469, and R470, resulting in dc levels at the bases of Q473 and Q474. The untriggered level (horizontal pulses) turns Q474 on, which causes Q487 to conduct, providing a LO to the sweep generator. When the TV-Vertical-Sync block occurs the polarity reverses, turning Q487 off and providing a positive-going signal to U 506 pin 6 to initiate a sweep.

A SWEEP GENERATOR AND LOGIC

The A Sweep Generator and Logic circuitry, shown on Diagram 5, produces a linear voltage ramp that drives the Horizontal Preamplifier in the Nonstore mode. The Sweep Generator circuits also produce gate signals that time the crt unblanking and intensity levels for viewing the Nonstore displays. In STORE mode, the A Sweep Generator and Logic circuitry continues to produce timing gates used by the Storage circuitry for triggering the analog signal acquisitions. See Figure 3-5 for the block diagram of the A Sweep Generator and Logic circuitry.

The Sweep Logic circuitry controls the Nonstore holdoff time and generates gating signals that start the sweep when a trigger signal occurs and end the sweep at the proper level. When using P-P AUTO or TV FIELD triggering, the Sweep Logic circuitry causes the Sweep Generator to free run if a trigger signal is not received or does not come often enough.

A Miller Sweep Generator and SEC/DIV Switching

The A Miller Sweep Generator is an integrator circuit that produces a linear voltage ramp to drive the Horizontal Amplifier for the Nonstore A Sweep deflection. It produces the ramp voltage by maintaining a constant current through timing capacitors, causing a linear voltage rise across them as they charge.

Field-effect transistors Q704A and Q704B are matched devices with Q704B acting as the current source for Q704A. Since the gate and source of Q704B are connected together with no voltage difference between them, the source current available to Q704A is just enough so that there is no voltage drop across the gate-source junction of Q704A.

When the sweep is not running, Q701 is biased on, holding the selected timing capacitors discharged. The low impedance of Q701 in the feedback path holds the A Miller Sweep output (A SWEEP) near ground potential. The voltage across Q701, in addition to the base-emitter voltage of Q706, prevents Q706 from becoming saturated.

A sweep ramp is started when Q576 is biased off. The $\overline{\text { A GATE signal going to the base of Q701 from the Sweep }}$ Logic circuit turns Q701 off. The timing capacitors then begin charging at a rate set by timing resistors R701, R702, and the selected timing capacitors. Due to feedback from the circuit output through the timing capacitors, the integrator input voltage at the gate of Q704A remains fixed and sets a constant voltage across the timing resistors. This constant voltage produces a constant charging

Figure 3-5. A Sweep Generator and Logic circuitry.
current through the timing capacitors, which results in a linearly increasing voltage ramp as they charge. The ramp is the A SWEEP output signal at the collector of Q706.

Parallel timing capacitors C702 and C703 remain in the charging circuit for all SEC/DIV switch settings and are used mostly for high sweep speeds. Capacitors C701A and C701B are added in series at medium sweep speeds, and C701B alone is added to the charging path for slow sweep speeds.

When the ramp reaches approximately 12 V , the End-of-Sweep Comparator transistor (Q525) becomes forward biased. This action switches the A GATE HI and starts the analog hold-off period. During hold off the A Sweep Generator is reset. The $\overline{\mathrm{A} G A T E}$ signal going HI biases on Q701, and the timing capacitors are fully discharged before another sweep starts.

One end of timing resistor array R701 is connected to the HOR REF signal, and the other end is connected to the input of the Miller integrator by the SEC/DIV switch contacts. The voltage applied to the timing resistor array via the HOR REF signal varies with the setting of the front-panel Variable SEC/DIV control (R721, located on Diagram 7). The STORE mode time base is not affected by the variable potentiometer setting. In the CAL position of R721, a fixed reference level is applied to R701 to produce the calibrated Nonstore sweep speed ranges. Switch contacts actuated using the knob of R721 control the STORE mode $4 \mathrm{~K} / 1 \mathrm{~K}$ Compress and the X10 MAG features. The X10 MAG feature works in both NONSTORE and STORE.

Coded analog signals developed by circuitry connected to the SEC/DIV switch contacts inform the Microprocessor of the A SEC/DIV switch setting. The Microprocessor then directs the Digital Time Base circuitry to set the correct STORE mode sampling rate.

A Sweep Logic

The A Sweep Logic circuitry controls sweep generation, as a function of incoming trigger signals and the A Trigger mode selected.

Incoming trigger signals from the output of U460 clock U502, a one-shot multivibrator, and cause the Q output of U502 to go HI . If another trigger signal is not received by U502 within the time limit determined by R503 and C501, the Q output (U502 pin 3) will go LO. Whenever trigger signals are being received, the \bar{Q} output of $U 502$ biases on Q509 to turn on DS518, the TRIG'D LED. The output of

U502 is also used in the Auto Baseline circuit as described in the "P-P AUTO and TV FIELD" part of the discussion that follows.

NORM. When NORM Trigger mode is selected, input pin 12 of U532D is held HI by S401B, causing the gate output to also be HI. The output of U532C is then LO, and U506 pin 3 is not heid HI. Input pin 4 of U532A is held HI by S401C, causing the output to be LO, placing a LO on input pin 7 of dual flip-flop U506. Trigger signals received at input pin 6 (a clock input) of U506 then clock this LO to the Q output (pin 2).

During the previous hold-off period, U506 pin 2 was set HI by U532B. This made the $\overline{\mathrm{Q}}$ output (pin 3) LO. The LO biased Q576 on, preventing the A Miller Sweep from running. Whenever U506 pin 6 is clocked by a trigger signal following hold off, the LO on the D input (pin 7) is transferred to the Q output (pin 2), and the $\overline{\mathrm{Q}}$ output (pin 3) goes HI. This biases Q576 off, and the A Miller Sweep generates the sweep ramp as described in the previous "A Miller Sweep Generator" discussion. When the ramp voltage reaches about 12 V , End-of-Sweep transistor Q525 is biased on. The output of U532B then changes from LO to HI , setting U 506 pin 2 HI and biasing on $\overline{\text { A GATE }}$ transistor Q576. This triggers Hold-off One-shot U504B to start the hold-off period, turning off Q525. Transistor Q701 in the A Miller Sweep generator is also biased on to discharge the timing capacitors during holdoff time.

With U504B triggered, output pin 10 changes from LO to HI, where it stays for a time set by the Hold-Off Timing circuitry and the A SEC/DIV switch position. VAR HOLDOFF potentiometer R9521 sets the amount of current that is available to charge C518, C519, or C520 to the threshold voltage on pin 14. During the time pin 10 is HI , pin 5 (the set input) of U506 is held HI so that trigger pulses cannot start a new sweep. When pin 15 of U504B reaches the threshold level on pin 14, pin 10 goes LO to end hold off and release $U 506$ from the set condition. The circuit is then reset to start another sweep on the next trigger pulse that appears at the clock input (pin 6) of U506. The holdoff capacitors are switched by transistors Q7470 and Q7471 according to the states of the timing switch. Q7472 serves as a dual diode to carry the discharge current. Logic signals AC-1 and AC-2 provide part of the timing switch information for the I/O board, where their states are read at an input port.

P-P AUTO and TV FIELD. When P-P Auto or TV Field trigger is in use, the Auto Baseline circuitry is active. Pin 12 of U532D is held LO by R569, and the output at pin 9 follows the signal provided by the Q output of U502.

If trigger signals are being received, U 502 remains set. As long as U502 is set, the output of U532D is HI, causing the output of U532C to be LO. Dual flip-flop U506 then responds to trigger signals at Clock input pin 6 as described in the "NORM" part of this discussion. If trigger signals are not being received by U502, its output and the output of U532D are both LO. With a LO on pin 10 of U532C, its output is the inverse of the input signal applied to pin 11. At the end of hold-off, that output goes HI, making U506 pin 2 LO and pin 3 HI . This automatically generates the A Gate and $\overline{A \text { Gate }}$ signals, generating a sweep. The Auto Baseline continues holding NOR-gate U532C enabled so that new sweeps are generated at the end of hold-off as long as trigger signals are not received at U502.

SGL SWP. The following discussion presumes Nonstore mode. In Sgl Swp mode, both the P-P AUTO and NORM front-panel buttons are in their out position. This results in a LO at the output of U532C that does not permit flip-flop U506 pin 3 to be held HI. A LO is also on input pin 4 of U532A.

During hold-off, U532B makes U506 pin 14 HI and pin 15 LO, causing pin 7 (the D input) of U506 to be HI . After hold-off ends, clock signals (triggers) to U506 pin 6 keep U506 pin 3 LO, keeping the sweep generator held off. When the SGL SWP button is pushed in, pin 7 of U504A goes LO for a time period determined by the time constant of R504 and C504 and then returns HI. The HI clocks the HI on input pin 10 of U506 to output pin 15. Consequently the output of U532A goes LO, and CR514 is reverse biased to bias Q511 on, lighting the READY LED. The next trigger pulse applied to input pin 6 of U506 starts a sweep as described previously. At the end of the sweep, U506 pin 15 goes LO and pin 14 goes HI , causing the TRIG'D LED to go out and placing a HI on the input pin 7 of U506. A new sweep cannot be started until the SGL SWP button is again pressed, resetting the sweep.

In STORE mode, the major difference is that the STORDY line is not true until the processor recognizes that a trigger has occurred. This prevents the SGL SWP button from affecting the circuit directly. Instead, the processor determines the button was depressed, releases STO-RDY, causing the effect described above when a button is depressed in Nonstore mode.
$X-Y$. In the Nonstore $X-Y$ mode, the $\overline{X Y}$ signal is LO and Q522 is biased on, pulling pin 7 of U532B LO. The output of U532B holds U506 pin 3 LO and pin 2 HI , and no sweeps can be started during $X-Y$ mode. Nonstore X Axis deflection (horizontal) is determined by the CH 1 OR X input signal. In STORE mode, the A Sweep Logic circuit must run to produce the gating required to synchronize the

Storage signal acquisition. The Store signal forward biases CR7140 to override the $\overline{X Y}$ signal, and the A Sweep Logic circuitry operates as in Y-T Nonstore mode.

B TIMING AND ALTERNATE B SWEEP

The Alternate B Sweep circuitry, shown on Diagram 6, produces a linear voltage ramp that drives the Horizontal Preamplifier for Nonstore B Sweeps. The Alternate B Sweep circuitry also produces the sweep-switching signals that control the display of the A and B Nonstore Sweeps and the gate signals used by the Intensity and Z-Axis circuits to set the crt unblanking and intensity levels for the Nonstore A Intensified and the B Sweep displays. The B Gate signal goes to the Digital Time Base circuitry and is the Storage trigger signal for B Delayed Horizontal Display mode.

The B Sweep ramp is started by the B Sweep Logic circuit either at the end of the set delay time (RUNS AFTER DELAY) or when the first trigger signal occurs after the delay time has elapsed (Trigger After Delay). This delay time is a function of the B Delay Time Position Comparator circuit and the A Sweep.

B Miller Sweep Generator

The B Miller Sweep Generator is an integrator circuit formed by Q709, Q710A, Q710B, Q712, and associated timing components. This circuit produces the B Sweep signal and works the same as the A Miller Sweep Generator. See the "A Miller Sweep Generator" section for a description of circuitry operation. The output at the collector of Q712 drives the Horizontal Amplifier for Nonstore B Sweeps and is applied to the B end-of-sweep transistor, Q643.

B Trigger Level Comparator and Schmitt Trigger

The B Trigger Level Comparator and Schmitt Trigger are contained in U605. This circuit determines both the trigger level and slope at which the B triggering signal is produced. It functions in the same manner as the A Trigger Level Comparator and Schmitt Trigger with the exclusion of the TV trigger circuitry. See the "A Trigger Level Comparator and Schmitt Trigger" section for a description of circuit operation. The +OUT terminal of U605 is directly connected to the clock input of U670A to initiate the B Sweep when the B Trigger is utilized.

Run After Delay

The Run After Delay circuit lets the B Sweep Logic start a B Sweep without the need for a B Trigger signal. For the RUNS AFTER DELAY mode, B TRIGGER LEVEL
control R602 is rotated fully clockwise. In this position of R602, transistor Q637 is biased off, and a LO is present at its collector. Inverter U660D then has a HI output at pin 8. Resistor R640 provides positive feedback to obtain rapid switching of the transistor. This HI output reverse biases CR626 so that the state of U670A is determined by the level at U660F pin 12.

If the B TRIGGER LEVEL control is not fully clockwise, Q637 is biased on, and the B Sweep is in the triggerable-after-delay mode. The output of U660D is then LO which keeps the S input of U670A LO, preventing the flip-flop from being set by the output of U660F.

Operation of the B Sweep Logic circuitry under both triggering modes is described in the "B Sweep Logic" part of the following discussion.

Delay Time Position Comparator

The Delay Time Position Comparator circuit compares the amplitude of the A Sweep voltage ramp to the dc voltage level set by the position of B DELAY TIME POSITION potentiometer R9644. The output of the comparator enables the B Sweep Logic circuit to start the B Sweep after the end of the delay time.

The input voltages to Comparator U655 to be compared are the voltage from the wiper of B Delay Time Position potentiometer R9644 and the A Sweep voltage from the divider formed by R651, Delay Dial Gain potentiometer R652, and R653. Maximum and minimum input voltages are established by VR645 and R646 respectively for the noninverting input and by R652 for the inverting input. Delay Start potentiometer R646 is adjusted in conjunction with Delay End potentiometer R652 to set the B DELAY TIME POSITION crt readout calibration.

The comparator is controlled by the $\bar{A} O N L \bar{Y}$ gate signal connected to pin 6. When the A ONLY signal is HI , the comparator is able to make a comparison. While the A Sweep signal on pin 3 is below the wiper voltage on pin 2, the comparator output is at a HI level. When the A Sweep ramp reaches the comparison level, the output at pin 7 goes LO. If \bar{A} ONLY is LO, the comparator is switched to a high impedance output state. The comparator output level is then a HI that goes to pin 9 of NAND-gate latch U680C and U680D.

B Sweep Logic

The B Sweep Logic circuitry utilizes signals from associated B Sweep circuitry to generate control signals for both the B Miller Sweep and the B Z-Axis Switching Logic circuits.

In the RUNS AFTER DELAY mode, the Run After Delay circuit holds the D input of flip-flop U670A LO via U660B. At the start of hold off when the A Sweep is reset, U680D pin 13 is strobed with an Alt Sync pulse negative transition. The output of the NAND-gate latch formed by U680C and U680D is latched HI, and the output of U660F goes LO. This places a LO on the S input of U670A and a HI on the R input causing the flip-flop to reset. The LO on pin 2 and a HI on pin 3 of U670A are converted to TTL levels by Q630 and Q631. The resulting HI on the collector of Q630 turns Q709 on. This discharges the B Miller Sweep timing capacitors to reset the B Sweep Generator and keeps a new B Sweep from starting. During the next A Sweep ramp when the voltage at U655 pin 3 exceeds the voltage at pin 2, the comparator output goes LO. The NAND-gate latch changes output states and causes the Set input of U670A to go HI. The LO on the Set input then controls the flip-flop, and the \bar{Q} output of U670A goes LO. Shunting transistor Q709 shuts off, and the B Miller Sweep Generator runs to produce a sweep ramp.

When the ramp voltage reaches a level of about 12 V , B end-of-sweep transistor Q643 turns on and blanks the rest of the B Sweep trace by reverse biasing CR817 in the Z-Drive signal line (Diagram 9). The B Sweep Generator continues to run either until the ramp reaches about 13 V , at which time VR712 conducts to prevent the ramp voltage from increasing further, or until the A Sweep ends. In either case, the B Sweep generator is reset when the A Sweep ends.

The B Sweep Generator becomes reset when the the ALT SYNC signai goes from HI to LO to switch the output state of the U680C-U680D latch. The Reset input of U670A then goes LO, causing the $\overline{\mathrm{Q}}$ output to switch HI and reset the Sweep Generator. Depending on the settings of the A and B SEC/DIV switches, the A Sweep may end before the B Sweep. In that case, the ALT SYNC signal going LO at the end of the A Sweep immediately resets the B Sweep Generator even if the sweep ramp has not reached its maximum amplitude. A new B Sweep starts the next time the B Delay Time Comparator goes LO.

[^7]
Alternate Display Switching Logic

The Alternate Display Switching Logic circuitry controls both the Nonstore Horizontal Amplifier sweep switching and the Nonstore Z-Axis Logic switching for A Inten and B Only traces. The B Sweep ramp and gates are produced for every A Sweep when the HORIZONTAL MODE is set to either ALT or B. In ALT, the intensified zone on the A Sweep trace is shown for one B Sweep interval, and during the next A Sweep interval, a B Sweep trace is displayed during the B Sweep interval. For B Only traces, the A Sweep must still run to produce the A gating signals used throughout the circuitry for timing, but it is not displayed.

HORIZONTAL MODE switch S648 selects the input logic levels that drive the display switching circuitry. In the A Horizontal mode, the Set input of U670B is LO, and the Reset input is HI. This holds U670B reset with the A DISP signal HI, passing only the A Sweep to the Horizontal Amplifier (by the A Sweep selection transistor, Q742, located on Diagram 7). In the B Horizontal mode, the set input of U670B is HI , and the reset input is LO. This holds U670B set with the B DISP signal HI, allowing only the B Sweep to reach the Horizontal Amplifier (via the B Sweep selection transistor, Q732).

With S648 set to ALT, and for all settings of the VERTICAL MODE switches except BOTH-ALT, the VALT signal applied to U660E is HI and the Set and Reset inputs of U670B are both LO. The LO out of U660E causes the output of U680B to be HI. Each HI to LO transition of the ALT SYNC signal applied to pin 1 of U680A causes the NAND-gate output at pin 3 to change from LO to HI , clocking U670B. The Q and $\overline{\mathrm{Q}}$ outputs of U670B therefore toggle, and the A DISP and B DISP signals cause the sweep selection transistors (Diagram 7) to alternately pass the A and B Sweep signals to the Horizontal Amplifier.

When the CH 1-BOTH-CH 2 VERTICAL MODE switch (S 550) is set to BOTH, the ADD-ALT-CHOP switch (S545) becomes active. In the ALT VERTICAL MODE position, the VALT signal is LO, the HALT signal is HI, and the CH 1 SELECTED signal is a TTL square-wave signal that switches states at the end of the A Sweep. Input pin 4 of U680B is HI , and the gate output is the inverted CH 1 SELECTED signal. This output signal is combined with the ALT SYNC signal by NAND-gate U680A to clock U670B. Whenever the ALT SYNC signal goes LO at the end of a sweep and the CH 1 SELECTED signal (at U680B pin 5) switches from LO to $\mathrm{HI}, \mathrm{U} 670 \mathrm{~B}$ is clocked. Since only positive transitions on the clock input causes the flip-flop to change output states, two A Sweeps must occur to cause the flip-flop output levels to switch. Switching this way, the crt first displays two A Intensified Sweeps, then two Alternate B Sweeps.

SWP SEP. Whenever the B Sweep is selected to drive the Horizontal Amplifier, the Q output of U670B is HI. This HI goes to U665C pin 10 through Q683 and Q687, and since pin 9 is also HI , the $\overline{\mathrm{SEP}}$ signal from U665C is LO to enable the A/B Sweep Separation circuitry (located on Diagram 3).

B Z-Axis Logic

The B Z-Axis Logic circuitry switches signal current levels to drive the Z-Axis Amplifier for the Nonstore B Sweep and the A Intensified Sweep displays. The current supplied is summed with the other signal inputs on the Z-DRIVE line to set the Nonstore display intensity levels.

With the HORIZONTAL MODE switch in the ALT position, pin 5 of U665B is HI. Then, the Q and \bar{Q} outputs of U670B, the B GATE signal from the output of U665D, and the B INTENSITY potentiometer, set the intensity levels of the Nonstore A Intensified and B Sweep traces. When the A Sweep trace is displayed, the \bar{Q} output of $U 670 B$ is HI , and the Q output is LO. These output levels bias Q683 on and bias Q682 off. The collector voltage of Q683 reverse biases CR817 to stop Z-Axis drive current from flowing through the diode. With CR683 reverse biased, additional Z-Axis drive current to intensify the A Sweep is supplied whenever CR685 is biased off by the gating action of U665B. Since input pin 5 of U665B is HI , the gate output and therefore the conduction state of CR685 is set by the B GATE signal from U660C. While the B GATE is HI, the output of U665B is LO, and CR685 is biased off to add B INTENS current to the Z-DRIVE line via CR816. During periods that the B GATE is LO (B Sweep not running), the output of U665B is HI, and CR685 is biased on. Diode CR816 becomes reverse biased, and the extra current that was being supplied to the Z-DRIVE line to intensify the A Sweep is removed.

With the Q and $\overline{\mathrm{Q}}$ outputs of U670B switched to display the B Sweep (\bar{Q} LO and Q HI), Q683 is biased off, and Q682 is biased on. The collector voltage of Q682 reverse biases CR816 to block any Z-Axis drive current from being supplied through that diode. With CR687 off, the B Sweep is displayed if CR680 is reverse biased. During the B Sweep interval, the B GATE output at pin 11 of U665D is LO. Diode CR680 is then reverse biased, and Z-Axis drive current from B INTENS flows through CR817. If the B Sweep is not running, the B GATE output of U665D is HI. That HI forward biases CR680 and reverse biases CR817. No B Z-AXIS drive current flows through CR817.

HORIZONTAL

The Horizontal Amplifier circuit, shown on Diagram 7, provides the signals that drive the horizontal deflection plates of the crt. Signals applied to the Horizontal Preamplifier may come from either the A or the B Miller Sweep Generator (for sweep deflection) or from the XY Amplifier (when Nonstore X-Y display mode is selected). A and B Sweep switching is controlled by signals from the Alternate Display Switching Logic circuit discussed earlier. Either the Nonstore sweeps or the Storage horizontal deflection signals are passed to the Horizontal Output Amplifier via a diode gating circuit. Signal selection by the Horizontal Mux circuit is controlled by the Channel Switch Logic output signals (located on Diagram 2). See Figure $3-$ 6 for the block diagram of the Horizontal Amplifier.

The Horizontal POSITION control, X10 Magnifier circuitry, and the horizontal portion of the Beam Find circuitry are also part of the Horizontal Amplifier circuitry.

Horizontal Preamplifier

The Horizontal Preamplifier switches the Nonstore horizontal drive signals and amplifies input signals for application to the Horizontal Output Amplifier.

The A and B Sweeps are applied to the emitters of Q742, through Sweep Gain potentiometers R740 and R730. These transistors are biased into the active or cutoff regions, via CR732 and CR742, by the A DISP and B DISP signals obtained from the Alternate Display Switching Logic circuitry (Diagram 6). The negative voltage level that occurs at pin 9 or pin 10 when the associated transistor is cutoff, internally disconnects the sweep input from the preamplifier circuitry. The POSITION control (R726) horizontally adjusts the crt trace position by supplying a variable dc offset voltage, through pin 14, to the output of the preamplifier. The position offset voltage from the wiper of R726 also goes to the Vector Generator circuitry (Diagram 20) to horizontally position the STORE mode waveform displays. Readout displays are not affected by the Horizontal POSITION control. Preamplifier output bias current levels are set by R751 at pin 5, and frequency compensation for X -axis signals is provided by C751, connected to pin 13.

Nonstore horizontal X 10 Gain is set by the resistor network between pins 3 and 6 of U760. When the X10 Magnifier is on, S721 is closed, and the amplifier gain increases by ten times. Magnified timing accuracy is adjusted using X10 Gain potentiometer R754. MAG REGIS potentiometer R749 is adjusted for no horizontal shift at the center of the graticule as X10 Magnifier is switched on
and off. A second set of contacts on 5721 informs the Microprocessor whether X10 Magnification is off or on. The SEC/DIV readout is automatically set to the correct scale factor, and STORE mode waveforms are digitally modified to reflect X10 magnification.

X-Y Amplifier

The X-Y Amplifier amplifies the Nonstore Channel 1 signal (X-AXIS) from the Internal Trigger circuitry (Diagram 4) and passes it to the Horizontal Preamplifier.

When the Nonstore X-Y mode is selected, Q737 is biased on to place a HI on U 760 pin 12 to internally disconnect the A and B Sweep and the HORIZ POS input pins. The $\overline{X Y}$ signal line is LO, biasing Q756 off to let the X-AXIS signal drive the noninverting input of U758. The output of U758 is a combination of the X-AXIS signal on pin 3 and the Horizontal POSITION voltage applied to pin 2 via R758. The X-Axis deflection accuracy is adjusted by X-GAIN potentiometer R760. The single-ended X-AXIS signal at pin 11 of U760 is changed to a differential signal at the preamplifier output pins. The differential signal is passed through the Horizontal Mux circuit to the Horizontal Output Amplifier for final amplification. When the X-Y mode is not selected, Q756 is biased on, and the X-AXIS signal is shunted to ground through the transistor.

Horizontal Output Amplifier

The Horizontal Output Amplifier provides final amplification of the horizontal Nonstore sweep signals or the Store mode deflection signals to drive the horizontal crt deflection plates.

In NONSTORE mode, signals from the (+) and (-) SWP outputs of U760 drive the Horizontal Output Amplifier. In STORE mode, horizontal LH OUT or RH OUT deflection signals are passed through the diode gate to drive the amplifier. Drive signals for STORE mode and readout character displays are selected by the Display Controller. Either Nonstore sweeps or Store deflection signals are selected by the diode gating using signals from the Store/Nonstore Multiplexer (U7201 on Diagram 2) through inverters U7202A and U7202B.

The selected signals drive a differential shunt-feedback amplifier. Due to the feedback, the input impedance of the amplifier is low. The base voltages of Q770 and Q780 are biased at nearly the same dc level by forward-biased diodes CR765 and CR768 located between the two emitters.

Figure 3-6. Horizontal Amplifier block diagram.

Transistors Q770, Q775, and Q779, as one-half of the complementary differential circuit, form a cascodefeedback amplifier for driving the right crt horizontal deflection plate. Amplifier gain is set by R775, with C775 providing high-frequency compensation. For low-speed signals, Q779 serves as a current source for Q775. At high sweep rates, the deflection signal is coupled through C779 to the emitter of Q779 to provide added pull-up output current to drive the crt. The amplifier formed by Q780, Q785, and Q789 drives the left crt horizontal deflection plate in the same manner as described above, with zener diode VR782 shifting the collector signal level of Q780 to the correct level to drive the emitter Q785.

The BEAM FIND function is active when S390 is pushed in to disconnect the cathode of CR764 from the -8.6 V supply. The voltage on the cathode of VR764 goes positive, causing CR780 and CR770 to be forward biased. Current from R764 causes the output commonmode voltage of the two shunt-feedback amplifiers to be shifted negative to reduce the available voltage swing at the crt plates. This stops the trace from being deflected off-screen horizontally. The BEAM FIND voltage also goes to the Vertical Output Amplifier, and the vertical deflection is limited in that circuit when the voltage is removed.

A circuit formed by Q7501 and Q7502 supplies reference voltages for the 1 K and 4 K storage acquisitions and for the variable SEC/DIV control, R721. Transistor Q7502 provides a 0.6 V drop from the -8.6 V supply to generate a -8 V reference for the 1 K REF and one end of potentiometer R721. The 4K REF is produced by Q7501 and is adjusted by using the RATIO ADJ potentiometer to set the correct ratio for the two reference voltages. This reference level also goes to the other end of R721. The wiper voltage of R721 is the HOR REF voltage for the A and B Sweep timing resistors in NONSTORE mode. In STORE mode, either the 1 K REF or the 4 K REF voltage level is applied to the A and B Sweep timing resistors. Switching between reference levels for the different modes is done by the Storage Panel ACQUISITION switches (located on Diagram 14).

Probe Adjust

The Probe Adjust circuitry, shown on Diagram 7, is a square-wave generator and diode switching network that produces a negative-going square-wave signal at PROBE ADJUST connector J9900. Amplifier U985 forms a multivibrator that has an oscillation period set by the time constant of R987 and C987. When the output of the multivibrator is at the positive supply voltage, CR988 is forward biased. This reverse biases CR989, and the PROBE ADJUST connector signal is held at ground potential by R990. When the multivibrator output switches states, and is at the negative supply voltage level, CR988 is reverse biased. Diode CR989 becomes forward biased, and the circuit output level drops to approximately -0.5 V .

MICROPROCESSOR AND STORE-PANEL CONTROLS

The Microprocessor, shown on Diagram 14, directs the operation of the Storage and digital circuitry in the oscilloscope by following firmware control instructions stored in the Microprocessor memory. The Store-Panel Controls are monitored by the Microprocessor to detect when a Storage operation is selected. The rest of the significant front-panel controls are monitored through the Front-Panel A-to-D converter and I/O interface circuitry. Circuit operation is then directed by the Microprocessor to perform the selected operation.

Microprocessor, Clock, and Timer

Microprocessor U9111 is the center of control activities. It has an eight-bit combination bidirectional data bus for information transfer and addressing (ADO through AD7) and a 12-bit address bus for selecting the source or destination of the data transfers (A8 through A19). Precise timing of instruction execution, addressing, and data transfer is provided by an external, crystal-controlled oscillator, shown on Diagram 18 and Clock Generator U9104.

A divide-by-three circuit in Clock Generator U9104 reduces the 20 MHz external input from the crystal oscillator circuit to 6.7 MHz for clocking the Microprocessor. An output from the 6.7 MHz clocking signal also drives the Display Controller (U9208 on Diagram 15) to time those devices. Another clock signal (PCLK) output, at one-half the Microprocessor clock frequency (3.3 MHz), is supplied to the input to U9108, a binary ripple counter that produces a lower frequency timing signal. The 6.7 MHz signal is also included in the Control Bus to provide a clocking signal for future options.

The RESET output of U9104 provides a power-on reset signal under normal operation or a manual reset using jumper connector P9104. The $\overline{\mathrm{RES}}$ voltage level at pin 11 is held below the switching threshold of an internal Schmitt Trigger circuit after the power is applied for a time period set by the RC time constant of R9107 and C9107. This holds the Microprocessor in the reset state until the power supply voltages are high enough to permit normal operation of the digital circuitry. The Microprocessor is held reset during the delay period. Manually moving jumper P9104 to the RESET position forces a reset of the Microprocessor and the Display Controller.

The only RAM available for general use is the Display RAM. It's access is mediated by the Display Controller and associated circuitry. To allow the Display Controller to have first priority access to the RAM, the RDY1 input to the clock generator is used to tell the Microprocessor to wait for access to the RAM.

In addition, when one of the Communication Options is installed, the RDY1 input (U9104 pin 4) is used to synchronize the operation of the Microprocessor with the asynchronous activity of the GPIB (General Purpose Interface Bus) or RS-232-C Options for parallel or serial data transfer via the external communications port.

Resistor pack R9113 is a data bus pull-up. During normal operation, the resistor pack generates the interrupt vector pointer. During the hardware kernel test, the resistor pack generates the NOP instruction.

Latch and Buffer

Addressing is done using dedicated address bus lines. Address latch U 9112 demultiplexes the address bus (separates the address and data bytes). When an address is valid, the Microprocessor sets the address-latch enable (ALE) HI (U9111 pin 25). Both U9112 and U9114 are clocked to latch the address bits. The latched bits are held until the Microprocessor places a new address on the busses and again sets the ALE signal HI. Some bits passing through U9114 have status information multiplexed with the address, so U9114 also functions as a demultiplexer.

Decoder

In addition to providing specific addresses to internal locations within memory devices, the addresses are decoded to provide enabling signals for blocks of addresses and to control the selection of $1 / O$ (Input/Output) devices. Table 3-1 shows the instrument's memory map.

In normal operation, address block decoder U9106 is always enabled. One-half of the dual 1-of-4 decoder looks at address bits A14 ard A15. Latched address bits A18 and A19 from U9114 are looked at by the second half of the device.

I/O address decoding is performed by U9105. To perform its decoding, it must be enabled by the decoded output of U9106. The lower half of U9105 is controlled by a logic gating circuit formed by U9101D, U9102A, and U9102D. The lower half becomes enabled when either $\overline{\mathrm{RD}}$ or $\overline{W R}$ is Low and BLOCK-0 and IO SEG are both LO. The upper half of U9105 is enabled only when address bits A12 and A13 are both HI, setting pin 9 of U9105 LO.

ROM

The operating system firmware is contained in two 64 K by 8 -bit read-only memories (U9110 and U9109). Immediately after the power-up reset ends, the Microprocessor
automatically fetches the first command from the reset vector (address OFFFFO), and begins program execution. Other interrupts to the Microprocessor cause vectoring to addresses that start the interrupt handling routines. The NMI (non-maskable interrupt) vector is at 00008, and the Maskable Interrupt (INTR) is vectored to 03FC (both interrupt vectors are in RAM).

Store Panel Controls and Buffer

The open or closed position of the Storage Panel Controls is passed to the Microprocessor via two octal bus drivers, U9301 and U9302. Each bus driver transfers eight individual data bits to the data bus when enabled. Enabling of the bus drivers is done by address line A2, which goes to both drivers, and decoded input/output enabling lines, going separately to each driver. Both enabling inputs must be LO on each IC to pass the input data bit to the data bus.

The Microprocessor communicates with the other devices on the data bus via Octal Bus Transceiver U9113. Two signals from the Microprocessor control enabling of the Transceiver and direction of the data flow. When the $\overline{\mathrm{DEN}}$ signal is LO U9113 is enabled for transfers, and the $D T / \bar{R}$ signal sets the direction of the transfer. $10 / \bar{M}$ qualifies the transfer to allow pull-ups to assert an interrupt number on the bus during interrupt cycles. While the address and data are available on the bus side of this transceiver, only the data time slot is used.

Non-Storage Front-Panel Controls

There are many front-panel controls that do two things at the same time; control the real-time scope mode, and tell the Microprocessor what is being selected or modified. These controls include the vertical position controls, the vertical gain controls, the A and B time per division controls, the three major trigger mode controls, the vertical coupling controls, the sweep mode control, and the delaytime control. In addition, the probe-coding ring is read to determine true Volts per Division. In addition to acting as the user interface to the Microprocessor, the $1 \mathrm{~K} / 4 \mathrm{~K}$ and STORE/NON STORE switches select the reference voltage applied the A and B timing resistors in the Sweep Generator circuitry.

STATUS ADC AND BUS INTERFACE

Front-panel control settings and the operating status are passed to the Microprocessor via the Bus Interface. Digital signals that can be read directly as data bits are buffered onto the Data bus either via octal bus driver U6102 or U6103. Analog voltages are converted to digital data bytes by analog-to-digital converter U6105. The analog signals are multiplexed to a buffer amplifier either by

Table 3-1
Memory Space Allocation

Block Designation	Block Address (Hex)	Space Allocation Purpose
RAM SEG	00000-3FFFF	Four images of Memory Segment 0
RAM Primary	$\begin{aligned} & 00000-07 F F F \\ & 08000-0 F F F F \end{aligned}$	8-bit display RAM—waveforms, interrupt vectors, miscellaneous. 4 bits of display RAM for waveform attributes (LSB).
	10000-3FFFF	RAM Images.
10 SEG	40000-7FFFF	Four images of Memory Segment 1
10 Main Image		Option Status Latch (in). Option Parameters Latch (in). Option UART/GPIB chips (I/O). Option Interrupt Mask Latch (out). Time Base Mode Register U4119. Time Base Divider Register U4113.
	41XXX (INT-RST) 42XXX (FRAME)	Display chip interrupt reset. Display chip next frame.
	$\begin{aligned} & \text { 4377E (IO-0 A7) } \\ & 437 \mathrm{BE} \text { (IO-0 A6) } \\ & \text { 437DE (IO-0 A5) } \\ & \text { 437EE (IO-0 A4) } \\ & \text { 437F6 (IO-0 A3) } \\ & \text { 437FA (IO-0 A2) } \end{aligned}$	Acquisition Memory Address Buffer Low bits U3427. Acquisition Mode Register U3310. B Delay Timer U4123. Record Counter U4115 and U4116. Front Panel A/D control U6104. Front Panel A/D data U6102.
	$\begin{aligned} & 4377 \mathrm{~F}(\mathrm{O}-1 \mathrm{~A}) \\ & 437 \mathrm{DF}(\mathrm{O}-1 \mathrm{~A} 5) \\ & 437 \mathrm{EF} \text { (IO-1 A4) } \\ & 437 \mathrm{~F} 7 \text { (IO-1 A3) } \\ & 437 \mathrm{FB}(\mathrm{O}-1 \mathrm{~A} 2) \end{aligned}$	Acquisition Memory Address Buffer high bits U3428. B Delay Timer U4124. Record Counter U4117. Clock Delay Timer U4231. Main Front Panel Input U6103.
	43FFA (IO-0L A2)	Front Panel Buffer U9301.
	43FFB (IO-1L A2)	Front Panel Buffer U9302.
	48000-4BFFF	Acquisition Memory-Four images of Acquisition RAM U3418 and U3419.
10 Duplicate Images	50000-7FFFF	
COMM SEGMENT	80000-BFFFF	Two images of Memory Segment 2
Option Main Image	$\begin{aligned} & 80000-87 F F F \\ & 88000-8 F 7 F F \\ & 8 F 800-8 F F F F \\ & 90000-97 F F F \end{aligned}$	Half of Communication Options ROMs U1243 or U1343. Option nonvolatile RAM. Nonvolatile RAM. Half of Communication Options ROMs U1243 or U1343.

Table 3-1 (cont)

Block Designation	Block Address (Hex)	
Option Duplicate Image	$98000-$ SFFFFF	
	C0000-FFFFF	Two images of Memory Segment 3
ROM Duplicate Image	C0000-DFFFF	
ROM Main Image	E0000-E7FFF	System ROM 0—Low half of U9109.
	E8000-EFFFF	System ROM 1—Low half of U9110.
	F0000-F7FFF	System ROM 0_High half of U9109.
	F8000-FFFFF	System ROM 1_High half of U9110.

U6106 for the Vertical status signals or by U6101 for the Horizontal Status signals. The multiplexers are controlled by the Microprocessor via the control bits latched into U6104. The buffer amplifier output drives the input to the ADC. The converted data from the ADC is buffered onto the data bus by U6102.

STORAGE ACQUISITION

The Storage Signal Acquisition system, shown on Diagram 16, selects the channel or channels for digitizing, samples the signals at clock controlled intervals, and digitizes the samples. The circuitry consists of an analog Channel Switch, a Sample-and-Hold circuit, and the Analog-to-Digital Converter. A Strobe Generator drives the sampling circuitry diode bridge at the $\overline{\text { ADCLK }}$ rate (20 MHz) for all acquisition modes.

Channel Switch

With STORE mode selected, both channel signals are applied to analog Channel Switch U2101 where they may be selected for digitizing. Signals are selected by the CHAN1 or the ADD signals from the Acquisition Memory, shown on Diagram 11. The CHAN1 signal is derived from the delayed SAVECLK so channel switching takes place at the proper times for the A/D conversion. Both sides of the Channel Switch conduct in ADD Mode, summing the two input signals at the output. See "Channel Select" in the Acquisition Memory discussion for details on channel selection signals.

Differential channel signals are applied to the bases of a pair of transistors within the Channel Switch, at pins 2 and 15 for Channel 1 and pins 7 and 10 for Channel 2. Gain setting and compensation networks are connected between the emitters of both differential pairs in the emitter current source path. A gain setting potentiometer
(R2118 for Channel 1 and R2108 for Channel 2) sets the acquisition gain for each channel. Thermistors RT2101 and RT2111 temperature compensate the gain of the circuit. Diodes CR2111 and CR2112 temperature compensate the gain of the circuit at high frequencies. Capacitors C2103 and C2113 set the high-frequency peaking.

The Channel 1 amplifier base biasing voltage is supplied via R2122 and the input termination resistors, R2121 and R2120. The termination resistors provide the proper impedance match between the signal lines from the Vertical Preamplifiers (Diagram 2) and the high impedance inputs of the Channel Switch. Corresponding resistors in the Channel 2 amplifier perform the same job for Channel 2 . Selection of the channels is controlled by the inputs at pin 4 and pin 14. The CHAN1 signal biases on the Channel 1 differential amplifier pair when LO and the Channel 2 differential amplifier pair when HI. The logic level of CHAN1 is toggled at the proper rate to provide dualchannel operation. Diodes CR2103 and CR2104, and resistors R2128 and R2129 level shift CHAN1 to the level required by U2101.

For ADD Mode, the CHAN1 signal is held LO and the ADD signal applied to pin 14 is switched HI by the Microprocessor via Acquisition Mode Register U3310, shown on Diagram 17, biasing on both the Channel 1 and the Channel 2 amplifiers. The resulting output current is the sum of the input signals applied to Channel 1 and Channel 2. Diodes CR2101 and CR2102, and resistors R2126 and R2127 level shift ADD to the level required by U2101.

The differential output current from the Channel Switch (pins 12 and 13) is converted to a single-ended voltage for application to the sampling circuitry. An amplifier stage composed of Q2101, Q2102, Q2103, Q2104, Q2105, Q2106, and associated circuitry performs the conversion.

Common-base transistors, Q2101 and Q2102 form a differential amplifier that presents a low-impedance load for the Channel Switch. Offset is adjusted (using potentiometer R2138) to match the store display with the nonstore display. Thermistor RT2131 temperature compensates the offset. Output current from the collector of Q2102 is applied to the base of Q2103, a shunt-feedback inverting amplifier. The inverted output signal voltage is developed across R2146 in the collector circuit. The output signal of Q2101 is developed across R2147 in series with the signal at the collector of Q2103 to produce a singleended replica of the differential input signal at the base of Q2105. Transistor Q2104 and its associated biasing resistors provide a constant-current bias source for Q2101, Q2102, and Q2103.

Emitter-followers Q2105 and Q2106 provide the necessary signal drive and impedance matching to the Sample-and-Hold diode bridge. Transistors Q2150 and Q2107 and associated circuitry clamp the signal level to -2.5 V and +1 V respectively at the sample and hold input.

Sample-and-Hold

A sampling diode bridge formed by CR2203 is biased on by a strobe from the Strobe Generator. The bridge is biased off during the hold period while the Analog-toDigital Converter (ADC) is converting the last sample. When the bridge is strobed on, Hold capacitor C2235 is charged to the new analog level present at the input to the bridge. The bridge becomes biased off when the strobe passes, and the voltage on the hold capacitor is held until the next sample is taken. Signal samples are buffered by a high-impedance input FET amplifier and coupled to the ADC via an emitter-follower amplifier that provides the input of the ADC with a low-impedance source. FET Q2209B, with its source and gate connected together, supplies source current to Q2209A. A constant-current load for the emitter-follower is provided by Q2211 and its associated biasing resistors.

Strobe Generator

The ECL (Emitter-Coupled Logic) circuit formed by U2203A, B, and C produces two pairs of complementary control signals. One pair drives the sample strobe circuit to bias the sampling diode bridge on, and the other clocks the ADC. The $20 \mathrm{MHz} \overline{\mathrm{ADCLK}}$ clock from the Clock Generator circuit (Diagram 18, Digital Timebase) is shifted to ECL levels by the voltage divider formed by R2265, R2266, and R2267. Capacitor C2224 improves the highfrequency characteristics of the divider string, and R2268 limits the input current to U2203C. OR/NOR-gate U2203C produces the complementary ECL clocks to the ADC.

The sample-bridge strobe pulse is developed from the ADC clock signals by U2203B, U2203A, and the RC circuit composed of R2270 and C2225. The uninverted output of U2203C (CLK A/D) is applied to pin 4 of OR/NOR-gate U2203A where its signal transitions are seen immediately. The inverted output of U2203C (CLK A/D) must charge C2225 (through R2270) to the switching threshold of U2203B before U2203B can switch state and change the state of input pin 5 of U2203A. When a HI-to-LO transition occurs on pin 4 of U2203A, the output at pin 3 goes HI and pin 2 goes LO to follow the input signal. A short time later, the charge on C2225 reaches the switching threshold of OR-gate U2203B, and the output of that gate goes HI. That HI switches the output at pin 3 of U2203A back LO and pin 2 back HI. The total duration of the pulse is approximately 10 ns . Pin 4 of U2203A switches from LO to HI on the next transition of $\overline{\mathrm{ADCLK}}$, and after a short delay the output of U2203B goes LO again, readying the circuit for the next pulse.

The complementary sample strobes are applied to opposite bases of a current-mode switch formed by Q2208 and Q2207. The amplified output is coupled to the sampling diode bridge biasing circuit by T2201 and T2202, a common mode transformer. Transformer coupling prevents any dc offsets from entering the bridge via the biasing circuit by completely isolating the bias voltage from the signal voltage. The ECL output lines are terminated by R2278 and R2277 at the differential switch. The resistors match the characteristic impedance of the transmission path to prevent reflections that occur when the signals are not properly terminated. Common mode transformers T2202 and T2203 improve the symmetry of the strobe pulses so that, when the pulses are combined at CR2203, the pulses will cancel each other out and not show up as noise in the signal.

When the sample strobe is being amplified, the polarity of the pulse on pin 6 of T2201 is positive. The sampling strobe path is through C2229, C2230, and T2203 to forward bias CR2203. Signal current then flows through the forward biased diodes to charge Hold capacitor C2235. At the end of the strobe the polarity changes across pins 6 and 1 of T2201. The voltage on C2229 and C2230 increase the reverse bias on the bridge during the off time. R2281 and the duty cycle of the strobe determine the charge on C2229 and C2230.

Analog-to-Digital Converter

Analog-to-Digital Converter U2204, converts analog input voltages in the range of 0 V to -2 V into 8 -bit digital representations. The digital output code for 0 V is 11111111 and 00000000 for -2 V . Conversions are continually taking place at 20 Megasamples per second (the $\overline{A D C L K}$ rate) regardless of the SAVECLK rate. The ADC is
a high-speed ECL device having ECL compatible openemitter outputs. Pull-down resistors to the -5 V supply are in resistor pack R2295. The ECL output levels are converted to TTL levels by U2205 and U2206 and placed on the C-DATA BUS.

An external voltage reference for the ADC is generated by a circuit composed of operational amplifier U2202B and Q2213. The +5 V reference voltage is converted to a current by R2259 and applied to the inverting input of U2202B. An extra current source is provided from the +8.6 V supply via R2260 to reduce loading on the +5 VREF. The closed-loop gain of the stage is -0.4 for an output voltage of -2 V at the emitter of Q2213.

ACQUISITION MEMORY

The Acquisition Memory system, shown on Diagram 17, controls the movement of the digitized data from the A / D Converter to the Acquisition Memory. The acquisition mode controls the way the transfer occurs. Data may be transferred directly to memory through the MIN/MAX registers as either Odd and Even data for a single channel acquisition or Channel 1 and Channel 2 data for dualchannel acquisitions. In the Min-Max Mode, a certain number of data samples are compared for the highest and lowest amplitude during the comparison period. The maximum and minimum data values are transferred to the Acquisition Memory.

Data is transferred through the A/D Buffer, the MIN/MAX Registers, the Swap Registers, and finally into Acquisition Memory in a pipeline fashion. Waveforms are constantly sampled and digitized at the ADCLK rate, then the resulting data byte representing the value of each sample is latched into the A/D Buffer if the CONV clock is 20 MHz . Each succeeding sample clocked into the A / D Buffer follows the previous data sample through the digital devices of the acquisition system. Acquisition control clocks that are copies of the SAVECLK with various delays handle the data transfer timing.

A/D Buffer

A data byte from the A/D Converter is latched into A/D Buffer U3229 on the rising edge of the convert (CONV) clock. The data is immediately available on the G data bus during normal operation because the buffer is enabled by a HI from NAND-gate U3426D.

For testing and diagnostics purposes, the TEST signal on pin 12 of NAND-gate U3426D is made LO by the Microprocessor via the Acquisition Mode Register. That isolates the A/D Buffer from the bus and enables the Diagnostic Code Generator to place data on the G data bus to the MIN/MAX Registers.

MIN/MAX Registers

Data is latched into the MIN/MAX Registers in four different ways depending on the acquisition mode. The MINCLK and MAXCLK clocking signals are selected by MIN/MAX Clock Selector multiplexer U3309. The mode selected determines the actual clock signals that latch data into the MIN/MAX Registers.

For Sampling mode, the data is latched by ODDCLK and $\overline{O D D C L K}$ to place either odd and even data from a single channel or Channel 1 and Channel 2 data from both channels into the registers. The timing of the data bytes is evenly spaced in sampling mode (see Figure 3-7).

In X-Y mode for $20 \mu \mathrm{~s}$ per division and slower, both channels are chopped to obtain the horizontal and vertical deflection signals. The EVENCLK signal clocks the MIN Register and $\overline{O D D C L K}$ signal clocks the MAX Register. Selecting these clocks makes the time difference between the two samples 100 ns . The last possible sample in a Channel 1 SAVECLK period and the first possible Channel 2 sample are saved as a pair. X and Y data are then separated by one CONV clock period rather than the longer (possibly much longer) SAVECLK clock period.

Min-Max mode generates the last two clocking modes. The first is the Min-Max Initialization mode. For initialization, the first data sample in a SAVECLK period is latched into both the MIN and the MAX Registers at the same time. This is the sample with which the remaining samples taken during the SAVECLK period are compared. After storing the initial data sample, the MIN/MAX Clock Selector multiplexer (U3309) is switched. It then passes the NEWMIN and NEWMAX signals from the data Comparators, U3233 and U3235, to clock the MIN/MAX Registers.

COMPARATORS. Data bytes latched into the MIN/MAX Registers are compared with each new data byte latched in the A/D Buffer. If the data value is either lower than the present data in the MIN Register or higher than present data in the MAX Register, the appropriate Comparator output pin goes HI. The comparison takes some time after the clocking signals, so the MIN/MAX Clock Selector Multiplexer is disabled from passing the NEWMAX or NEWMIN until the CONV clock goes LO. By that time, the comparator outputs have stabilized. If a NEWMAX or NEWMIN has occurred, the new data byte is latched into the appropriate register one-half a CONV clock cycle after the data was latched into the A/D Buffer.

The Min-Max data comparisons for each saved data byte continue for the duration of the SAVECLK period. The minimum number of samples compared is 4 at $20 \mu \mathrm{~S}$ per division. This corresponds to the number of CONV clock periods possible at the fastest SAVECLK rate (a

Figure 3-7. Sampling mode acquisition timing at $0.05 \mu \mathrm{~s}$ per division ($\mathrm{ADCLK}=\mathbf{C O N V}=\mathbf{2 0} \mathbf{~ M H z}$).
function of the SEC/DIV switch setting). As the SAVECLK period increases with slower SEC/DIV switch settings, the number of samples compared to find a min and a max per SAVECLK period also increases.

MIN-MAX OUTPUT. One CONV clock period before the end of the SAVECLK period, the ACQWRITE signal gives write control of the Acquisition Memory to the acquisition system (see Figure 3-8). If SWAPEN (U3320 pin 13) is HI, either SWAP (U3313A pin 3) or SWAP (U3313B pin 6) becomes TRUE (depending on whether the last sample was a NEWMAX or a NEWMIN) at one-half a CONV clock period before the end of the SAVECLK to enable the output of one set of the Swap Registers onto the memory data buses. At the same time, BUFFERCLK (U3103A pin 5) goes HI to clock the last Min and Max data from the MIN/MAX Registers into and through the Swap Registers onto the memory data buses where the data is written into the Acquisition Memory. All 16 bits of the Min and Max data are transferred into memory in parallel. This 16-bit transfer also holds true for Odd and Even or Channel 1 and Channel 2 data bytes when those signals are being sampled.

Acquisition Mode Register

The Acquisition Mode Register controls the manner in which data is transferred through the acquisition system from the A/D Buffer to the Acquisition Memory. Outputs of the MIN/MAX Clock Selector multiplexer, U3309, were discussed in the description of the MIN/MAX Registers. The control signals for switching the multiplexer and selecting which set of Swap Registers are enabled when transferring data to the Acquisition Memory are described in this part. The mode selection control of the MIN/MAX Clock Selector multiplexer is shown in Table 3-2.

Table 3-2
MIN/MAX Clock Selector Multiplexer Switching

MODE	Control Input 0	Control Input 1	Input Selected
MIN/MAX INIT	1	1	3
MIN/MAX	0	1	2
SAMPLING	1	0	1
SAMPLING XY	0	0	0

Multiplexer switching is controlled by the MIN/MAX and $\overline{X Y}$ signals from the Acquisition Mode Register U3310 (sent by the Microprocessor) and the state of the CONV clock. In MIN/MAX, the circuitry composed of U3306A and U3306B produces a 100 ns HI pulse at the beginning of each SAVECLK cycle to initialize the MIN/MAX Registers for making comparisons. Prior to entering the Min/Max
mode, flip-flop U3306A is held in the Set state (reset is also LO, so both outputs of the flip flop are HI). Each rising CONV clock edge clocks the HI through flip-flop U3306B and pin 9 remains HI. With a LO MIN/MAX signal on control input 1 and a HI from flip-flop U3306B on control input 0 , the multiplexer selects the sampling mode clocks (ODDCLK and ODDCLK) to clock data into the MIN/MAX Registers.

When MIN/MAX (U3310 pin 14) goes HI, the set is removed from U3306A and the flip-flop becomes reset by the LO on pin 1 . On the next rising edge of CONV, the LO is clocked through flip-flop U3306B, and the reset is removed from U3306A. On the next rising edge of EVENCLK, the fixed HI on the D input of U3306A is clocked through that flip-flop to the D input of U3306B. Then on the next rising edge of CONV, it is clocked to the Q output to make control input 0 of the multiplexer HI along with the MIN/MAX input on control input 1 . The multiplexer will not yet pass the fixed HI inputs selected, because the outputs are not enabled. When CONV goes LO, AND-gate U4101C passes that LO to the enabling inputs of the multiplexer. The two input HI levels are then passed through the multiplexer to clock the same data byte into both MIN/MAX Registers. When CONV again goes HI , the multiplexer outputs become disabled, so the INIT clock to the MIN/MAX Registers last for only one-half of a CONV clock period.

When the HI was clocked to pin 9 of U3306B, pin 8 went LO, and U3306A became reset, placing a LO on its Q output. The next rising edge of the CONV clock clocks the LO through flip-flop U3306B, changing control input 0 of the multiplexer and removing the reset from flip-flop U3306A. The initialization pulse to control input 0 lasts for a period of one CONV clock; 100 ns in Min/Max mode. After initialization, the multiplexer switches to select the NEWMIN and NEWMAX outputs from the data comparators (U3233 and U3235) to clock the MIN/MAX Registers. The one-half CONV clock delay in enabling the multiplexer allows the outputs of the Comparators to settle when, on the next samples, the outputs of the comparators are used to clock the MIN/MAX Registers. A new initialization is started again on the next rising edge of EVENCLK (once for each SAVECLK).

The last Acquisition Mode is $X Y$ Sampling. The Microprocessor sets the MIN/MAX and $\overline{X Y}$ signals LO at the Acquisition Mode Register (U3310). That places a LO on control input 1 of the multiplexer and enables the outputs through AND-gate U4101C. With $\overline{X Y}$ LO, flip-flop U3306B is held reset, placing a LO on control input 0 of the Multiplexer. The MINCLK and MAXCLK are then the $\overline{E V E N C L K}$ and $\overline{O D D C L K}$ signals respectively. These clocks produce the minimum possible time difference (100 ns) between the Channel 1 and Channel 2 data samples that are stored as a pair.

Figure 3-8. MIN/MAX Acquisition timing at $20 \mu \mathrm{~s}$ per division.

Another section of the circuitry is used in conjunction with the Min-Max Sampling mode to determine whether the last sample clocked into the MIN/MAX Registers was a NEWMIN or a NEWMAX. This knowledge is necessary in chopped Min/Max mode to place the Min and Max data samples into the Acquisition Memory in the correct order. Each Swap Register consists of two sets of two. The Min data is placed in both buffers of one set and the Max data in both buffers of the other set at the same time by the rising edge of BUFFERCLK. The outputs of one of the buffers in each set are connected to one of the memory data buses and the other half of the buffers are connected to the opposite memory data bus. Depending on which buffer in each set is enabled, the data is placed on the memory data buses by either the nonswapping buffers or the swapping buffers (controlled by enable signals SWAP and $\overline{S W A P}$).

When swapping is not enabled, as in sampling and X-Y modes, the SWAPEN signal from the Acquisition Mode Register (U3310) is LO, and flip-flop U3307B is held set. NAND-gates U3313B and U3313A have as one of their inputs the Q and $\overline{\mathrm{Q}}$ outputs of the flip-flop respectively. With the flip-flop held set, NAND-gate U3313B is enabled to pass the DATAEN enabling signal to the nonswapping buffers only. In chopped Min/Max mode, swapping is enabled to place the Min and Max data in memory in the correct order. The SWAPEN signal is set HI and the reset is removed from flip-flop U3307B so that the latch circuit on the D input controls the SWAP/SWAP states.

At initialization in Min/Max mode, both MINCLK and MAXCLK (U3309) go HI for the first data byte. At the end of the initialization pulse, both inputs to the latch are removed by disabling the multiplexer outputs, and the output states of both NOR-gates (U3308C and U3308D) remain LO.

A MAXCLK or MINCLK signal going HI is accompanied by a LO on the opposite signal line. If the MINCLK signal goes HI , the accompanying LO on the MAXCLK line causes U3308C to change output state from LO to HI. That HI goes to pin 12 of U3308D, holding its output LO. No further switching of the latch occurs unless the MAXCLK signal goes HI. MINCLK going HI again will not cause any state changes in the latch. If MAXCLK goes HI, U3308D will change to a LO output state, and U3308D pin 13 will be latched HI. The state of pin 13 when the rising edge of BUFFERCLK occurs is clocked through flipflop U3307B, enabling one of the NAND-gates that must pass the DATAEN enabling signal to the Swap Registers. If a NEWMAX (MAXCLK) occurred last, the Q output of U3307B will be HI and SWAP will be LO, enabling the nonswapping buffers, U3236 and U3239. If a NEWMIN (MINCLK) occurred last, pin 13 of U3308D will be LO.

When that LO is clocked through U3307B, NAND-gate U3313B goes LO, passing and inverting the DATAEN enabling signal. That makes SWAP LO, and the swapping buffers (U3237 and U3238) are enabled, placing the Max data into the Acquisition Memory that the processor looks at to find the data that occurred last.

Acquisition Clock Decoder

The Acquisition Clock Decoder circuitry is composed of three parts. One part is a flip-flop delay chain that produces the transfer clocks. The output clocks from the chain are essentially copies of the SAVECLK delayed by successive CONV or CONV clock periods. The second part controls acquisition writes by producing the ACQWRITE and DATAEN clocks. The outputs of this portion switch control of the Acquisition Memory to the acquisition memory system. This enables the data from the Swap Registers onto the memory data buses so it can be written into memory. The final section of the clock decoder circuitry drives the analog Channel Switch to select the vertical channel signal to be digitized.

DELAY CHAIN. The first four of five flip-flops in the delay chain (U4104B, U3101A, U3101B, and U3103B) are clocked by CONV for delays through each of either 100 ns or $50 \mathrm{~ns}(10 \mathrm{MHz}$ and 20 MHz CONV clock rates respectively). The various delays represented by the output clock lets data being transferred through each device in the acquisition pipeline settle at the outputs; and, in the case of Min-Max mode, be processed through the comparators before the next data byte is clocked in. The last flip-flop in the delay chain (U3103A) is clocked by CONV and produces a delay of one-half of a CONV-clock period between EVENCLK (U3101B) and BUFFERCLK (U3103A). Every rising edge of BUFFERCLK transfers both 8-bit data bytes from the MIN/MAX Registers into the Swap Registers and, in chopped Min-Max mode, clocks flip-flop U3307B in the Swap-Control circuitry. Flip-flop U3307B latches the last state of MINCLK and MAXCLK to determine which set of Swap Registers are enabled to pass data to the Acquisition Memory buses. See the "Acquisition Mode Control" description for additional information on Swap Register enabling.

ACQUISITION WRITE. Flip-flops U3105A and U3105B form a self-resetting circuit that produces the ACQWRITE signal once each SAVECLK period. The time duration of ACQWRITE is one WRITECLK period, either 100 ns or 200 ns (twice the CONV clock period) except at the fastest sampling rates when the SAVECLK is running at 10 MHz . In that case, once switched HI to write the first data into memory, ACQWRITE remains HI until ENDREC goes LO (a full record). The logic gating of U3104A, B, C, and D controls the reset line to U3105B.

Before the start of an acquisition, U3105A pin 1 is held LO by ACQENA. The LO keeps U3105A reset, putting a LO on U3105A pin 5 and U3104C pin 9. The LO on the input of NAND-gate U3104C causes the reset input of U3105B (pin 13) to be HI. This allows the next delayed SAVECLK to set U3105B. However before the start of an acquisition, SAVECLK is held LO, U3105B remains reset, the D input (pin 12) of U3105A is LO, and the WRITECLK signal continues clocking a LO to an already LO output of U3105A.

At the start of an acquisition, ACQENA goes HI on the reset input of U3105A. On the first rising edge of the delayed SAVECLK from U3101A pin 5, the fixed HI on the D input of U3105B is clocked through to place a HI on the D input of U3105A. On the next rising edge of WRITECLK, that HI is passed to the Q output of U3105A and pin 9 of NAND-gate U3104C. Assuming a HI is present on pin 10 of the NAND-gate, the output at pin 8 goes LO, resetting U3105B, and on the next rising edge of WRITECLK the LO from the Q output of U3105B is clocked through U3105A to end the ACQWRITE pulse. The ACQWRITE pulse also removes the reset from U3105B so that the next time it is clocked (by the next delayed SAVECLK), a new ACQWRITE pulse is produced for the next Acquisition Memory write.

The ACQWRITE signal goes to the Memory Control multiplexer (U3417) to switch Acquisition Memory write control to the acquisition system and is also applied to the D input of flip-flop U3307A. One-half of a CONV clock period later, the rising edge of CONV transfers the HI to the DATAEN clock line at the Q output of the flip-flop. DATAEN going HI enables NAND-gates U3313A and U3313B in the Swap-Control circuitry to pass the SWAP and $\overline{\text { SWAP }}$ register enabling signals. That and BUFFERCLK going HI transfers the data from the MIN/MAX Registers onto the Acquisition Memory busses where it can be written into memory.

If the SEC/DIV setting is such that SAVECLK is running at 10 MHz , RNGA and RNGB will both be HI at the inputs to NAND-gate U3104D. That makes the output of U3104A also a HI. ENDREC goes LO only when an acquisition is completed with a full record. The output of U3104B is therefore LO, and U3104C is disabled, preventing a reset from being passed to flip-flop U3105B. When ENDREC does go LO, NAND-gate U3104C is enabled, and the reset is passed to U3105B. On the next rising edge of WRITECLK, ACQWRITE is clocked LO, switching memory write control away from the acquisition system. When operating at the fastest SAVECLK rates, a pair of Swap Registers are enabled for the entire acquisition period to immediately transfer data clocked in by BUFFERCLK to the memory data buses.

CHANNEL SELECT. When only Channel 1 or Channel 2 is selected, the Microprocessor controls the choice via the Acquisition Mode Register. For Channel 1 only, the Microprocessor sets the $\overline{\mathrm{CH}}$ line LO, which sets U3102A and holds the CHAN1 line LO. CHAN1 switches the analog Channel Switch (U2101 on Diagram 16) to select and apply the Channel 1 signal to the Sample-and-Hold circuitry. Conversely, Channel 2 is selected when the Microprocessor sets the $\overline{\mathrm{CH} 2}$ line LO, which resets U3102A and holds the CHAN1 line HI. When the signals from both channels are to be added for ADD Mode, the $\overline{\text { CHAN1 }}$ signal line is held LO, and the ADD signal is held HI. This turns on both sides of the analog Channel Switch to sum the input signals.

For dual-channel acquisitions, both the set and reset input to flip-flop U3102A are HI, and channel switching is controlled by $\overline{\text { ADCLK }}$ and the logic circuitry driving the D input of the flip-flop. Channel switching is then determined by the acquisition mode and the range setting of the SEC/DIV switch. The channel switching is timed to place the switching point between ADCLK positive transitions (between sampling points) at the correct time for starting waveform data into the acquisition system pipeline.

Multiplexer $U 4103$ (Diagram 18) is switched by the RNGA and RNGB signals from the Timebase Mode Register. For SEC/DIV settings of $0.05 \mu \mathrm{~s}$ to $10 \mu \mathrm{~s}$, CONV clock and ADCLK run at 20 MHz and are in phase. In that case, the SAVECLK signal phase is also correct for driving the analog Channel Switch. For the remaining SEC/DIV switch settings, the CONV clock runs at one-half the ADCLK clock rate, and the control clocks developed by the delay chain are delayed by 100 ns through each flip-flop rather than by 50 ns as at the faster SEC/DIV settings. Since this changes the delays of data going through the pipeline, a delayed SAVECLK is required to switch channels at the proper time. The 100 ns delayed SAVECLK from the Q output of U4104B is delayed another 25 ns , by the rising edge of $\overline{\text { ADCLK, }}$, before reaching the output of flip-flop U3106A (Diagram 17).

Either the delayed SAVECLK from U3106A or SAVECLK is selected by the multiplexer and applied to the clock input of U3102B and to one input of NAND-gate U3112 (pin 2). When Min-Max mode is selected, flip-flop U3102B divides the selected clock by two. The channel is switched only once for each SAVECLK so that the samples compared for min and max during a SAVECLK cycle are all from the same channel.

When ACQENA on the reset input of U3102 is HI , the flip-flop is enabled to toggle on each rising clock edge. If Min-Max mode is also HI, NAND-gate U3313 is enabled to pass the signal from the Q output of the flip-flop. NORgate U3308, connected as an inverter, places a LO on
pin 1 of U3112A, and NAND-gate U3112 is disabled from passing the selected clock signal. U3112A puts a HI on pin 13 of U3112D, enabling U3112D to pass the divided clock signal to the D input of flip-flop U3102A. Rising edges of $\overline{A D C L K}$ transfer the inverted state of the signal at the D input of U3102A to the CHAN1 signal line, switching the Analog-Channel Switch at one-half the SAVECLK frequency. In Sampling and XY Sampling Modes, MIN/MAX is LO. This disables U3313D, stopping the divided clock, and enables U3112 to pass the selected clock to the D input of U3102A. Then, the selected clock and CHAN1 are the same frequency. Another 50 ns of delay is added when clocking through U3102A. The delay is present for either selected clock.

MEMORY CONTROL. Memory Control multiplexer U3417 selects the enabling and read-write signals that control the Acquisition Memory. When the ACQWRITE clock goes HI (see Figure 3-9), the multiplexer turns the memory over to the Acquisition System (1 inputs) to perform a write to memory. From the inverting multiplexer, the \bar{E} enabling signal (pin 7) is a fixed LO that selects the Acquisition Memory devices for access. The \bar{G} enabling signal (pin 4) is a fixed HI that disables the memory devices for outputting data. Writing to memory is controlled by the WRITECLK signal from the Clock Generator (Diagram 18). It becomes the \bar{W} (write enable) on pin 9 and the ADDRCLK (memory address clock) on pin 12 of multiplexer (U3417). When the ACQWRITE signal switches the multiplexer, one-half a CONV clock period later, the Swap Registers are enabled onto the memory buses, transferring from the MIN/MAX Registers the samples that are to be stored. In another one-half CONV clock period, the data bytes have settled, and the memories are enabled for an acquisition write by the LO state of the second half period of WRITECLK. The WRITECLK falling transition increments the Address Counters to the address of the next location to be written to in memory.

For a memory read or memory write by the Microprocessor, the Memory Control multiplexer is switched to the $\overline{1}$ input signals. $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ (read and write control signals) from the Microprocessor control bus, determine if a read or write is to be done. Loading the Address Counter (U3423, U3424, and U3425), enabling the Microprocessor Data Transceivers (U3421 and U3422), and gating the control logic is done by the ACQSEL signal. The signal is the OR of the $\overline{\text { IO-SEG }}$ and $\overline{B L C K 2}$ signals in the processor section. Both address selection signals must be LO to access the Acquisition Memory from the Microprocessor. The ADDRCLK signal from pin 12 of the multiplexer is a fixed HI that disables the Address Counters from counting while the Microprocessor is either reading from or writing to memory. The $\overline{R D}$ signal is inverted to pin 2 of the multiplexer by U3416A, and is again inverted to pin 4 by the multiplexer. When the
memory is enabled for reading stored data, pin 4 is LO ($\overline{\mathrm{RD}}$). The $\overline{\mathrm{ACQSEL}}$ signal is inverted by U3416B and applied to pin 5 of the multiplexer. It is again inverted through the multiplexer to a LO, enabling the memory outputs onto the memory data buses. The $\overline{\mathrm{WR}}$ signal is also HI to enable the memory for a read.

The Microprocessor writes to the memory only for diagnostics. $\overline{\mathrm{WR}}$ and $\overline{\text { ACQSEL }}$ must both be LO at the inputs of U3420C to cause pin 9 of the multiplexer to be LO, enabling a memory write. The Address Counters are enabled for a parallel load of the selected memory address. Only one memory device at a time is read from or written to by the Microprocessor, because the microprocessor data transceivers that buffer data to and from the memory devices are never both enabled at the same time. The enabling signals are gated by U3420A (ODDEN) and U3420D and U3426A (EVENEN). Address bit AO selects the data transceiver. When AO is HI , transceiver (U3422) is enabled; when LO, transceiver (U3421) is enabled. The $\overline{R D}$ signal from the microprocessor control bus selects the direction of transfer through the transceivers. When it is LO, the transfer is from the memory bus to the microprocessor data bus (read); when HI , the transfer is from the microprocessor data bus to the memory bus (write).

Acquisition Memory and Microprocessor Access

The Acquisition Memory stores the acquired waveform data that will be read out for the stored waveform display. In the normal operation, the Acquisition System controls writing the acquired data bytes, and the Microprocessor controls reading the data out for display. For diagnostic purposes, the Microprocessor also has a limited ability to write to the memory.

The Acquisition Memory is composed of two, 2 K by 8 bit static random-access memories (U3418 and U3419) for a total of 4 K bytes of memory. The memory space is divided into Odd and Even halves. Single channel data is stored as odd and even data byte pairs. Dual-channel operation requires that the Channel 1 data and Channel 2 data be stored in the opposite memory halves for a record length of $2 k$ bytes each channel. In Min-Max mode, the minimum and maximum data points of each data pair are stored in opposite halves of the memory. When both channels are being acquired (CHOP) in Min-Max mode, min data points and max data points for each channel are alternately stored in opposite halves of the memory.

Both memories are enabled at the same time for either reading or writing in parallel. When reading from or writing to the memories from the Microprocessor, the microprocessor data transceivers (U3421 and U3422) are enabled on opposite states of A0, the least-significant address bit, to select the half of memory placed on the data bus for

Figure 3-9. Acquisition Memory timing.
access by the Microprocessor. The memory address to be written to or read from is controlled by the Address Counter.

Acquisition Memory Address Counter

The Address Counter contains three, 4-bit binary counters (U3423, U3424, and U3425). They are presettable and cascaded to obtain a maximum count of 2048. The last bit count from the last counter (U3425) is the PREFULL signal, and when it goes HI the pretrigger portion of the record has been completed. When a triggered acquisition mode is in effect, PREFULL qualifies the next trigger received as a valid trigger point. For triggered operation of the acquisition system, the counters are preloaded with a count that causes the last bit to become a 1 when the pretrigger portion of the memory is full. The following data point pairs of a record are then stored starting at location 0 and continue up to the end of the record. The end (ENDREC) is determined by the Record Counter in the Digital Time Base circuitry (shown on Diagram 18).

While waiting for a trigger after the pretrigger part of the record is filled, data pairs are continually written into the essentially circular memory space to keep the stored waveform data (pretrigger data) current. When the acquisition becomes triggered, the Record Counter (Diagram 18) starts counting the post trigger data pairs. At the end-ofrecord count, ENDREC goes HI and the acquisition is stopped. The Microprocessor then reads the address of the last data byte pair that was stored. Using that address and the known length of record for the type of acquisition being done, the Microprocessor calculates the beginning address for the record.

When a read of the memory is done, the Address Counter is enabled for a parallel load of the location to be read by the $\overline{A C Q S E L}$ signal from the processor. The beginning address of the record is the first address loaded from the Microprocessor Address Bus, bits A1 through A12. The least significant address bit (AO) is reserved for selecting which of the memories is to be read. The Microprocessor sequences through the addresses reading out the data bytes. In ROLL and SCAN even though there is a continual updating of the waveform seen on the crt, the Microprocessor and Acquisition System are not required to run in step at all times. Instead, the Microprocessor is allowed to carry out other processes as the data pairs are being stored in memory. When a read is started, the current address count is read and stored away. The Microprocessor then loads the address of the next unread data pair to begin reading data. Memory locations are then read and transferred to the display RAM (Diagram 15). At the end of the read, the address count is reset to the previously stored address to resume storing more data pairs into the Acquisition Memory.

Acquisition Memory Address Registers

These registers pass the address count onto the Microprocessor data bus when enabled. Registers U3427 and U3428 are enabled during different I/O periods. The lower seven bits of the address count and the SAVECLK are buffered by U3427; the upper four bits of the address count and four status bits (BTRIGD, TRIGD, BYTEINT, and ENDREC) are buffered by U3428. SAVECLK is checked because both sample data pairs are transferred in parallel from the MIN/MAX Registers into the Acquisition Memory, losing the trigger-point reference. However, the samples stored in one half period of SAVECLK are stored in the opposite memory half from the samples stored in the other half period. The memory half that the trigger must be associated with is determined by the state of SAVECLK at the end of the acquisition.

The two address registers are read by the Microprocessor, as the result of an interrupt, to determine the cause of an interrupt. If the ENDREC bit is LO, the address of the end of the waveform record is stable because the acquisition stopped. In that case, the Microprocessor must read the address and store it. To do a memory read, the Microprocessor must change the count of the Address Counters. After a BYTEINT read has been done to transfer more waveform data to the display RAM to update the display, the stored address count is restored to the Address Counter to allow the acquisition to continue.

DIGITAL TIME BASE

Clock Generator

Accurate clock signals are needed to transfer the data and to control the timing of each operation. The main clocking signals are produced by an oscillator and clock generator circuit. A 40 MHz signal is produced by crystal oscillator Y4100. The 40 MHz signal clocks all the flip-flops in the Clock Generator, setting the clock edge timing of all the other clocks. In the following description, refer to the clock timing diagram, Figure 3-10.

Flip-flop U4102A divides the 40 MHz input clock by two. The 20 MHz Q output goes to the Microprocessor clock divider for timing the processor operations. The $20 \mathrm{MHz} \overline{\mathrm{Q}}$ Converter) and is one input to the Clock state machine (formed by the logic gates of U3112B, C, U3113C, U4101B, and flip-flops U4118A, U4102B and U4104A). Use of the state machine allows the choice of a CONV clock rate of either 20 MHz (the same as the ADCLK rate) or 10 MHz (one-half the ADCLK rate).

The final flip-flop circuit (U4104A) in the Clock Generator produces the WRITECLK and WRITECLK signals at one-half the selected CONV clock rate. The flip-flop is held

Figure 3-10. Clock timing.
reset when the ACQENA signal is LO. ACQENA is clocked HI by the $\overline{\mathrm{CONV}}$ clock going HI (one-half CONV clock cycle after CONV goes HI). Therefore WRITECLK, at the Q output of U4104A, starts off LO at the beginning of an acquisition period.

The gating circuit of the Clock Generator looks at the states of ADCLK, CONV, and RNGB to set the active LO K input of U4102B and U4104A. The J and K inputs of U4104A have complemented signals applied from the logic gating (J from NAND-gate U3112C and K from AND-gate U4101B). When clocked, the flip-flop toggles for one state of the applied J and K signals (J HI and K LO) and has no change for the other (J LO and K HI). The WRITECLK and WRITECLK outputs of the flip-flop are therefore at onehalf the CONV clock rate. The K signal from AND-gate U4101B also goes to the K input of U4102B to set up U4104A to either divide the ADCLK by two or just clock ADCLK through. The CONV clock switches from 20 MHz to 10 MHz when the SEC/DIV switch is switched from $10 \mu \mathrm{~s}$ to $20 \mu \mathrm{~s}$ while the ADCLK remains at 20 MHz for all SEC/DIV switch settings.

Time Base Mode Register

The Microprocessor controls the Digital Time Base via the Time Base Mode Register, U4119. Control bits are latched into the register from the Data bus by the rising edge of the signal on pin 11 of OR-gate U4114D. The output of U4114D pin 11 is normally HI , but when $\overline{\mathrm{IO} 2}$ and address bit A5 are both made LO by the Microprocessor, U4114D pin 11 goes LO. The data on the ADO through AD7 bus lines then becomes valid. Either $\overline{\mathrm{OO} 2}$ or A5 going HI then causes the signal on pin 11 to also go HI , latching the data that is on the bus into the register. The outputs are permanently enabled by the fixed LO on pin 1 of the register.

Time Base Divider and Divider Register

The Time Base Divider is formed by a chain of six programmable counters (U4107-U4112). The Microprocessor loads the counters to produce an output from the divider that is a function of the SEC/DIV switch setting from $20 \mu \mathrm{~s}$ to 5 s per division. Alternate sources of the SAVECLK are selected at the fast sampling rates used for SEC/DIV switch settings of $10 \mu \mathrm{~s}$ to $0.05 \mu \mathrm{~s}$ (see Table 3-3).

The Microprocessor writes the preloaded counts to the Time Base Divider via time base Divider Register U4113 (see Table 3-4). A data byte is loaded into the counters of the Time Base Divider chain by placing the data on the Microprocessor Data Bus during I/O time segment $\overline{\mathrm{O} 2 .}$ After the data settles, the $\overline{\overline{1 O} 2}$ signal goes HI. The rising transition is gated through OR-gate U4114C to clock the
data into the register. The data bits loaded determine the number of times the $\overline{\mathrm{CONV}} 10 \mathrm{MHz}$ clock is divided to produce the SAVECLK frequency. Flip-flop U4125A divides the output of the divider chain by two.

An external signal may be used to clock the digital acquisition system. TTL level signals up to 1 kHz may be applied to the EXT CLK INPUT connector on the instrument side panel. The external signal is applied to the D input of flip-flop U4126A where it is clocked through to the Q output on the rising edge of the WRITE clock. That Q output is applied to the D input of flip-flop U4126B and also clocked through by the rising edge of the WRITE clock. The external clock is therefore delayed by two WRITE clock periods and synchronized with the rising edge of WRITE. The Q output of U4126B is applied to the SAVECLK multiplexer where it is selected when the A SEC/DIV switch is set to EXT CLK. External clock symmetry is not critical, but each amplitude must remain stable for at least $100 \mu \mathrm{~s}$ to acquire the waveform sample. One sample of a sample pair is acquired on each half cycle of the SAVECLK. As with the other clocking frequencies, flip-flop U4125A divides the signal by two to produce the SAVECLK frequency.

Record Counter

The Record Counter (U4115-U4117) determines when the total number of data samples have been acquired to fill the acquisition memory for triggered acquisitions. Depending on the record length for the acquisition and the amount of pretrigger, the Record Counters are preloaded with a count that will cause full count (ENDREC) to be generated when the record is full. When the acquisition starts, the Acquisition Memory Address Counters count up to PREFULL. At that point, the Trigger Mux is enabled. After a trigger arrives, the Clock Delay Timer generates TRIGD at the next $\overline{\text { CONV clock, enabling the Record Counter. The }}$ Record Counter counts RECCLK clocks until ENDREC goes HI , stopping the acquisition (because the entire record has been acquired).

Interrupt Logic

When selectively enabled by the Microprocessor, interrupts (INTR) are generated after a full record is acquired, after a byte pair is acquired, or when a trigger occurs. After the interrupt is generated, the Microprocessor polls U3428 to find out what caused the interrupt.

RECORD INTERRUPT. Record interrupts are generated each time a full record has been acquired in a triggered acquisition mode. When Record Counter U4115-U4117 overflows and stops, the end of record signal ENDREC is generated HI at U4105B pin 9. If the Microprocessor has

Table 3-3
Time Base Clock Frequencies

SEC/DIV	CONV	SAVECLK	RECCLK	SAVECLK SOURCE	RANGE	
					A	B
$0.05 \mu \mathrm{~S}$	20 MHz	10 MHz	20 MHz	$\overline{\text { CONV/2 }}$	1	1
$0.1 \mu \mathrm{~S}$	20 MHz	10 MHz	20 MHz	$\overline{\mathrm{CONV}} / 2$	1	1
$0.2 \mu \mathrm{~s}$	20 MHz	10 MHz	20 MHz	$\overline{\mathrm{CONV}} / 2$	1	1
$0.5 \mu \mathrm{~S}$	20 MHz	10 MHz	20 MHz	$\overline{\text { CONV/2 }}$	1	1
$1 \mu \mathrm{~S}$	20 MHz	10 MHz	20 MHz	$\overline{\mathrm{CONV}} / 2$	1	1
$2 \mu \mathrm{~S}$	20 MHz	10 MHz	20 MHz	$\overline{\mathrm{CONV}} / 2$	1	1
$5 \mu \mathrm{~S}$	20 MHz	10 MHz	20 MHz	$\overline{\mathrm{CONV}} / 2$	1	1
$10 \mu \mathrm{~s}$	20 MHz	5 MHz	10 MHz	$\overline{\text { WRITECLK/2 }}$	0	1
$20 \mu \mathrm{~s}$	10 MHz	2.5 MHz	5 MHz	DIVIDER/2	1	0
$50 \mu \mathrm{~s}$	10 MHz	1 MHz	2 MHz	DIVIDER/2	1	0
0.1 ms	10 MHz	0.5 MHz	1 MHz	DIVIDER/2	1	0
0.2 ms	10 MHz	0.25 MHz	0.5 MHz	DIVIDER/2	1	0
0.5 ms	10 MHz	0.1 MHz	0.2 MHz	DIVIDER/2	1	0
1 ms	10 MHz	50 kHz	100 kHz	DIVIDER/2	1	0
2 ms	10 MHz	25 kHz	50 kHz	DIVIDER/2	1	0
5 ms	10 MHz	10 kHz	20 kHz	DIVIDER/2	1	0
10 ms	10 MHz	5 kHz	10 kHz	DIVIDER/2	1	0
20 ms	10 MHz	2.5 kHz	5 kHz	DIVIDER/2	1	0
50 ms	10 MHz	1 kHz	2 kHz	DIVIDER/2	1	0
0.1 s	10 MHz	0.5 kHz	1 kHz	DIVIDER/2	1	0
0.2 s	10 MHz	0.25 kHz	0.5 kHz	DIVIDER/2	1	0
0.5 s	10 MHz	0.1 kHz	0.2 kHz	DIVIDER/2	1	0
1 s	10 MHz	50 Hz	100 Hz	DIVIDER/2	1	0
2 s	10 MHz	25 Hz	50 Hz	DIVIDER/2	1	0
5 s	10 MHz	10 Hz	20 Hz	DIVIDER/2	1	0
EXT	10 MHz	EXT/2	EXT	EXTCLK/2	0	0

Table 3-4
Time Base Divider Preload Bits

SEC/DIV Setting	SAVE CLOCK Frequency	DIVIDER Output	$\begin{aligned} & \text { Divider DD Bits } \\ & 76543210 \end{aligned}$	Divide Ratio
$20 \mu \mathrm{~S}$	2.5 MHz	5 MHz	11111100	2
$50 \mu \mathrm{~s}$	1 MHz	2 MHz	11111011	5
0.1 ms	0.5 MHz	1 MHz	11111000	10
0.2 ms	0.25 MHz	0.5 MHz	11110100	20
0.5 ms	0.1 MHz	0.2 MHz	11110011	50
1 ms	50 kHz	100 kHz	11110000	100
2 ms	25 kHz	50 kHz	11100100	200
5 ms	10 kHz	20 kHz	11100011	500
10 ms	5 kHz	10 kHz	11100000	1,000
20 ms	2.5 kHz	5 kHz	11000100	2,000
50 ms	1 kHz	2 kHz	11000011	5,000
0.1 s	0.5 kHz	1 kHz	11000000	10,000
0.2 s	0.25 kHz	0.5 kHz	10000100	20,000
0.5 s	0.1 kHz	0.2 kHz	10000011	50,000
1 s	50 Hz	100 Hz	10000000	100,000
2 s	25 Hz	50 Hz	00000100	200,000
5 s	10 Hz	20 Hz	00000011	500,000

set RECINTEN (U4119 pin 12) HI, ENDREC and the enable are combined at U4120D, making INTR LO generating a maskable interrupt. To clear the interrupt, the Microprocessor makes ACQENA (U4118A pin 5) LO via U4119. This makes ENDREC (U4105B) LO and $\overline{\mathbb{N T R}}$ (U4120D) HI, removing the interrupt.

BYTE INTERRUPT. Byte interrupts are generated each time a byte pair is acquired in the byte modes of ROLL and SCAN. To start the acquisition of a byte pair, the Microprocessor sets BYTEINTEN (U4119 pin 13) HI. After the acquisition of two bytes, SAVECLK (U4125B pin 9) goes HI setting U4118B. A HI at pin 9 of U4118B is inverted by $\cup 4120 \mathrm{~B}$, generating a LO $\overline{\mathrm{NTTR}}$, the maskable interrupt, at U4120B pin 4. To clear the interrupt, the Microprocessor makes TBMODE (U4114D pin 11) LO. This resets U4118B, removing the interrupt.

TRIGGERED INTERRUPT. Triggered interrupts are generated when triggers occur after first being enabled by the Microprocessor in a triggered mode with triggers allowed. The Microprocessor enables the interrupt by setting TRIGINTEN (U4119 pin 14) HI. When a trigger occurs, TRIGD
(U4226B pin 9) goes HI . The HI TRIGD and TRIGINTEN are combined at U4120C, making INTR LO. To clear the interrupt, the Microprocessor makes TRIGINTEN (U4119 pin 14) LO, removing the interrupt.

Trigger Mux

Multiplexer U4227 is driven by the B/A TRIG and CALTIMER signals. The multiplexer selects either the A GATE, B GATE, or CONV signal to drive the Clock Delay Timer circuit. The CONV clock is used by the CALTIMER to determine the maximum and minimum counts from the Clock Delay Timer circuit. See Table 3-5 for the switching logic of the multiplexer. The additional state of the TEST signal is necessary to determine if a maximum or a minimum count is to be measured by the Clock Delay Timer for calibration.

Clock Delay Timer

The circuitry forming the Clock Delay Timer is used only during equivalent-time sampling ($20 \mu \mathrm{~s}$ per division to $0.05 \mu \mathrm{~s}$ per division). The purpose of the timer is to determine the time interval between the trigger event and the next rising edge of the $\overline{\text { CONV }}$ clock. The Microprocessor

Table 3-5
Trigger Logic Multiplexer Switching

CALTIMER	$\overline{\text { A/BTRIG }}$	$\overline{\text { TEST }}$	TRIGGER MODE	SELECTED SIGNAL
0	0	1	A TRIG	A GATE
0	1	1	B TRIG	B GATE
1	0	0	MIN COUNT	$\overline{\text { CONV }}$
1	1	1	MAX COUNT	$\overline{\text { CONV }}$

must know the information to place the data samples into the correct locations in Display Memory. Since the trigger is asynchronous to the CONV clock (and therefore to the SAVECLK that stores data byte pairs into the Acquisition Memory), no fixed timing relationship exist between the trigger and the data samples taken as a result of the trigger. Therefore the relationship must be determined for each trigger in equivalent-time sampling.

The timer is formed by a dual-slope capacitor charging circuit. A fast-charging current source composed of Q4203 and Q4204 charges capacitor C4201 when FET Q4207 is turned off, removing its shunting effect (short) from the capacitor. This happens for every A GATE or B GATE (depending on which trigger it is looking for) regardless of whether a STORE mode trigger is enabled or not. If a STORE mode trigger was not enabled, the capacitor is immediately discharged when the gate signal passes. If a STORE mode trigger is enabled (PREFULL generated from the acquisition memory Address Counter), Q4207 is held off to allow C4201 to continue to charge. The fastcharging current source through Q4204 is then shut off by the second rising edge of the $\overline{\mathrm{CONV}}$ signal clocking a LO onto the \bar{Q} output of flip-flop U4226B. The LO turns Q4203 on and shuts off the fast-charging current source, Q4204. The complementary HI on the Q output of U4226B also removes the reset from the Clock-Delay-Timer counter, U4230, enabling the counter to count.

A slow-charging current source (Q4205 and associated resistors) then begins discharging C4201 towards the -8.6 V supply through Q4205 and R4212. This discharge path has a long time constant so that the discharge time is much longer than the capacitor's charge time. The voltage on C4201 is applied to the inverting input of comparator U4229. A comparison voltage with a threshold of about 0.6 V is on the noninverting input of the comparator.

When the capacitor's voltage drops to the comparison voltage, the output of the comparator goes HI . That HI is applied to NAND-gate U4106, the Set input of flip-flop U4232A. The flip-flop has been toggling on the CONV
clock, so depending on the state of the Q output when the comparator changes state, the flip-flop will either be set immediately (if the Q state is HI) or as soon as the logic state of the Q output of U4232A goes HI. The action of the NAND-gate ensures that the flip-flop becomes set within ± 1 CONV clock period of the actual comparator output level change. As soon as U4232A becomes set, a LO is placed on the D input of flip-flop U4232B. On the next rising edge of the $\overline{C O N V}$ clock, the LO is clocked to a HI on the $\overline{\mathrm{Q}}$ output of U4232B, stopping the Clock-DelayTimer counter. The count now held in the counter is a measure of the time between the trigger point and the next rising edge of the $\overline{\mathrm{CONV}}$ clock. In I/O period $\overline{\mathrm{O}-1}$, address line A3 is made LO by the Microprocessor, enabling the count onto the data bus so the count can be read. The count is used by the Microprocessor to place the equivalent-time data samples into the correct (in relation to the trigger) display memory locations.

In order for the Microprocessor to place the data samples into the correct display locations, the Microprocessor needs to know the maximum and minimum counts produced by the Clock Delay Timer. A calibration routine in the Diagnostics determines the maximum and minimum counts and calculates the calibration constant used by the equivalent-time sampling firmware.

To determine the maximum count, $\overline{\mathrm{CONV}}$ is selected as the trigger source (U4227 pins 12 and 13). The trigger source, through U4228A, U4127, and Q4207 starts the ramp on C4201. The $\overline{\mathrm{CONV}}$ trigger also propagates through U4228A, U4228B, U4127C, and U4226B to Q4203, stopping the current source for the ramp and removing the clear on counter U4230 pin 10. Counter U4230 starts counting and contains the maximum count when stopped by $\overline{\mathrm{CONV}}$ through U4232.

To determine the minimum count, $\overline{\mathrm{CONV}}$ is also selected as the trigger source. The trigger, through U4228A, starts the ramp on C4201. The calibration routine sets TEST LO. With TEST LO (on U4228B pin 10), CONV bypasses U4228B, stopping the current source for the ramp, starting counter U4230 50 ns sooner.

Resistor R4213 and C4202 adjust the counter's gain and offset. Nominal counts are 300 for maximum and 100 for minimum. The difference of the two counts represents the 50 ns CONV clock period.

B-Delay Timer

The B-Delay Timer determines the starting address of the B Display in memory. The length of the record is determined by the setting of the SEC/DIV switch and the acquisition-mode information (i.e. is it CHOP, single trace, or a 1 K or a 4 K acquisition). The BTRIGD signal (U4121A pin 5) goes HI on the first falling edge of RECCLK after the B-GATE signal goes HI. BTRIGD going HI causes U4123 and U4124 to latch the value of the Record Counter. The microprocessor then reads the starting address from U4123 and U4124, which are enabled by $\overline{\mathrm{O} 2, \bar{O} 1}$, and A5 (Address Decode).

DIGITAL DISPLAY

A custom LSI integrated circuit controls the stored waveform and readout displays. Six $16 \mathrm{~K} \times 4$-bit randomaccess memories (RAM) make up the Display Memory. Four of the RAM chips provide $32 \mathrm{~K} \times 8$-bit waveform data, and two RAMs hold the $32 \mathrm{~K} \times$ 4-bit waveform-attribute data. Waveform data may be stored in the RAM from data on the Microprocessor bus or data may be read from the RAM and transferred to a Communication Option. For waveform displays, data is read from the RAM (display memory) by the display controller. The display controller then processes the data, and then drives the Vertical (Y) and Horizontal (X) digital-to-analog converters (DAC) where the data is converted to analog voltages used to drive the X - and Y-Axis vector generators.

Data Transceivers

Communication between the Microprocessor and the display memory is via two bus transceivers, 49206 and U9207. Waveform data from the Acquisition Memory is transferred to the display memory where the data is always available to the Display Controller for refreshing the display. The data transceivers are enabled by logic gating in U9211 that decodes the PA15 and PA14 signals from the Microprocessor and the PROCEN signal from the Display Controller to determine when a transfer is possible. The direction of transfer is controlled by the $\overline{W R}$ (write) signal from the Microprocessor. The WR signal also enables U9211 to allow either a read from memory (for outputting data) or a write to memory (for transferring in the data from the Acquisition Memory). Bus transceiver U9206 is enabled for 8-bit data transfers and transceiver U9207 is enabled for 4-bit transfers.

Address Decoder

To access a byte in RAM, a row address followed by a column address is required. Row and column memory addresses are written together as one address word from the Microprocessor. Address Decoders U9204 and U9205 are switched by the ROW/COL signal from the Display Controller to select either the row address or the column address from the Microprocessor address bus. The RAS and $\overline{\mathrm{CAS}}$ signals enable the address latches, internal to each display RAM, to latch the selected row and column addresses. Column addresses are decoded from the middle six bits of the 8 -bit address by address decoders in each RAM. Row addresses require all eight bits. The Display Controller has direct access to addresses in the RAM using the RA bus.

RAM

Six 16 K by 4 -bit memories make up the display RAM. The 8-bit waveform bytes are stored with the lower four bits in U9203 and U9233 and the higher four bits in U9202 and U9232. The remaining RAMs (U9201 and U9231) store attribute bits that are used to define the waveform print intensity and mark the end of the record. The memories are arranged in a 256×64 row and column format to allow eight addressing lines to access the 16 K of 4-bit memory addresses (64 K -bits of memory).

Memory refreshing is satisfied whenever the 256 Row addresses are accessed. Refreshing occurs when the Display Controller does a memory read for display purposes. While the Microprocessor is controlling the Display Memory, it must also perform memory refreshing by activating all the memory Row addresses. To maintain the dynamic memory, a refresh must be done at least every eight milliseconds.

DATA TYPES. The data stored in the Display Memory is either readout characters or waveforms. The microprocessor also uses the display memory for operational data storage. In either case a 9-byte field-attribute preamble is read first. The preamble defines the data type and sets up the display attributes. Readout information is displayed using short vector $\mathrm{X}-\mathrm{Y}$ displays positioned to specified fields on the crt.

Display Controller

The Display Controller runs the display system for the STORE waveform and STORE and NON STORE readout displays. It takes control of the RAM to read the waveform or readout data. Besides the waveform data, the Display Controller runs the Store Z-Axis, selects the type of display (vector, dots, or X-Y plotter output), and drives the horizontal and vertical channel switches.

When reading data out of the RAM, the Display Controller has direct access to the memory address bus (RA). RAM row and column addresses to be read from are sequenced through in order. When a display data read is taking place, the dynamic memory is refreshed by the Display Controller.

When the Display Controller has completed a display frame, it signals the Microprocessor (using the $\overline{\mathbb{N T R}}$ signal) that the last field is finished and awaiting the next frame request. After the interrupt is received, the Microprocessor can request the next frame (FRAME), then the Display Controller resumes control of the RAM for the next frame of data. When $\overline{\text { PROC RQ (U9208 pin 3) is } \mathrm{HI} \text {, }}$ the Display Controller is in the middle of a display cycle and the Microprocessor is denied access to the display RAM. The Microprocessor can request access to the Display RAM using the PROC RQ (RAM SEG) signal line to either write in new waveform data or read out data for the Communication Option. The Display Controller allows the Microprocessor to access the display RAM by setting the PROC EN (U9208 pin 5) signal line LO. A LO $\overline{\text { PROC EN }}$ signal enables the circuitry that allows the $\overline{W R}$, PA14, and PA15 signals, from the Microprocessor, to control the display RAM. Even though the memory addresses are under control of the Microprocessor, the $\overline{\operatorname{RAS}}$ and ट्रAS signals are generated by the Display Controller.

YDAC and XDAC

Data from display controller U9208 is applied to X - and Y-axis DACs 49210 and U9220. These DACs are biased to provide output currents (approximately 0 to 2 mA) proportional to the digital data. R9214 and R9224 are adjustments to align the storage signals on the crt. The DAC currents are applied to the Vector Generator along with various control signals from U9208 via W6100.

VECTOR GENERATOR

Vector Generators

Vector Generator circuitry is shown on Diagram 20. U6303 and U6304 convert the DAC currents into bipolar voltages (approximately -2.5 V to +2.5 V) which are applied to sample and hold circuits U6305 and U6306. Outputs of the sample and hold circuits are applied to integrator stages U6307 and U6308 through electronic switches in U6301A and C. The integrator output signals are continuously fed back to the sample and hoid inputs, causing these input voltages to be equal to the difference between the drive inputs and the integrator outputs. When the vector sample (VECT-SMPL) control line (via U6301B) is actuated, the outputs of the sample and hold circuits store these difference signals. Since the integrator output slopes are proportional to these signals, the net result is to effectively "connect the dots" which are equivalent to the digital data values.

These circuits also have a "dot" mode available so that the integrator outputs are stepped (dots) rather than continuous (vectors). When the VECT/DOT signal is LO, U6301A and C switch the integrator inputs directly to the difference signals while also disconnecting the integration capacitors C6315 and C6314. The feedback loops are thus closed continuously, resulting in normal amplifier action.

Although the Vertical and Horizontal vector generators operate the same, there are some differences between the circuits and between their signal characteristics. To end up with the proper signal polarities at the crt, X DAC U9210 (Horizontal) current is from 2 mA to 0 mA , while Y DAC U 9220 (Vertical) current is from 0 mA to 2 mA . Also, the vertical integrator output is -2 V to +2 V while the horizontal integrator output is -2.5 V to +2.5 V . The reduced vertical dynamic range allows proper interface to the main deflection system. Since the vertical signal eventually passes through the vertical delay line before reaching the crt, it is necessary to delay the horizontal signal as well. This is done in the vector mode by delaying slightly the vector sample signal applied to U6306 via R6320 and C6312. In the dot mode the crt beam is blanked during the transitions so the dots are only displayed after the signals have arrived and settled.

VECTOR INTEGRATOR. The Y-axis (vertical) current from the D/A Converter goes to the inverting input of operational amplifier U6303. The amplifier is biased to produce a bipolar output voltage, from -2.5 V to +2.5 V , that is proportional to the input current. Negative feedback from the parallel combination of R6303 and C6311 stabilizes the amplifier.

Biasing of the non-inverting input of both the X -axis and the Y -axis amplifiers is identical and supplied by a resistive divider formed by R6304 and R6305 between ground and the +5 V reference. Both resistors are equal valued to produce a bias voltage of +2.5 V . Resistor R6308 provides a summing node for the input vector current and the feedback current and develops the voltage on the inverting input of U6303. Full current range of the vector signal is from 0 to 2 mA . With no vector current in, the feedback current supplies the full current through R6308, and the output voltage of U6303 goes to -2.5 V . At maximum vector current input, the sum of the current through R3608 must remain the same as with no vector current; therefore the feedback current is reduced by the amount of the vector current, and the output voltage goes to +2.5 V .

SAMPLE-AND-HOLD. The voltage output of U6303 is applied via R6309 to sample-and-hold circuit U6305. Sample-and-Hold (S / H) switching is controlled by the VECT SMPL signal from the Display Controller applied to

U6305 pin 14. That signal in turn is controlled by the PLT-EN signal (U6301B pin 9) that switches section B of multiplexer U6301. When displaying storage waveforms and readout characters, the PLT-EN signal is not active, and the VECT SMPL signal is switched to control the S/H circuit. For producing $X-Y$ Plots, U6301C is activated, and the VECT SMPL signal drives the X-Y Plotter Pen-Down circuit (shown on Diagram 22).

SAMPLE INTEGRATOR. During digital storage waveform displays, the S/H circuit and the Y-Integrating circuit formed by U6307 and associated components produce either vectors or dots. When U6301C connects pin 13 to pin 14, U6307 integrates each step output of the S / H circuit into a smooth ramp signal. This integrated signal is the vertical deflection signal (still single-ended) that connects the data points of the stored waveform display. When the user selects either dot displays or X-Y Mode, multiplexer U6301C connects pin 12 to pin 14. The long time constant integrating function of U6308 is switched out, and U6307 acts as an amplifier only for the voltage being held by the S/H circuit, causing the crt display to be dots. For readout character displays both during STORE and NONSTORE modes, the S/H and integrator work only in the vector mode because readout characters are vector displays.

The integrator output is subtracted from the input voltage at all times. When VECT SMPL goes LO, the difference value is sampled and held by S/H U6305. The held voltage value sets the slope of the integrator and effectively "connects the dots" since the slope of the output vector is proportional to the difference between the input voltage and the output voltage of the integrator.

Diode clamps CR6301, CR6303, CR6305, and CR6307 prevent voltage transients that could cause U6301C latch up.

Vector Amplifiers

The integrator outputs are applied to vector amplifiers U6401 and U6402, which are differential voltage-to-current converters. Their outputs are differential currents which are sent to the main deflection multiplex circuitry via J6410 and the I / O wiring harness. Vertical positioning information is processed by display controller U9208, but horizontal position information is not. Therefore the horizontal position voltage is applied to U6402D to affect horizontal position control of stored waveforms. At times when readout characters are being drawn, this position signal is shunted by transistor U6403A to reduce the positioning effect on the characters. This action is controlled by the HPOS-DIS signal from the display controller.

Plot Drive

When plot mode is on, the display controller activates the $\overline{\text { PLT-EN }}$ signal, causing U6301B to apply the $\overline{\text { VECT-SMPL }}$ signal to the PEN-DN line via U6404A and U6402E, and the display controller internal modes change so that VECT-SMPL provides the pen down control function. The PEN-DN signal is sent via $J 6420$ to the Z-axis section and to the X-Y board or communication option board (if installed). When U6301B activates plot mode, Q6301 pulls the sample control lines of U6305 and U6306 LO putting them in tracking mode. This closes the vector generator feedback loops regardless of vector/dot mode selection. The PLT-EN signal also turns on operational transconductance amplifiers U6404A, B, and C via transistor U6403E. Normally, their outputs are off, the plotter signals are zero (held at ground by R6433, R6434). In plot mode they turn on and act as voltage followers for the vector signals (Y POINT, X POINT, and PEN). The " Y " amplifier input is connected ahead of the Y vector generator to preserve the $\pm 2.5 \mathrm{~V}$ range and correct polarity. The X-PLOT and Y-PLOT signals are sent via J6420 to the X-Y board or communication option board (if installed).

Readout Off Detector

To detect when the Storage/Readout Intensity knob is at its counterclockwise end, U6405A (Diagram 20) monitors the readout (RO) voltage from J6410. Since RO voltage is normally negative, but goes slightly positive at the end of its rotation, U6405A output will go positive, turning on transistor U6403B, causing the NO-RO line to be LO. This signal is sent to the I/O board as status information.

Signal Conditioning

The signals ARES1, A-RES2, B-RES, and B-CAPS on J6420 come from the Sweep Interface board. They are encoded analog currents which contain most of the information about the positions of the A and B Timing switches. Since the sum of the possible changes in these currents is larger than U6302 (5V REF) can accommodate, U6405B (Diagram 21) is used to buffer the 5 V reference to supply the termination resistors (Diagram 20). As these currents change, the resulting voltages are measured by the Status A/D (Diagram 19) so that the Microprocessor can determine the state of the timing switch.

I/O and Vector Generator Board Power Distribution

± 15 VOLT POWER SUPPLYS. U6305 and U6306 operate from ± 15 Volt supplies. These are generated by flyback converters (see Diagram 21) consisting of U6202A, U6202B, Q6202, Q6203, and associated circuitry. The comparators in U6202 form oscillators which drive the switch transistors to alternately store and unload energy in
their respective chokes. Feedback is applied to the comparators causing duty cycle and frequency modulation, which adjusts output power accordingly.
+5 VOLT POWER SUPPLY. Logic power (+5 V) for all $1 / O$ board and Vector Generator board circuitry is generated from the +8.6 V supply by U6201.
+5 VOLT REFERENCE. The 5 Volt Reference is generated by U6302. It is used by the vector generator circuits, status A/D circuit, display DAC circuit, and acquisition system. Associated with each of these circuits is a local pull-up resistor from the +8.6 V supply to the 5 V reference line to supply nominal load current so that U6302 does not have to supply the total load current. This also greatly reduces the reference line current which could cause excessive voltage drops at the far ends of its travel.

Status ADC and Bus interface

I/O PORTS. The system data bus and associated control signals are sent to the I/O board via J6100 (see Diagram 19). Input ports U6102 and U6103 transfer logic signals representing instrument status. U6103 operates as a simple port for eight of the status lines. U6102 has 15 input signals. It serves as a data buffer for the Status A/D converter U6105, when required. During part of the status scanning cycle, U6105 data outputs are tri-stated, and seven additional status signals are applied via $22 \mathrm{k} \Omega$ resistors (R6121 through R6126). The Microprocessor then reads these status lines through U6102. When U6105 is active, its outputs dominate the data lines and the $22 \mathrm{k} \Omega$ resistors act as high impedance loads. The Microprocessor can then read the data from U6105 via U6102. Output port U6104 is used to control the operation of U6105 to perform the A/D conversion function. U6104 is also the multiplexer selection register, driving U6106 and U6108, which select the analog status signals to be measured. The port address selection is made by combinations of control lines $\overline{\mathrm{O}-0}$, and $\overline{\mathrm{IO}}$, and address lines A2 and A3. U6101A and B provide the selection logic for U6104.

STATUS A/D. U6105 is a 10 -bit A/D converter which allows measurement of analog status signals. After each conversion it produces an interrupt which is gated by U6101D and applied to Q6201 via R6218. This produces a processor interrupt to indicate completion of its task. This interrupt is maskable by U6104. U6107A serves as a buffer amplifier to drive the input resistance of U6105 while maintaining fairly high load impedance for U6106 and U6108. U6107B and U6107C are differential amplifiers which convert the differential vertical position signals to single voltage levels within the range of the measuring system.

POWER INPUT, PREREGULATOR AND INVERTER

The Power Supply (see Diagram 8 and Diagram 9) changes the ac power-line voltage into the voltages needed for instrument operation. It consists of the Power Input, Preregulator, and Inverter circuits (which drive the primary of the power transformer) and secondary circuits (which produce the necessary supply voltages for the instrument).

Power Input

The Power Input circuit changes the ac power-line voltage to filtered dc for use by the Preregulator.

POWER switch S 901 connects the ac power line through fuse F9001 to the bridge rectifier formed by CR901, CR902, CR903, and CR904. The full-wave bridge rectifies the source voltage, and the output is filtered by C906. Input surge current at instrument power-on is limited by thermistor RT901. The thermistor resistance is moderately high when the power is first turned on, but decreases as the input current warms the device. The instrument is protected from large voltage transients by suppressor VR901. Conducted interference originating within the power supply is attenuated by common-mode transformer T901, differential-mode transformer T903, line filter FL9001, and capacitors C900, C902, and C903.

Preregulator

The Preregulator provides a regulated dc output voltage for use by the Inverter circuitry.

When the instrument is turned on, the voltage developed across C906 charges C925 through R926. When the voltage across C925 has risen to a level high enough that Pulse-Width Modulator U930 can reliably drive Q9070, U930 receives operating supply voltage through Q930. This voltage level is set by zener diode VR925 in the emitter of Q928 and by the voltage divider formed by R925 and R927. The zener diode keeps Q928 biased off until the base voltage reaches approximately 6.9 V . At that point, Q928 is biased into conduction, and the resulting collector current causes a voltage drop across R929 that biases on Q930. The positive feedback through R930 reinforces the turn-on of Q928, which quickly drives both Q928 and Q930 into saturation. Once Q930 is on, the Pulse-Width Modulator begins to function.

Pulse-Width Modulator U930 controls the output voltage of the Preregulator by regulating the duty cycle of the pulse going to the gate of Q9070. The modulator has an
oscillator that operates at a frequency set by R919 and C919 (approximately 60 kHz). A sawtooth voltage produced at pin 5 of U930 is compared internally with the output voltage produced by the two internal error amplifiers. Whenever the sawtooth voltage is greater than the error amplifier output voltage, Q9070 is biased on to supply current to the remaining portions of the switching circuitry and charge C940. The two error amplifiers maintain a constant output voltage and monitor the output current of the Preregulator. One input of each amplifier is connected through a divider network to the IC internal +5 V reference. The output voltage of the Preregulator is monitored by the voltage divider at pin 2. The voltage drop across R907, produced by the Preregulator output current, is applied to the internal current-limit amplifier at pin 16.

When the instrument is first turned on, the current-limit amplifier controls the conduction time of Q9070. While Q9070 is conducting, the output current increases until a voltage large enough to permit the current-limit circuitry to function is developed across R907. The current-limit amplifier then holds the output current below the limiting threshold of approximately 1 A . When the voltage across C940 reaches approximately 43 V , the internal voltage amplifier starts controlling the duty cycle of Q9070, and the Preregulator will not limit current unless there is excessive current demand.

With Q9070 off, C907 charges to the output voltage of the Power Input circuit. When Q9070 turns on, current through the FET comes from the winding connected to pins 1 and 2 of T906 and from C907. Current to C907 is supplied by the winding connected to pins 4 and 5 of T906. When U930 shuts off Q9070, the collapsing magnetic field raises the voltage at the anode of CR907. This diode then becomes forward biased and passes the currents supplied by C907 and the winding connected to pins 4 and 5 of T906. For this part of the cycle, current to C907 is supplied by the winding conrected to pins 1 and 2 of T906. This process continues for each period of the oscillator, and the duty cycle controlling the conduction period of Q9070 is altered as necessary to maintain 43 V across C940. During each oscillator period, Q908 is used to discharge the gate-drain capacitance of Q9070. At the shutoff point, Pin 10 of U930 goes LO to reverse bias CR908 and turn on Q908 to switch off the FET.

Once the supply is running, power to $U 930$ is supplied from the winding connected to pins 6 and 7 of T906. Diode CR920 half-wave rectifies the voltage across pins 6 and 7 to keep filter capacitor C925 charged and to maintain supply voltage to U930 through Q930.

Instrument protection from excessive output voltage is supplied by silicon-controlled rectifier Q935. Should the Preregulator output voltage exceed 51 V , zener diode

VR935 conducts, causing Q935 to also conduct. The Preregulator output current is then shunted through Q935, and the output voltage quickly drops to zero. With the supply voltage of $U 930$ no longer being provided by the winding connected to pins 6 and 7 of T906, the Preregulator shuts down, and Q935 becomes reset. The supply then attempts to power up, but it will shut down again if the overvoltage condition reoccurs. This sequence continues until the overvoltage condition is corrected. A thermal shutdown circuit is included to protect the instrument from damage in case of fan failure or air flow restriction at high ambient temperatures. Overheating causes the resistance of RT950 to increase, eventually firing SCR Q950, which reduces voltage on VR943. This causes all outputs to drop to very low values, thus reducing total power dissipation. To reset the circuit, the power must be shut off momentarily.

Inverter

The Inverter circuit changes the dc voltage from the Preregulator to ac for use by the supplies that are connected to the secondaries of T948.

The output of the Preregulator circuit is applied to the center tap of T948. Power-switching transistors Q946 and Q947 alternate conducting current from the Preregulator output through the primary windings of T948. The transistor switching action is controlled by T944, a saturating base-drive transformer.

When the instrument is first turned on, one or the other of the switching transistors starts to conduct. As the collector voltage of the conducting transistor drops toward the common voltage level, a positive voltage is induced from T944 to the base of the conducting transistor that reinforces conduction. Eventually T944 saturates; and, as the voltage across T944 (and T948) begins to reverse, the conducting transistor is cut off by the drop in base drive. The other transistor does not start conduction until the voltage on the leads of T944 reverse enough to bias it on. The saturation time of T944 plus the transistor-switching time determine the frequency of Inverter operation (typically about 20 kHz). After the initial Inverter start up, the switching transistors do not saturate; they remain in the active region during switching.

Diodes CR946 and CR947 serve as a negative-peak detector to generate a voltage for controlling the output of the error amplifier. Capacitor C943 charges to a voltage equal to the negative peak voltage at the collectors of Q946 and Q947, referenced to the Preregulator input voltage. This voltage level is applied to the divider formed by R937, R938, and R939. The error amplifier, formed by Q938 and Q939, is a differential amplifier that compares the reference voltage of VR943 with the wiper voltage of potentiometer R938. The current through Q939 sets the
base drive of Q944 and, thereby, controls the voltage on C944. This voltage biases Q946 and Q947 to a level that maintains the peak-to-peak input voltage of T948. The amplitude of the voltage across the transformer primary winding, and thus that of the secondary voltages of T948, is set by adjusting -8.6-V-ADJ potentiometer R938.

At turn-on, Q938 is biased off, and Q939 is biased on. All the current of the error amplifier then goes through Q939 to bias on Q944. The current through Q944 controls the base drive for Q946 and Q947. Base current provided by base-drive transformer T944 charges C944 negative with respect to the Inverter circuit floating ground (common) level.

POWER SUPPLY SECONDARIES, Z-AXIS AND CRT

XFMER and LV Power Supplies

The Low-Voltage supplies use center-tapped secondary windings of T948 (XFMER). The +100 V supply is rectified by CR954 and CR955 and filtered by C954. Diodes CR956 and CR957 rectify ac from taps on the 100 V winding, and C 956 filters the output to produce +30 V dc. The fullwave diode bridge formed by CR960, CR961, CR962, and CR963 produces the +8.6 V and -8.6 V supplies. Filtering of the +8.6 V is done by C960, L960, and C962. Filtering of the -8.6 V is done by C961, L961, and C963. Ac voltage from the $\pm 8.6 \mathrm{~V}$ primary is rectified by CR965 and CR967, and then filtered by C965 and R965 to provide the fan power source. The +5 V supply is produced by CR970, C968, L968, C958 and C970. The -5 V supply is produced by CR980, CR981, C964, L962, and C959.

Unblanking Logic, Intensity, and Z-Axis Ampl

The Z-Axis Amplifier, shown on Diagram 9, controls the crt intensity level via several input-signal sources. The effect of these input signals is either to increase or decrease trace intensity or to completely blank portions of the display. The Nonstore Z-Axis drive signal currents, as set by the A and $B Z$-Axis switching logic and the input current from the EXT Z AXIS INPUT connector (if in use), are summed at the emitter of common-base amplifier Q825. The total sets the collector current of the stage. The common-base amplifier provides a low-impedance termination for the input signals and isolates the signal sources from the rest of the Z-Axis Amplifier.

For the Nonstore Z-Axis signals, common-base transistor Q829 passes a constant current through R832. This current is divided between Q825 and Q829, with the portion through Q829 driving the shunt-feedback output amplifier formed by Q835, Q840, and Q845. The bias level of Q825 therefore controls the emitter current available to Q829. Feedback-resistor R841 sets the transresistance
gain for changing the input current to a proportional output voltage. Emitter-follower Q835 is dc coupled to Q840, and for low-speed signals, Q845 acts as a current source. Fast transitions couple through C845, providing added current gain through Q845 for fast voltage swings at the output of the Amplifier.

Store Z-Axis sigrials, controlled by the Display Controller, are applied to the Z-Axis amplifier at the emitter of Q829. The Nonstore Z-Axis signals are shunted away from Q829 by CR824, which is forward biased from the CHOP Blanking circuit (Diagram 2) during STORE mode displays. The overall store waveform and readout character intensity level is set by the STORAGE/READOUT INTENSITY control (see Diagram 13). The level setting of that control sets the Z-Axis drive current supplied to the Z-Axis Amplifier by Q829 during digitally controlled displays. When the Display Controiler turns off Q7203, Q7202, or Q7201, the current normally shunted away from the emitter of Q829 is added via the forward biased diode connected to the emitter of the cutoff transistor. With more current available from Q7204, more current flows in Q829 to intensify the crt display.

The intensity of the Nonstore crt display in the A, B, and Alt Horizontal modes is set by the INTENSITY controls and associated circuitry. The A INTENSITY potentiometer controls the base voltage of Q804 to set the amount of emitter current that flows through that transistor and, therefore, the level of the Z-Axis signal. Likewise the B INTENSITY potentiometer controls the base voltage of Q814 and the intensity of the B and Alt Sweep displays.

When only the Nonstore A Sweep is displayed, Q586 and Q583 are biased off. The current through R818, as set by the A INTENSITY potentiometer, flows through CR818 and Q825 to fix the voltage level at the Z-Axis Amplifier output. For a B-Only display, Q586 is biased on to reverse bias CR818 and prevent A-Intensity current from reaching Q825. Current set by the base voltage of Q814 flows through CR817 to Q825 and sets the B Sweep intensity. For an alternating A and B display, Q586 is biased off when the A Sweep is displayed. During the portion of the A Sweep in which the B Sweep runs, current from R816 is passed through CR816 by the Alternate Display Switching and the Unblanking Logic circuitry to produce an intensified zone on the A Sweep trace.

When CHOP VERTICAL MODE is selected, the Chop Blanking signal is sent to the collector of Q825 through U537B and CR824 during the Nonstore display-switching time. Signal current is shunted away from CR825, and the forward bias of Q829 rises to the blanking level. When blanked, the output of the Z-Axis Amplifier drops to reduce the crt beam current below viewing intensity.

For a Nonstore X-Y display, CR818, CR817, and CR816 are reverse biased. The $\overline{X Y}$ signal is $L O$ to reverse bias CR551 and allow current in R820 to flow through CR820. The crt intensity is then controlled by the A INTENSITY potentiometer which sets the current in R820 through Q804.

During Nonstore operation, any applied External Z-Axis input voltages drive proportional input currents through R822 and R823 to the Z-Axis Amplifier. Sensitivity to external signals is determined by the transresistance gain of the shunt-feedback amplifier. Diode CR823 protects the Z-Axis Amplifier if excessive voltage levels are applied to the EXT Z AXIS INPUT connector. External Z-Axis modulation does not function for STORE MODE displays.

BEAM FIND switch $S 390$ controls the base bias voltages of Q825 and Q829. When the BEAM FIND button is out, -8.6 V is supplied to the normal base-biasing network. When the button is held in, the -8.6 V supply is removed, and the voltage at the anode of VR828 rises to about -5.6 V . This voltage level turns off the current supply from Q829. The Z-Axis amplifier output voltage is then fixed by R835 and the voltage at the BEAM FIND switch, as set by other parts of the Beam Find circuitry. The output voltage of Q835 is set to a level that displays either a bright trace or dot (depending on whether the sweep is
triggered or not), and the INTENSITY controls and the ZAxis drive signals have no control over the crt intensity.

Hv Multiplier, Dc Restorer, and Crt

The Dc Restorer circuit sets the crt control-grid bias and couples the ac and dc components of the Z-Axis Amplifier output to the crt control grid. Direct coupling of the Z-Axis Amplifier output to the crt control grid is not employed due to the high potential differences involved. Refer to Figure 3-11 during the following discussion.

Ac drive to the Dc Restorer circuit is obtained from pin 16 of T948. The drive voltage has a peak amplitude of about $\pm 100 \mathrm{~V}$ at a frequency of about 20 kHz and is coupled into the Dc Restorer circuit through C853 and R853. The cathode of CR851 is biased by the wiper voltage of Grid Bias potentiometer R851, and the ac-drive voltage is clamped whenever the positive peaks reach a level that forward biases CR851.

The Z-Axis Amplifier output voltage, which varies between +10 V and +75 V , is applied to the Dc Restorer at the anode of CR853. The ac-drive voltage holds CR853 reverse biased until the voltage falls below the Z-Axis Amplifier output voltage level. At that point, CR853 becomes forward biased and clamps the junction of

Figure 3-11. Simplified diagram of the Dc Restorer circuitry.

CR851, CR853, and R854 to the Z-Axis output level. Thus, the ac-drive voltage is clamped at two levels to produce a square-wave signal with a positive dc-offset level.

The Dc Restorer is referenced to the -2 kV crt cathode voltage through R858 and CR854. Initially, both C855 and C854 charge up to a level determined by the difference between the Z-Axis output voltage and the crt cathode voltage. Capacitor C855 charges from the Z-Axis output through R858, CR854, and CR855, to the crt cathode. Capacitor C854 charges through R858, CR854, R854, and CR853 to the crt cathode.

During the positive transitions of the ac drive, from the lower clamped level toward the higher clamped level, the charge on C854 increases due to the rising voltage. The voltage increase across C854 is equal to the amplitude of the positive transition. The negative transition is coupled through C854 to reverse bias CR854 and to forward bias CR855. The increased charge of C854 is then transferred to C855 as C854 discharges toward the Z-Axis output level. Successive cycles of the ac input to the Dc Restorer charge C855 to a voltage equal to the initial level plus the amplitude of the clamped square-wave input.

The charge held by C855 sets the control-grid bias voltage. If more charge is added to that already present on C855, the control grid becomes more negative, and less crt writing-beam current flows. Conversely, if less charge is added, the control-grid voltage level becomes closer to the cathode-voltage level, and more crt writing-beam current flows.

During periods that C854 is charging, the crt controlgrid voltage is held constant by the long time-constant discharge path of C855 through R860.

Fast-rise and fast-fall transitions of the Z-Axis output signal are coupled to the crt control grid through C855 to start the crt writing-beam current toward the new intensity level. The Dc Restorer output level then follows the Z-Axis output-voltage level to set the new bias voltage for the crt control grid.

Neon lamps DS858 and DS856 protect the crt from excessive grid-to-cathode voltage if the potential on either the control grid or the cathode is lost for any reason.

High-voltage multiplier U975 uses the 2-kV winding of T948 to generate 12 kV to drive the crt anode. An internal half-wave rectifier diode in the multiplier produces -2 kV for the crt cathode. The -2 kV supply is filtered by a lowpass filter formed by C975, C976, R976, R978, and C979.

Neon lamp DS870 protects against excessive voltage between the crt heater and crt cathode by conducting if the voltage exceeds approximately 75 V .

Focus voltage is also developed from the -2 kV supply by a voltage divider formed by R894, R892, FOCUS potentiometer R893, R891, R890, R889, R888, and R886.

X-Y PLOTTER

The X-Y plotter circuitry (see Diagram 22) drives the internal circuitry for the external clock, and an external XY Plotter, if connected.

External Clock

The TTL compatible (active LO) $\overline{\text { EXT CLK }}$ signal, accessed through the AUXILIARY CONNECTOR (J1011 pin 1), drives the external clock circuitry (active HI) of the oscilloscope through internal connector J4110 pin 1.

Operational amplifier U1001A, PNP transistor Q1011, and associated components buffer and invert the external clock signal EXT CLK. Input bias resistors R1011, R1014, and R1015 condition the EXT CLK input signal. The same three resistors protect the external clock circuitry from over-voltage and reverse-voltage inputs. Resistor R1016 provides hysteresis.

Operational amplifier U1001A serves as a buffer and amplifier. Even though EXT CLK only swings from 0 V to +5 V maximum, the input bias resistors produce plus and minus voltage swings of $\leqslant 2 \mathrm{~V}$ at non-inverting input U1001A pin 3. The amplifier output U1001A pin 1 has a plus and minus 7 V range which, through current limit resistor R1017, overdrives the base of Q1011. This base current overdrive assures a fast clean rise and fall time of the EXT CLK output signal (J4110 pin 1) required by the oscilloscopes external clock circuit input.

The emitter of Q1011 goes to $+5 \mathrm{~V}_{\mathrm{k}}$ and the collector goes to both the EXT CLK output and to level-shift resistor R1012. Level-shift resistor R1012 makes the EXT CLK output a valid TTL LO when Q1011 is shut off. The EXT CLK output is an active HI TTL drive.

Shield Ground

The SHIELD GND connection (J1011 pin 4) is the chassis ground connection for cable shield connections.

Signal Ground

The AUXILIARY CONNECTOR SIG GND connection (J1011 pin 9) is the ground point for all signal path ground returns.

Pen-Down Circuit

The Pen-Down circuitry controls the pen mechanism of an external X-Y plotter or the motor drive of a Y-T strip chart recorder.

The Pen-Down circuit is comprised of operational amplifier U1001B, transistor Q1012, relay K1001, and related components. The $\overline{\text { PEN DWN }}$ signal (J6423 pin 1) drives the non-inverting input of the operational amplifier (U1001B pin 5). The inverting input of the operational amplifier (U1001B pin 6) is tied to ground. The operational amplifier output, U1001B pin 7, goes to the base of PNP relay-drive transistor Q1012, through current limiting resistor R1005. This amplifier has no negative feedback resistor and operates in an open-loop gain configuration. Small input signals therefore drive the output near one rail or the other. The output signal resembles a square wave, regardless of the input waveform.

Transistor Q1012 inverts the signal and drives relay K1001. Diode CR1016 protects the transistor from inductive kick-back voltages generated by the relay's collapsing magnetic field as the transistor turns off. Fuse F1001, in the RELAY COMM signal path, provides over-current protection for all relay contact configurations.

When the PEN DWN signal on U1001B pin 5 goes negative, the output on pin 7 of the operational amplifier also goes negative, turning on transistor Q1012 and energizing the relay coil. When the relay is energized, the relay common to normally closed connection opens and the relay common to normally open connection closes. When PEN DWN returns to a positive level, the transistor shuts off. The relay's coil discharges its kick-back current through diode CR1016, and the relay common returns to its normally closed position.

In order to drive both an X-Y plotter and a Y-T strip chart recorder, the Pen-Down circuitry does double duty. With an X-Y plotter, the circuitry simply lowers the plotter pen. with a Y-T strip chart recorder, the pen-down circuitry is actually a motor drive control circuit. This double duty is
accomplished by providing the Pen-Down signal to the operational amplifier about 1 s prior to the signals being provided to $\mathrm{X} \& \mathrm{Y}$ plot output circuitry. This allows the motor to have time to start up before signais are applied to the Y plot output circuit. The circuit can not differentiate between X - Y plotters and $\mathrm{Y}-\mathrm{T}$ strip chart recorders, therefore the time delay from PEN DWN to X and Y channel information output is the same in each case.

X and Y Amplifiers

The X and Y amplifiers drive the X and Y outputs. Because both amplifiers operate the same, only the X PLOT amplifier is discussed in detail.

Input signal X PLOT goes to the non-inverting input of unity gain amplifier U1001C pin 10 . The output of the operational amplifier is fed to auxiliary connector J 1011 pin 3 through resistor R1002. The resistor limits the output current and is part of the amplifier's protection network. The X-PLOT protection network consists of diodes CR1003, CR1011, R1002, VR1012, and VR1011. If the X output goes above 5.8 V peak, VR1011 and CR1011 turn on, clipping U1001C pin 8 to about +6 V . If output goes below -5.8 V peak, VR1012 and CR1003 turn on, clipping U1001C pin 8 to about -6 V . The Y-PLOT protection components are CR1001, CR1002, R1001, VR1012, and VR1011.

Power Supplies

The filters for all supplies are pi filters, consisting of two filter caps to ground, one on each side of a series choke.

Each filter circuit for the three supplies filter in both directions. The filters reduce noise on the power supply lines generated elsewhere in the instrument, and they also reduce noise generated by the X-Y plotter board as the noise goes back out to the supplies in the rest of the instrument. Capacitors C1003, C1004, and C1005 decouple and by-pass the supplies.

The +4.2 V output makes interfacing to various $X-Y$ and $Y-T$ devices easier. The $+5 \mathrm{~V}_{\mathrm{g}}$ goes to the anode of reverse voltage protection diode CR1014. The diode drops the voltage to +4.2 V . The +4.2 V goes through current limit resistor R1013 to the auxiliary connector output (J1011 pin 6).

PERFORMANCE CHECK PROCEDURE

INTRODUCTION

PURPOSE

The "Performance Check Procedure" is used to verify the instrument's Performance Requirements statements listed in Table 1-1 and to determine the need for calibration. The performance checks may also be used as an acceptance test or as a preliminary troubleshooting aid.

PERFORMANCE CHECK INTERVAL

To ensure instrument accuracy, check its performance after every 2000 hours of operation or once each year, if used infrequently. A more frequent interval may be necessary if the instrument is subjected to harsh environments or severe usage.

STRUCTURE

The "Performance Check Procedure" is structured in subsections to permit checking individual sections of the instrument whenever a complete Performance Check is not required. At the beginning of each subsection there is an equipment-required list showing only the test equipment necessary for performing the steps in that subsection. In this list, the Item number that follows each piece of equipment corresponds to the Item number listed in Table 4-1.

Abstract

Also at the beginning of each subsection is a list of all the front-panel control settings required to prepare the instrument for performing Step 1 in that subsection. Each succeeding step within a particular subsection should then be performed, both in the sequence presented and in its entirety, to ensure that control-setting changes will be correct for ensuing steps.

TEST EQUIPMENT REQUIRED

The test equipment listed in Table 4-1 is a complete list of the equipment required to accomplish both the "Performance Check Procedure" in this section and the
"Adjustment Procedure" in Section 5. Test equipment specifications described in Table 4-1 are the minimum necessary to provide accurate results. Therefore, equipment used must meet or exceed the listed specifications. Detailed operating instructions for test equipment are not given in this procedure. If more operating information is required, refer to the appropriate test equipment instruction manual.

When equipment other than that recommended is used, control settings of the test setup may need to be altered. If the exact item of equipment given as an example in Table 4-1 is not available, check the "Minimum Specification" column to determine if any other available test equipment might suffice to perform the check or adjustment.

LIMITS AND TOLERANCES

The tolerances given in this procedure are valid for an instrument that is operating in and has been previously calibrated in an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$. The instrument also must have had at least a $20-$ minute warm-up period. Refer to Table 1-1 for tolerances applicable to an instrument that is operating outside this temperature range. All tolerances specified are for the instrument only and do not include test-equipment error.

PREPARATION FOR CHECKS

It is not necessary to remove the instrument cover to accomplish any subsection in the "Performance Check Procedure," since all checks are made using operatoraccessible front- and rear-panel controls and connectors.

The most accurate display adjustments are made with a stable, well-focused, low-intensity display. Unless otherwise noted, adjust the A and B INTENSITY, STORAGE/READOUT INTENSITY, FOCUS, and TRIGGER LEVEL controls as needed to view the display.

Table 4-1
Test Equipment Required

Item and Description	Minimum Specification	Purpose	Example of Suitable Test Equipment
1. Calibration Generator	Standard-amplitude signal levels: 5 mV to 50 V . Accuracy: $\pm 0.3 \%$. High-amplitude signal levels: 1 V to 60 V . Repetition rate: 1 kHz . Fast-rise signal level: 1 V . Repetition rate: 1 MHz . Rise time: 1 ns or less. Flatness: $\pm 2 \%$.	Signal source for gain and transient response.	TEKTRONIX PG 506 Calibration Generator. ${ }^{\text {a }}$
2. Leveled Sine-Wave Generator	Frequency: 250 kHz to above 100 MHz . Output amplitude: variable from 10 mV to 5 V p-p. Output impedance: 50Ω. Reference frequency: 50 kHz . Amplitude accuracy: constant within 3% of reference frequency as output frequency changes.	Vertical, horizontal, and triggering checks and adjustments. Display adjustments and Z Axis check.	TEKTRONIX SG 503 Leveled Sine-Wave Generator. ${ }^{\text {a }}$
3. Time-Mark Generator	Marker outputs: 10 ns to 0.5 s . Marker accuracy: $\pm 0.1 \%$. Trigger output: 1 ms to $0.1 \mu \mathrm{~s}$, timecoincident with markers.	Horizontal checks and adjustments. Display adjustment.	TEKTRONIX TG 501 Time-Mark Generator. ${ }^{\text {a }}$
4. Low-Frequency Generator	Range: 1 kHz to 500 kHz . Output amplitude: 300 mV . Output impedance: 600Ω. Reference frequency: constant within 0.3 dB of reference frequency as output frequency changes.	Low-frequency trigger checks.	TEKTRONIX SG 502 Oscillator. ${ }^{\text {a }}$
5. Pulse Generator	Repetition rate: 1 kHz . Output amplitude: 5 V .	External clock and storage checks.	TEKTRONIX PG 501 Pulse Generator. ${ }^{\text {a }}$
6. Test Oscilloscope with 10X Probes	Bandwidth: dc to 100 MHz . Minimum deflection factor: $5 \mathrm{mV} / \mathrm{div}$. Accuracy: $\pm 3 \%$.	General troubleshooting, holdoff check.	TEKTRONIX 2235 Oscilloscope.
7. Digital Voltmeter (DMM)	Range: 0 to 140 V . Dc voltage accuracy: $\pm 0.15 \% .4$ 1/2 digit display.	Power supply checks and adjustments. Vertical adjustment.	TEKTRONIX DM 501A Digital Multimeter. ${ }^{\text {a }}$
8. Coaxial Cable (2 required)	Impedance: 50Ω. Length: 42 in. Connectors: BNC.	Signal interconnection.	Tektronix Part Number 012-0057-01.
9. Dual-Input Coupler	Connectors: BNC female-to-dual-BNC male.	Signal interconnection.	Tektronix Part Number 067-0525-01.
10. Coupler	Connectors: BNC female-to-BNC female.	Signal interconnection.	Tektronix Part Number 103-0028-00.
11. T-Connector	Connectors: BNC.	Signal interconnection.	Tektronix Part Number 103-0030-00.
12. Termination	Impedance: 50Ω. Connectors: BNC.	Signal termination.	Tektronix Part Number 011-0049-01.

${ }^{*}$ Requires a TM 500-Series Power Module.

Table 4-1 (cont)

Item and Description	Minimum Specification	Purpose	Example of Suitable Test Equipment
13. Termination	Impedance: 600Ω. Connectors: BNC.	Signal termination.	Tektronix Part Number 011-0092-00.
14. $10 \times$ Attenuator	Ratio: 10X. Impedance: 50Ω. Connectors: BNC.	Vertical compensation and triggering checks.	Tektronix Part Number 011-0059-02.
15. $2 \times$ Attenuator	Ratio: 2X. Impedance: 50Ω. Connectors: BNC.	External triggering checks.	Tektronix Part Number 011-0069-02.
16. Adapter	Connectors: BNC male-to-miniatureprobe tip.	Signal interconnection.	Tektronix Part Number 013-0084-02.
17. Adapter	Connectors: BNC male-to-tip plug.	Signal interconnection.	Tektronix Part Number 175-1178-00.
18. Low-Capacitance Alignment Tool	Length: 1 -in. shaft. Bit size: $3 / 32 \mathrm{in}$.	Adjust variable capacitors.	J.F.D. Electronics Corp. Adjustment Tool Number 5284.
19. Screwdriver	Length: 3-in. shaft. Bit size: 3/32 in.	Adjust variable resistors.	Xcelite R-3323.

INDEX TO PERFORMANCE CHECK STEPS

Vertical Page

1. Check Deflection Accuracy and Variable Range 4-4
2. Check Store Deflection Accuracy 4-5
3. Check Save Expansion and Compression 4-5
4. Check Position Range 4-6
5. Check Acquisition Position Registration 4-6
6. Check Non Store Aberrations 4-6
7. Check Store Aberrations 4.7
8. Check Bandwidth 4-7
9. Check Repetitive Store Mode 4-8
10. Check Single Sweep Sample Acquisition 4-8
11. Check Bandwidth Limit Operation 4-8
12. Check Common-Mode Rejection Ratio 4-8
13. Check Non Store and Store Channel Isolation 4-9
14. Check Store Mode Cross Talk 4-10
15. Check Store Pulse Width Amplitude 4-10
16. Check Average Mode 4-11
Horizontal
17. Check Timing Accuracy and Linearity 4-12
18. Check Store Differential and Cursor Time Difference Accuracy 4-13
Page
19. Check Variable Range and Sweep Separation 4-14
20. Check Delay Time Differential Accuracy 4-14
21. Check Delay Jitter 4-15
22. Check Position Range 4-15
23. Check Store Expansion Range 4-15
24. Check 4 K to 1 K Display Compress 4-16
25. Check Non Store Sweep Length 4-16
26. Check X Gain 4-16
27. Check X Bandwidth 4-16
Trigger
28. Check Internal A and B Triggering. 4-17
29. Check HF Reject A Triggering 4-18
30. Check External Triggering 4-19
31. Check External Trigger Ranges 4-19
32. Check Single Sweep Operation 4-19
33. Check Acquisition Window Trigger Point 4-20
External Z-Axis, Probe Adjust, External Clock and X-Y Plotter
34. Check External Z-Axis Operation 4-21
35. Check Probe Adjust Operation 4-21
36. Check External Clock 4-22
37. Check X-Y Plotter 4-22

VERTICAL

Equipment Required (see Table 4-1):
Calibration Generator (Item 1)
Leveled Sine-Wave Generator (Item 2)
50Ω BNC Cable (Item 8)

> Dual-Input Coupler (Item 9)
> 50Ω BNC Termination (Item 12)
> 10X Attenuator (Item 14)

INITIAL CONTROL SETTINGS

Vertical (Both Channels)

POSITION	Midrange
VERTICAL MODE	CH 1
X-Y	Off (button out)
BW LIMIT	On (button in)
VOLTS/DIV	2 mV
VOLSS/DIV Variable	CAL detent
INVERT	Off (button out)
AC-GND-DC	DC

Horizontal

POSITION	Midrange
HORIZONTAL MODE	A
A SECDIV	$20 \mu \mathrm{~s}$
SEC/DVV Variable	CAL detent
X10 Magnifier	Off (knob in)

A Trigger

VAR HOLDOFF	NORM
MOde	P-P AUTO
SLOPE	OUT
LEVEL	Midrange
HF REJECT	OFF
A\&B INT	VERT MODE
A SOURCE	INT
A EXT COUPLING	AC

Storage
 store/Non store SAVE/CONTINUE PRETRIG/POST TRIG ROLL/SCAN
 $1 \mathrm{~K} / 4 \mathrm{~K}$ POSITION CURS/
 SELECT WAVEFORM
 WAVEFORM
 REFERENCE/
 MENU SELECT
 NON STORE (button out) CONTINUE (button out) POST TRIG (button out)
 SCAN (button out)
 4 K (button out)
 POSITION CURS
 (button in)
 WAVEFORM REFERENCE (button in)

PROCEDURE STEPS

1. Check Deflection Accuracy and Variable Range

a. Connect the standard-amplitude signal from the Calibration Generator via a 50Ω cable to the CH 1 OR X input connector.
b. CHECK—Deflection accuracy is within the limits given in Table 4-2 for each CH 1 VOLTS/DIV switch setting and corresponding standard-amplitude signal. When at the 20 mV VOLTS/DIV switch setting, rotate the CH 1 VOLTS/DIV Variable control fully counterclockwise and CHECK that the display decreases to 2 divisions or less. Then return the CH 1 VOLTS/DIV Variable control to the CAL detent and continue with the 50 mV check.

Table 4-2
Deflection Accuracy Limits

VOLTS/DIV Switch Setting	Standard Amplitude Signal	Accuracy Limits (Divisions)
2 mV	10 mV	4.90 to 5.10
5 mV	20 mV	3.92 to 4.08
10 mV	50 mV	4.90 to 5.10
20 mV	0.1 V	4.90 to 5.10
50 mV	0.2 V	3.92 to 4.08
0.1 V	0.5 V	4.90 to 5.10
0.2 V	1 V	4.90 to 5.10
0.5 V	2 V	3.92 to 4.08
1 V	5 V	4.90 to 5.10
2 V	10 V	4.90 to 5.10
5 V	20 V	3.92 to 4.08

c. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector. Set the VERTICAL MODE switch to CH 2.

d. Repeat part busing the Channel 2 controls.

2. Check Store Deflection Accuracy

a. Set:

CH 2 VOLTS/DIV STORE/NON STORE POSITION CURS/

SELECT WAVEFORM

```
2 mV STORE (button in)
POSITION CURS (button in)
```

b. Use the CURSORS control and SELECT C1/C2 switch to set one cursor at the bottom and the other cursor at the top of the square wave.
c. CHECK—Deflection accuracy is within the limits given in Table 4-3 for each CH 2 VOLTS/DIV switch setting and corresponding standard-amplitude signal.

Table 4-3
Storage Deflection Accuracy

VOLTS/ DIV Switch Setting	Standard Ampli- tude Signal	Divisions of Deflection	Voltage Readout Limits
2 mV	10 mV	4.90 to 5.10	9.80 to 10.20 mV
5 mV	20 mV	3.92 to 4.08	19.6 to 20.4 mV

d. Move the cable from the CH 2 OR Y input connector to the CH 1 OR X input connector. set the VERTICAL MODE switch to CH 1.
e. Repeat parts b and c using the Channel 1 controls.

3. Check Save Expansion and Compression

a. Set the $\mathrm{CH} 1 \mathrm{VOLTS} / \mathrm{DIV}$ switch to 0.1 V .
b. Set the generator to produce a 0.5 div standardamplitude signal.
c. Set the SAVE/CONTINUE switch to SAVE (button in).
d. Set the CH 1 VOLTS/DIV switch to 10 mV and reposition the display.
e. CHECK-The display is expanded to 5 divisions in amplitude.
f. Set:
CH 1 VOLTS/DIV
SAVE/CONTINUE
0.1 V
CONTINUE (button out)
g. Set the generator to produce a 5 division standardamplitude signal.
h. Set the SAVE/CONTINUE switch to SAVE (button in).
i. Set the CH 1 VOLTS/DIV switch to 1 V .
j. CHECK-The display is compressed to 0.5 division in amplitude.
k. Move the cable from the CH 1 OR X input connector to the $\mathrm{CH} 2 \mathrm{OR} Y$ input connector.
I. Set:

VERTICAL MODE	CH 2
SAVE/CONTINUE	CONTINUE (button out)
m.	Repeat parts a through j.

m. Repeat parts a through j.

4. Check Position Range

a. Set:

VOLTS/DIV (both) $\quad 50 \mathrm{mV}$
AC-GND-DC (both) AC
STORE/NON STORE NON STORE (button out)
b. Set the generator to produce a 0.5 V standardamplitude signal.
c. Adjust the CH 2 VOLTS/DIV Variable control to produce a 4.4 division display. Set the CH 2 VOLTS/DIV switch to 10 mV .
d. CHECK-The bottom and top of the trace may be positioned above and below the center horizontal graticule line by rotating the Channel 2 POSITION control fully clockwise and counterclockwise respectively.
e. Move the cable from the CH 2 OR Y input connector to the CH 1 OR X input connector. Set the VERTICAL MODE switch to CH 1.
f. Repeat parts c and $d u s i n g$ the Channel 1 controls.
g. Disconnect the test equipment from the instrument.

5. Check Acquisition Position Registration

a. Set:

VOLTS/DIV (both)	10 mV
AC-GND-DC (both)	GND
A SEC/DIV	$10 \mu \mathrm{~s}$
SAVE/CONTINUE	CONTINUE (button out)

b. Position the trace exactly on the center horizontal graticule line using the Channel 1 POSITION control.
c. Set STORE/NON STORE switch to STORE (button in).
d. CHECK- Trace remains within 0.5 division of the center graticule line.
e. Set:
VERTICAL MODE
CH 2
STORE/NON STORE
NON STORE
f. Repeat parts b through d for Channel 2 trace.
g. Position the trace 0.5 division below the top horizontal graticule line using the Channel 2 POSITION control.
h. Set SAVE/CONTINUE switch to SAVE (button in).
i. CHECK-Trace shift of 0.5 division or less.
j. Set SAVE/CONTINUE switch to CONTINUE (button out).
k. Position the trace 0.5 division above the bottom horizontal graticule line using the Channel 2 POSITION control.
I. CHECK-Trace shift of 0.5 division or less.
m. Set the VERTICAL MODE switch to CH 1.
n. Repeat steps g through I for Channel 1 trace.

6. Check Non Store Aberrations

a. Set:

BW LIMIT	Off (button out)
VOLTS/DIV (both)	2 mV
AC-GND-DC (both)	DC
A SEC/DIV	$0.05 \mu \mathrm{~s}$
STORE/NON STORE	NON STORE (button out)

b. Connect the fast-rise, positive-going square-wave output via a 50Ω cable, a 10X attenuator, and a 50Ω termination to the CH 1 OR X input connector.
c. Set the generator to produce a 1 MHz , 5-division display.
d. CHECK—Display aberrations are within 4% (0.2 division or less) for the following VOLTS/DIV switch settings: 5 mV through 50 mV . Adjust the generator output and attach or remove the 10X attenuator as necessary to maintain a 5 -division display at each VOLTS/DIV switch setting.
e. CHECK—Display aberrations are within 6% (0.25 division or less) for the following VOLTS/DIV switch settings: 0.1 V through 0.5 V . Adjust the generator output and attach or remove the 10X attenuator as necessary to maintain a 5-division display at each VOLTS/DIV switch setting.
f. Disconnect the cable from the $\mathrm{CH} 1 \mathrm{OR} X$ input connector. Reconnect the 10X attenuator (if previously removed) and reduce the generator amplitude to minimum.
g. Connect the cable to the CH 2 OR Y input connector and set the VERTICAL MODE switch to CH 2.
h. Set the generator to produce a 5-division display.
i. Repeat parts d and e using the Channel 2 controls.

7. Check Store Aberrations

a. Reconnect the 10 X attenuator and 50Ω termination (if previously removed) and reduce the generator amplitude to minimum.
b. Set the CH 2 VOLTS/DIV switch to 2 mV .
c. Set the generator to produce a 5 -division display.
d. Set:

STORE/NON STORE
STORE (button in) SAVE/CONTINUE CONTINUE (button out)
e. Allow acquisition cycle to complete and press in the SAVE/CONTINUE button to SAVE (button in).
f. CHECK—Display aberrations are within 4% (0.2 division or less).
g. Repeat part f for each of the following VOLTS/DIV switch settings: 5 mV through 0.5 V . Adjust the generator output and attach or remove the 10X attenuator as necessary to maintain a 5 -division display at each VOLTS/DIV switch setting.
h. Disconnect the cable from the CH 2 OR Y input connector. Reconnect the 10X attenuator (if previously removed) and reduce the generator amplitude to minimum.
i. Connect the cable to the CH 1 OR X input connector and set the VERTICAL MODE switch to CH 1.
j. Set the generator to produce a 5-division display.
k. Repeat parts e and fusing the Channel 1 controls.
I. Disconnect the test equipment from the instrument.

8. Check Bandwidth

a. Set:

VOLTS/DIV (both)	2 mV
A SEC/DIV	0.2 ms
STORE/NON STORE	NON STORE (button out)

b. Connect the leveled sine-wave generator output via a 50Ω cable and a 50Ω termination to the CH 2 OR Y input connector.
c. Set the generator to produce a 50 kHz , 6-division display.
d. CHECK—Display amplitude is 4.2 divisions or greater as the generator output frequency is increased up to the value shown in Table 4-4 for the corresponding VOLTS/DIV switch setting.

Table 4-4
Settings for Bandwidth Checks

VOLTS/DIV Switch Setting	Generator Output Frequency
2 mV	80 MHz
5 mV to 5 V	100 MHz

e. Repeat parts c and d for all indicated CH 2 VOLTS/DIV switch settings, up to the output-voltage upper limit of the sine-wave generator being used.
f. Move the cable from the CH 2 OR Y input connector to the CH 1 OR X input connector.
g. Set the VERTICAL MODE switch to CH 1.
h. Repeat parts c and d for all indicated CH 1 VOLTS/DIV switch settings, up to the output-voltage upper limit of the sine-wave generator being used.

9. Check Repetitive Store Mode

a. Set:

CH 1 VOLTS/DIV	10 mV
A SEC/DIV	0.2 ms

b. Set the generator to produce a $50 \mathrm{kHz}, 6$-division display.
c. Set:

A SEC/DIV	$0.05 \mu \mathrm{~s}$
X10 Magnifier	On (knob out)

d. Set the generator to produce a 100 MHz display.
e. Set:

STORE/NON STORE
STORE (button in) SAVE/CONTINUE CONTINUE (button out)

NOTE

Allow the points to accumulate for a few seconds before saving the display.
f. CHECK-The 100 MHz display will accumulate and store.
g. Set the VERTICAL MODE switch to BOTH and ALT.
h. Repeat part f.
10. Check Single Sweep Sample Acquisition
a. Set:

VERTICAL MODE	CH 1
A SEC/DIV	$5 \mu \mathrm{~s}$
X10 Magnifier	Off (knob in)
A TRIGGER Mode	NORM
A\&B INT	CH 1
SAVE/CONTINUE	CONTINUE (button out)
1K/4K	1 K (button in)

b. Set the generator to produce a 50 kHz , 6-division display.
c. Press in the A TRIGGER Mode SGL SWP button.
d. Set the generator output to 2 MHz .
e. Press in the A TRIGGER Mode SGL SWP button.
f. CHECK-The minimum peak-to-peak envelope amplitude is greater than 5.6 divisions.

11. Check Bandwidth Limit Operation

a. Set:

BW LIMIT	On (button in)
CH 1 VOLTS/DIV	10 mV
AC-GND-DC	DC
A SEC/DIV	$20 \mu \mathrm{~s}$
A TRIGGER Mode	P-P AUTO
A\&B INT	VERT MODE
STORE/NON STORE	NON STORE (button out)

b. Set the generator to produce a 50 kHz , 6 -division display.
c. Increase the generator output frequency until the display amplitude decreases to 4.2 divisions.
d. CHECK—Generator output frequency is between 18 and 22 MHz .
e. Disconnect the test equipment from the instrument.
12. Check Common-Mode Rejection Ratio
a. Set:

BW LIMIT Off (button out)
CH 2 VOLTS/DIV $\quad 10 \mathrm{mV}$ INVERT On (button in)
b. Connect the leveled sine-wave generator output via a 50Ω cable, a 50Ω termination, and a dual-input coupler to the CH 1 OR X and the CH 2 OR Y input connectors.
c. Set the generator to produce a 50 MHz , 6 -division display.
d. Vertically center the display using the Channel 1 POSITION control. Then set the VERTICAL MODE switch to CH 2 and vertically center the display using the Channel 2 POSITION control.
e. Set the VERTICAL MODE switches to BOTH and ADD.
f. CHECK—Display amplitude is 0.6 division or less.
g. If the check in part f meets the requirement, skip to part p. If it does not, continue with part h.
h. Set the VERTICAL MODE switch to CH 1.
i. Set the generator to produce a 50 kHz , 6-division display.
j. Set the VERTICAL MODE switch to BOTH.
k. Adjust the CH 1 or CH 2 VOLTS/DIV Variable control for minimum display amplitude.
I. Set the VERTICAL MODE switch to CH 1.
m . Set the generator to produce a $50 \mathrm{MHz}, 6$-division display.
n. Set the VERTICAL MODE switch to BOTH.
o. CHECK-Display amplitude is 0.6 division or less.
p. Disconnect the test equipment from the instrument.
13. Check Non Store and Store Channel Isolation
a. Set:

VERTICAL MODE	CH 1
VOLTS/DIV (both)	0.1 V
VOLTS/DIV Variable	
\quad (both)	CAL detent
INVERT	Off (button out)
Channel 1 AC-GND-DC	AC
Channel 2 AC-GND-DC	GND
A SEC/DIV	$0.1 \mu \mathrm{~s}$

b. Connect the leveled sine-wave generator output via a 50Ω cable and a 50Ω termination to the CH 1 OR X input connector.
c. Set the generator to produce a $50 \mathrm{MHz}, 5$-division display.
d. Set the VERTICAL MODE switch to CH 2.
e. CHECK-Display amplitude is 0.05 division or less.
f. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector.
g. Set:

VERTICAL MODE	CH 1
Channel 1 AC-GND-DC	GND
Channel 2 AC-GND-DC	AC

h. CHECK_Display amplitude is 0.05 division or less.
i. Set:

CH 2 VOLTS/DIV	50 mV
STORE/NON STORE	STORE (button in)
SAVE/CONTINUE	CONTINUE (button out)

j. CHECK—Display amplitude is 0.1 division or less.
k. Move the cable from the CH 2 OR Y input connector to the CH 1 ORX input connector.
I. Set:

VERTICAL MODE
CH 1
CH 1 VOLTS/DIV
CH 2 VOLTS/DIV Channel 1 AC-GND-DC Channel 2 AC-GND-DC AC 50 mV 0.1 V GND
m. CHECK—Display amplitude is $\mathbf{0 . 1}$ division or less.
n. Disconnect the test equipment from the instrument.

14. Check Store Mode Cross Talk

a. Set:

VERTICAL MODE	BOTH and CHOP
VOLTS/DIV (both)	0.1 V
A SEC/DIV	$10 \mu \mathrm{~S}$

b. Connect the Pulse Generator pulse-period output via a 50Ω cable and a 50Ω termination to CH 1 OR X input connector.
c. Set the generator to produce a 100 kHz , 5-division display.
d. Use the Channel 1 POSITION control to center the display.
e. Set CH 1 VOLTS/DIV switch to 50 mV for a 10division display.
f. CHECK-Display amplitude on Channel 2 is less than 1\% (0.1 division).
g. Set the A SEC/DIV switch to 10 ms .
h. CHECK—Display amplitude on Channel 2 is less than 1\% (0.1 division).
i. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector.
j. Set:

CH 2 VOLTS/DIV
Channel 1 AC-GND-DC
Channel 2 AC-GND-DC
k. Use the Channel 2 POSITION control to center the display.
I. Set CH 2 VOLTS/DIV switch to 50 mV for a 10 division display.
m. Repeat parts fthrough h for Channel 1.

15. Check Store Pulse Width Amplitude

a. Set:

VERTICAL MODE	CH 2
A SEC/DIV	1 ms
STORE/NON STORE	NON STORE (button out)
ROLL/SCAN	SCAN (button out)
1K/4K	1K (button in)

b. Set the generator to produce a 1 ms period, 100 ns pulse duration, 5 -division display.
c. Set the STORE/NON STORE switch to STORE (button in).
d. CHECK-The amplitude of the display is 2.5 divisions or greater.
e. Set the A SEC/DIV switch to 0.1 sec .
f. CHECK-The amplitude of the display is 2.5 divisions or greater.
g. Set ROLLSCAN switch to ROLL (button in).
h. CHECK-The amplitude of the display is 2.5 divisions or greater.
i. Set:

VERTICAL MODE	BOTH and CHOP
A SEC/DIV	1 ms
STORE/NON STORE	NON STORE (button out)
ROLISCAN	SCAN (button out)

j. Set the generator to produce a 0.1 s period, 2 ms pulse duration, 5 -division display.
k. Repeat parts c through h.
I. Set:

A SEC/DIV 1 ms STORE/NON STORE NON STORE (button out) ROLL/SCAN SCAN (button out)
m . Set the generator to produce a 1 ms period, $20 \mu \mathrm{~s}$ pulse duration, 5 -division display.
n. Repeat parts cand d.
o. Disconnect the test equipment from the instrument.

16. Check Average Mode

a. Set the WAVEFORM REFERENCE/MENU SELECT switch to MENU SELECT (button out).
b. Use the Menu controls to select SWP LIMIT.
c. CHECK-The SWP LIMIT is adjustable from 1 to 2047 or NO LIMIT by rotating the CURSORS control.

HORIZONTAL

```
Equipment Required (see Table 4-1):
    Calibration Generator (Item 1)
    Leveled Sine-Wave Generator (Item 2)
    Time-Mark Generator (Item 3)
```

```
50\Omega BNC Cable (Item 8)
```

50\Omega BNC Cable (Item 8)
50\Omega BNC Termination (Item 12)

```
50\Omega BNC Termination (Item 12)
```


INITIAL CONTROL SETTINGS

Vertical	
Channel 1 POSITION	Midrange
VERTICAL MODE	CH 1
X-Y	Off (button out)
BW LIMIT	Off (button out)
CH 1 VOLTS/DIV	0.5 V
CH 1 VOLTS/DIV Variable	CAL detent
Channel 1 AC-GND-DC	DC
Horizontal	
POSITION	Midrange
HORIZONTAL MODE	A
A SEC/DIV	$0.05 \mu \mathrm{~s}$
SEC/DIV Variable	CAL detent
X10 Magnifier	Off (knob in)
B DELAY TIME POSITION	Fully counterclockwise
B TRIGGER	
SLOPE	OUT
LEVEL	Fully clockwise
A TRIGGER	
VAR HOLDOFF	NORM
Mode	P-P AUTO
SLOPE	OUT
LEVEL	Midrange
HF REJECT	OFF
A\&B INT	VERT MODE
A SOURCE	INT
A EXT COUPLING	DC $\div 10$
Storage	
STORE/NON STORE	NON STORE (button out)
SAVE/CONTINUE	CONTINUE (button out)
PRETRIG/POST TRIG	POST TRIG (button out)
ROLLISCAN	SCAN (button out)
1K/4K	4K (button out)
POSITION CURS/ SELECT WAVEFORM	POSITION CURS (button in)
WAVEFORM REFERENCE/ MENU SELECT	WAVEFORM REFERENCE (button in)

PROCEDURE STEPS

1. Check Timing Accuracy and Linearity

a. Connect the time-mark generator output via a 50Ω cable and a 50Ω termination to the CH 1 OR X input connector.
b. Select 50 ns time markers from the time-marker generator.
c. Use the Channel 1 POSITION control to center the display vertically. Adjust the A TRIGGER LEVEL control for a stable, triggered display.
d. Use the Horizontal POSITION control to align the 2nd time marker with the $2 n d$ vertical graticule line.
e. CHECK-Timing accuracy is within 2% (0.16 division at the 10th vertical graticule line), and linearity is within 5% (0.1 division over any 2 of the center 8 divisions).

NOTE

For checking the timing accuracy of the A SEC/DIV switch settings from 50 ms to 0.5 s , watch the time marker tips only at the 2nd and 10th vertical graticule lines while adjusting the Horizontal POSITION control.
f. Repeat parts c through e for the remaining A SEC/DIV and time-mark generator setting combinations shown in Table 4-5 under the "Normal (X1)" column.
g. Set:

A SEC/DIV	$0.05 \mu \mathrm{~S}$
X10 Magnifier	On (knob out)

Table 4-5
Settings for Timing Accuracy Checks

SEC/DIV Switch Setting	Time-Mark Generator Setting	
	Normal (X1)	X10 Magnified
$0.05 \mu \mathrm{~s}$	50 ns	10 ns
$0.1 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	10 ns
$0.2 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	20 ns
$0.5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	50 ns
$1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$
$2 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$
$5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$
$10 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
$20 \mu \mathrm{~s}$	$20 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$
$50 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
0.1 ms	0.1 ms	$10 \mu \mathrm{~s}$
0.2 ms	0.2 ms	$20 \mu \mathrm{~s}$
0.5 ms	0.5 ms	$50 \mu \mathrm{~s}$
1 ms	1 ms	0.1 ms
2 ms	2 ms	0.2 ms
5 ms	5 ms	0.5 ms
10 ms	10 ms	1 ms
20 ms	20 ms	2 ms
50 ms	50 ms	5 ms
	A Sweep Only	
0.1 s	0.1 s	10 ms
0.2 s	0.2 s	20 ms
0.5 s	0.5 s	50 ms

h. Select 10 ns time markers from the time-mark generator.
i. Use the Horizontal POSITION control to align the 1st time marker that is 25 ns beyond the start of the sweep with the $2 n d$ vertical graticule line.
J. CHECK—Timing accuracy is within 3% (0.24 division at the 10th vertical graticule line), and linearity is within 5% (0.1 division over any 2 of the center 8 divisions). Exclude any portion of the sweep past the 100th magnified division.
k. Repeat parts \mathbf{i} and j for the remaining A SEC/DIV and time-mark generator setting combinations shown in Table 4-5 under the "X10 Magnified" column.
I. Set:

HORIZONTAL MODE	B
A SEC/DIV	$0.1 \mu \mathrm{~s}$
B SEC/DIV	$0.05 \mu \mathrm{~s}$
X10 Magnifier	Off (knob in)

m. Repeat parts b through k for the B Sweep. Keep the A SEC/DIV switch one setting slower than the B SEC/DIV switch.
2. Check Store Differential and Cursor Time Difference Accuracy
a. Set:

Channel 1 AC-GND-DC	GND
HORIZONTAL MODE	A
A SEC/DIV	0.1 ms
X10 Magnifier	Off (knob in)
STORE/NON STORE	STORE (button in)
1K/4K	1K (button in)

b. Use the Channel 1 POSITION control to center the base line vertically and the Horizontal POSITION control to align the start of the trace with the 1st vertical graticule line.
c. Use the CURSORS control and SELECT C1/C2 switch to set one cursor exactly on the 2nd vertical graticule line and position the active cursor to the right using the CURSORS control until ΔT readout displays 0.800 ms .
d. CHECK—Graticule indication of cursor difference at the 10 th vertical graticule line is within 0.16 division.
e. Set the Channel 1 AC-GND-DC switch to DC.
f. Select 1 ms time markers from the time-mark generator.
g. Align the 2 nd time marker with the 2 nd vertical graticule line using the Horizontal POSITION control.
h. Set the SAVE/CONTINUE switch to SAVE (button in) for a stable display.
i. Use the CURSORS control and SELECT C1/C2 switch to set the first cursor on the trailing edge of the 2nd time marker.

1. Press in the C1/C2 button to activate the second cursor.
k. Set the second cursor on the trailing edge of the 10th time marker at the same voltage level as on the 2 nd time marker.
I. CHECK-The ΔT readout is between 0.798 ms and 0.802 ms .
m. Set the SAVE/CONTINUE switch to CONTINUE (button out).
n. Set the A SEC/DIV switch to $0.5 \mu \mathrm{~s}$.
o. Select $0.5 \mu \mathrm{~S}$ time markers from the time-mark generator.
p. Align the 2 nd time marker with the 2 nd vertical graticule line using the Horizontal POSITION control.

NOTE

Allow the points to accumulate for a few seconds before saving the display.
q. Repeat parts h through k.

NOTE

Pulses with fast rise and fall times have only a few sample points and it may not be possible to place the cursors at exactly the same voltage levels.
r. CHECK-The ΔT readout is between 397.0 ns and 403.0 ns .
3. Check Variable Range and Sweep Separation
a. Set:
$\begin{array}{ll}\text { A and B SEC/DIV } & 0.2 \mathrm{~ms} \\ \text { SEC/DIV Variable } & \text { Fully counterclockwise } \\ \text { STORE/NON STORE } & \text { NON STORE (button out) }\end{array}$
b. Select 0.5 ms time markers from the time-mark generator.
c. CHECK-Time markers are 1 division or less apart.
d. Set:

Channel 1 AC-GND-DC	GND
SEC/DIV Variable	CAL detent
HORIZONTAL MODE	BOTH

e. Use the Channel 1 POSITION control to set the A Sweep at the center horizontal graticule line.
f. CHECK-The B Sweep can be positioned more than 3.5 divisions above and below the A Sweep when the A / B SWP SEP control is rotated fully clockwise and counterclockwise respectively.

4. Check Delay Time Differential Accuracy

a. Use the Horizontal POSITION control to align the start of the A Sweep with the 1st vertical graticule line.
b. Set the B DELAY TIME POSITION control fully counterclockwise.
c. CHECK-Intensified portion of the trace starts within 0.5 division of the start of the sweep.
d. Rotate the B DELAY TIME POSITION control fully clockwise.
e. CHECK-Intensified portion of the trace is past the 11th vertical graticule line.
f. Set the A and B SEC/DIV switch to $0.5 \mu \mathrm{~s}$.
g. Repeat parts a through e.
h. Set:

Channel 1 AC-GND-DC	DC
B SEC/DIV	0.05μ s
B DELAY TIME POSITION	Fully counterclockwise

i. Select $0.5 \mu \mathrm{~s}$ time markers from the time-mark generator.
J. Rotate the B DELAY TIME POSITION control so that the top of the 2nd time marker on the B Sweep is aligned with a selected reference vertical line. Record the DLY> readout for part I .
k. Rotate the B DELAY TIME POSITION control fully clockwise until the top of the 10th time marker on the B Sweep is aligned with the same selected reference vertical line as in part j. Record the DLY> readout for part I.
I. CHECK—Delay time readout is within the limits given in Table 4-6 (Delay Readout Limits column) by subtracting the delay time reading in part j from part k .
m . Repeat parts k through I for the remaining B SEC/DIV and time-mark generator settings given in Table $4-6$, check the 8 -division delay time accuracy for each A SEC/DIV switch setting given in column 1 of the table.

Table 4-6
Settings for Delay Time Differential Checks

Time-Mark Generator and A SEC/DIV Settings	B SEC/DIV Setting	Eight Division Delay	Delay Readout Limits
$0.5 \mu \mathrm{~s}$	$0.05 \mu \mathrm{~s}$	$4.000 \mu \mathrm{~s}$	3.948 to $4.052 \mu \mathrm{~s}$
$5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	$40.00 \mu \mathrm{~s}$	39.48 to $40.52 \mu \mathrm{~s}$
$50 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$400.0 \mu \mathrm{~s}$	394.8 to $405.2 \mu \mathrm{~s}$
0.5 ms	$50 \mu \mathrm{~s}$	4.000 ms	3.948 to 4.052 ms
5 ms	0.5 ms	40.00 ms	39.48 to 40.52 ms
50 ms	5 ms	400.0 ms	394.8 to 405.2 ms
0.5 s	50 ms	4.000 s	3.948 to 4.052 s

5. Check Delay Jitter

a. Set:

A SEC/DIV	0.5 ms
B SEC/DIV	$0.5 \mu \mathrm{~s}$
HORIZONTAL MODE	B

b. Select $50 \mu \mathrm{~s}$ time markers from the time-mark generator.
c. Rotate the B DELAY TIME POSITION control counterclockwise to position a time marker within the graticule area for each major dial division and CHECK that the jitter on the leading edge of the time marker does not exceed 2 divisions. Disregard slow drift.

6. Check Position Range

a. Set:

HORIZONTAL MODE A
A SEC/DIV $10 \mu \mathrm{~s}$
b. Select $10 \mu \mathrm{~s}$ time markers from the time-mark generator.
c. CHECK_Start of the sweep can be positioned to the right of the center vertical graticule line by rotating the Horizontal POSITION control fully clockwise.
d. CHECK—The 11th time marker can be positioned to the left of the center vertical graticule line by rotating the Horizontal POSITION control fully counterclockwise.
e. Select $50 \mu \mathrm{~S}$ time markers from the time-mark generator.
f. Align the 3rd time marker with the center vertical graticule line using the Horizontal POSITION control.
g. Set the X10 Magnifier knob to On (knob out).
h. CHECK-Magnified time marker can be positioned to the left of the center vertical graticule line by rotating the Horizontal POSITION control fully counterclockwise.
i. CHECK—Start of the sweep can be positioned to the right of the center vertical graticule line by rotating the Horizontal POSITION control fully clockwise.

7. Check Store Expansion Range

a. Set:

A SEC/DIV	$0.1 \mu \mathrm{~s}$
X10 Magnifier	Off (knob in)

b. Select $10 \mu \mathrm{~s}$ time markers from the time-mark generator.
c. Use the Horizontal POSITION control to align the start of the A Sweep with the 1st vertical graticule line.
d. Set the STORE/NON STORE switch to STORE (button in).
e. Set the X10 Magnifier knob to On (knob out).
f. CHECK-The time markers are 1 division apart.

8. Check 4K to 1K Display Compress

a. Set:

A SEC/DIV	$50 \mu \mathrm{~s}$
X10 Magnifier	Off (knob in)
$1 \mathrm{~K} / 4 \mathrm{~K}$	4 K (button out)

b. Select 0.1 ms time markers from the time-mark generator and check that the time markers are 2 divisions apart.
c. Rotate the SEC/DIV Variable control out of detent.
d. CHECK_For 2 time markers per division over the center 8 divisions.

9. Check Non Store Sweep Length

a. Set:

SEC/DIV Variable
STORE/NON STORE
CAL detent NON STORE (button out).
b. Use the Horizontal POSITION control to align the start of the A Sweep with the 1st vertical graticule line.
c. CHECK-End of the sweep is to the right of the 11th vertical graticule line.
d. Disconnect the test equipment from the instrument.

10. Check X Gain

a. Set:

X-Y	On (button in)
CH 1 VOLTS/DIV	10 mV
Horizontal POSITION	Midrange

b. Connect the standard-amplitude signal from the Calibration Generator via a 50Ω cable to the CH 1 OR X input connector.
c. Set the generator to produce a 50 mV signal.
d. Use the Channel 2 POSITION and Horizontal POSITION controls to center the display.
e. CHECK—Display is 4.85 to 5.15 horizontal divisions.
f. Disconnect the test equipment from the instrument.

11. Check X Bandwidth

a. Set the STORE/NON STORE switch to NON STORE (button out).
b. Connect the leveled sine-wave generator output via a 50Ω cable and a 50Ω termination to the CH 1 OR X input connector.
c. Set the generator to produce a 5 -division horizontal display at an output frequency of 50 kHz .
d. Increase the generator output frequency to 2.5 MHz .
e. CHECK—Display is at least 3.5 horizontal divisions.
f. Disconnect the test equipment from the instrument.

TRIGGER

Equipment Required (see Table 4-1):

Leveled Sine-Wave Generator (Item 2)
Low Frequency Generator (Item 4)
50Ω BNC Cable (Item 8)

Dual-Input Coupler (Item 9)
50Ω BNC Termination (Item 12)
600Ω BNC Termination (Item 13)

INITIAL CONTROL SETTINGS

Vertical

POSITION (both)	Midrange
VERTICAL MODE	CH 1
X-Y	Off (button out)
BW LIMIT	Off (button out)
CH 1 VOLTS/DIV	5 mV
CH 2 VOLTS/DIV	50 mV
VOLTS/DIV Variable (both)	CAL detent
INVERT	Off (button out)
AC-GND-DC (both)	DC

Horizontal

POSITION	Midrange
HORIZONTAL MODE	A
A and B SEC/DIV	$0.2 \mu \mathrm{~S}$
SEC/DIV Variable	CAL detent
X10 Magnifier	Off (knob in)
B DELAY TIME POSITION	Fully counterclockwise

B TRIGGER
SLOPE
LEVEL
OUT
Midrange

A TRIGGER

VAR HOLDOFF	NORM
Mode	P-P AUTO
SLOPE	OUT
LEVEL	Midrange
HF REJECT	OFF
A\&B INT	CH 1
A SOURCE	INT
A EXT COUPI_ING	DC

Storage

STORE/NON STORE SAVE/CONTINUE PRETRIG/POST TRIG ROLLISCAN
 1K/4K
 POSITION CURS/
 SELECT WAVEFORM
 WAVEFORM REFERENCE/ WAVEFORM REFERENCE MENU SELECT

PROCEDURE STEPS

1. Check Internal A and B Triggering

a. Connect the leveled sine-wave generator output via a 50Ω cable and a 50Ω termination to the CH 1 OR X input connector.
b. Set the generator to produce a $10 \mathrm{MHz}, 3.5$-division display.
c. Set the CH 1 VOLTS/DIV switch to 50 mV .
d. CHECK-Stable display can be obtained by adjusting the A TRIGGER LEVEL control for each switch combination given in Table 4-7.
e. Set the HORIZONTAL MODE switch to B.
f. CHECK—Stable display can be obtained by adjusting the B TRIGGER LEVEL control to a position other than the B RUNS AFTER DLY position for both the OUT and IN positions of the B TRIGGER SLOPE switch.

Table 4-7
Switch Combinations for A Triggering Checks

A TRIGGER Mode	A TRIGGER SLOPE
NORM	OUT
NORM	IN
P-P AUTO	IN
P-P AUTO	OUT

g. Set:

VERTICAL MODE	CH 2
HORIZONTAL MODE	A
A\&B INT	CH 2

h. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector.
i. Repeat parts d through f.
j. Set:

HORIZONTAL MODE	A
A SEC/DIV	$0.1 \mu \mathrm{~s}$
X10 Magnifier	On (knob out)

k. Set the generator to produce a $60 \mathrm{MHz}, 1.0$-division display.
I. Repeat parts dthrough f.
m. Set:

VERTICAL MODE CH 1
HORIZONTAL MODE A
A\&B INT CH 1
n. Move the cable from the CH 2 OR Y input connector to the CH 1 OR X input connector.
o. Repeat parts d through f.
p. Set:

HORIZONTAL MODE A
A SEC/DIV $\quad 0.05 \mu \mathrm{~s}$
q. Set the generator to produce a 100 MHz , $1.5-$ division display.
r. Repeat parts d through f.
s. Set:

VERTICAL MODE	CH 2
HORIZONTAL MODE	A
A\&B INT	CH 2

t. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector.
u. Repeat parts d through f.
v. Disconnect the test equipment from the instrument.

2. Check HF Reject A Triggering

a. Set:

VERTICAL MODE	CH 1
VOLTS/DIV (both)	50 mV
HORIZONTAL MODE	A
A SEC/DIV	$5 \mu \mathrm{~s}$
X10 Magnifier	Off (knob in)
A TRIGGER Mode	NORM
A TRIGGER LEVEL	Midrange
A\&B INT	CH 1

b. Connect the low-frequency generator output via a 50Ω cable and a 600Ω termination to the CH 1 OR X input connector.
c. Set the low-frequency generator output to produce a $250 \mathrm{kHz}, 1$-division display.
d. Adjust the A TRIGGER LEVEL control for a stable display.
e. Set HF REJECT switch to ON.
f. CHECK-Stable display cannot be obtained by adjusting the A TRIGGER LEVEL control for each switch combination given in Table 4-7.
g. Set:

VERTICAL MODE CH 2
A\&B INT
CH 2
h. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector.
i. Repeat part f.
j. Disconnect the test equipment from the instrument.

3. Check External Triggering

a. Set:

VERTICAL MODE	CH 1
CH 1 VOLTS/DIV	5 mV
HORIZONTAL MODE	A
A SEC/DIV	$0.1 \mu \mathrm{~s}$
HF REJECT	OFF
A\&B INT	CH 1
A SOURCE	EXT

b. Connect the leveled sine-wave generator output via a 50Ω cable, a 50Ω termination, and a dual-input coupler to both the CH 1 OR X and EXT INPUT connectors.
c. Set the leveled sine-wave generator output voltage to 40 mV and the frequency to 10 MHz .
d. CHECK—Stable display can be obtained by adjusting the A TRIGGER LEVEL control for each switch combination given in Table 4-7.
e. Set:

CH 1 VOLTS/DIV
X10 Magnifier

50 mV
On (knob out)
f. Set the generator output voltage to 120 mV and the frequency to 60 MHz .
g. Repeat part d.
h. Set the generator output voltage to 150 mV and the frequency to 100 MHz .
i. Repeat part d.

4. Check External Trigger Ranges

a. Set:

CH 1 VOLTS/DIV	0.5 V
A SEC/DIV	$20 \mu \mathrm{~s}$
X10 Magnifier	Off $(\mathrm{knob}$ in)
A TRIGGER SLOPE	OUT
A TRIGGER Mode	NORM

b. Set the generator to produce a $50 \mathrm{kHz}, 6.4$-division display.
c. CHECK-Display is triggered along the entire positive slope of the waveform as the A TRIGGER LEVEL control is rotated.
d. CHECK-Display is not triggered (no trace) at either extreme of rotation.
e. Set the A TRIGGER SLOPE button to IN.
f. CHECK-Display is triggered along the entire negative slope of the waveform as the A TRIGGER LEVEL control is rotated.
g. CHECK—Display is not triggered (no trace) at either extreme of rotation.

5. Check Single Sweep Operation

a. Adjust the A TRIGGER LEVEL control to obtain a stable display.
b. Set:

Channel 1 AC-GND-DC GND
A SOURCE INT
c. Press in the SGL SWP button. The READY LED should illuminate and remain on.
d. Set the Channel 1 AC-GND-DC switch to DC.

NOTE
The A INTENSITY control may require adjustment to observe the single-sweep trace.
e. CHECK—READY LED goes out and a single sweep occurs.
f. Press in the SGL SWP button several times.
g. CHECK-Single-sweep trace occurs, and the READY LED illuminates briefly every time the SGL SWP button is pressed in and released.
h. Disconnect the test equipment from the instrument.

6. Check Acquisition Window Trigger Point

a. Set:

A TRIGGER Mode	P-P AUTO
1K/4K	4K (button out)
PRETRIG/POST TRIG	POST TRIG (button out)
WAVEFORM REFERENCE/	MENU SELECT
MENU SELECT	(button out)

b. Use the Menu controls to select A TRIG POS.
c. CHECK-The A TRIG POS default number is $\mathbf{5 1 2}$.
d. Press in momentarily the PRETRIG/POST TRIG switch to activate the trigger point display on the crt. Return the PRETRIG/POST TRIG switch to POST TRIG (button out).
e. CHECK-The trigger point (T) appears near the 2nd vertical graticule line below the Menu.
f. Set the PRETRIG/POST TRIG switch to PRETRIG (button in).
g. CHECK—The A TRIG POS default number is 3584 and the trigger point (T) appears near the 9 th vertical graticule line below the Menu.
h. Set the $1 \mathrm{~K} / 4 \mathrm{~K}$ switch to 1 K (button in).
i. CHECK-The A TRIG POS default number is 896 and the trigger point (T) appears near the 9 th vertical graticule line below the Menu.
j. Set the PRETRIG/POST TRIG switch to POST TRIG (button out).
k. CHECK-The A TRIG POS default number is 128 and the trigger point (T) appears near the $2 n d$ vertical graticule line below the Menu.
I. CHECK-The trigger point (T) can be moved between the 1st and the center vertical graticule line as the CURSORS control is rotated.
m. Set the PRETRIG/POST TRIG switch to PRETRIG (button in).
n. CHECK-The trigger point (T) can be moved between the 10th and the center vertical graticule line as the CURSORS control is rotated.
o. Set the $1 \mathrm{~K} / 4 \mathrm{~K}$ switch to 4 K (button out).
p. Repeat part n for PRETRIG mode and part I for POST TRIG mode.

EXTERNAL Z-AXIS, PROBE ADJUST, EXTERNAL CLOCK, AND X-Y PLOTTER

Equipment Required (see Table 4-1):
Leveled Sine-Wave Generator (Item 2)
Pulse Generator (Item 5)
Digital Voltmeter (Item 7)
Two 50Ω BNC Cables (Item 8)

BNC T-Connector (Item 11)
50Ω BNC Termination (Item 12)
BNC Male-to-Tip Plug (Item 17)
10X Probe (provided with instrument)

INITIAL CONTROL SETTINGS

VERTICAL

Channel 1 POSITION	Midrange
VERTICAL MODE	CH 1
X-Y	Off (button out)
BW LIMIT	Off (button out)
CH 1 VOLTS/DIV	1 V
CH 1 VOLTS/DIV Variable	CAL detent
Channel 1 AC-GND-DC	DC

Horizontal
POSITION
HORIZONTAL MODE
A SEC/DIV
SEC/DIV Variable
X10 Magnifier
A TRIGGER

VAR HOLDOFF	NORM
Mode	P-P AUTO
SLOPE	OUT
LEVEL	Midrange
HF REJECT	OFF
A\&B INT	VERT MODE
A SOURCE	INT

Storage

STORE/NON STORE
SAVE/CONTINUE
PRETRIG/POST TRIG
ROLLISCAN
1K/4K
POSITION CURS/
SELECT WAVEFORM
WAVEFORM REFERENCE/ WAVEFORM REFERENCE MENU SELECT

Midrange
A
$20 \mu \mathrm{~s}$
CAL detent
Off (knob in)

NORM
P-P AUTO
OUT
OFF
INT

NON STORE (button out) CONTINUE (button out) POST TRIG (button out) SCAN (button out)
4K (button out)
POSITION CURS
(button in)
(button in)

PROCEDURE STEPS

1. Check External Z-Axis Operation

a. Connect the leveled sine-wave generator output via a 50Ω cable and a T-connector to the CH 1 OR X input connector. Then connect a 50Ω cable and a 50Ω termination from the T-connector to the EXT Z-AXIS INPUT connector on the rear panel.
b. Set the generator to produce a $5 \mathrm{~V}, 50 \mathrm{kHz}$ signal.
c. CHECK-For noticeable intensity modulation. The positive part of the sine wave should be of lower intensity than the negative part.
d. Disconnect the test equipment from the instrument.

2. Check Probe Adjust Operation

a. Set:

CH 1 VOLTS/DIV	10 mV
A SEC/DIV	0.5 ms

b. Connect the 10 X Probe to the CH 1 OR X input connector and insert the probe tip into the PROBE ADJUST jack on the instrument front panel. If necessary, adjust the probe compensation for a flat-topped squarewave display.
c. CHECK—Display amplitude is 4.75 to 5.25 divisions.
d. Disconnect the probe from the instrument.

3. Check External Clock

a. Set:

CH 1 VOLTS/DIV 1 V
X-Y
A SEC/DIV Off (button out) 1 ms
b. Connect the Pulse Generator high-amplitude output via a 50Ω cable and a 50Ω termination to CH 1 OR X input connector.
c. Set the generator to produce a $1 \mathbf{k H z}, 5$-division display.
d. Disconnect the cable from the CH 1 OR X input connector and connect it to the BNC male-to-tip plug via BNC female to BNC female connector.
e. Insert the BNC male-to-tip plug signal lead and ground lead into pin 1 and pin 9 respectively of the X-Y Plotter connector.
f. Set the A SEC/DIV switch to 0.1 sec .
g. Connect the Calibration Generator high-amplitude output via a 50Ω cable and a 50Ω termination to CH 1 OR X input connector.
h. Set the generator to produce a $100 \mathrm{~Hz}, 5$-division display.

```
i. Set:
A SEC/DIV EXT CLK
    STORE/NON STORE STORE (button in)
```

j. CHECK—The 100 Hz signal is displayed on the screen and updated.
k. Set the SAVE/CONTINUE switch to SAVE (button in).
I. CHECK—The display is saved.
m . Disconnect the test equipment from the instrument.

4. Check X-Y Plotter

a. Connect the digital voltmeter low lead to either chassis ground or pin 9 (signal ground) of the X-Y Plotter connector. Connect the volts lead to pin 3 (X Output) of the X-Y Plotter connector.
b. Set the digital voltmeter to the 20 V scale.
c. Set the WAVEFORM REFERENCE/MENU SELECT switch to MENU SELECT (button out).
d. Use the Menu controls to select PLOT and then ON for GRATICULE.
e. Press in momentarily the CURSORS button to activate the $X-Y$ Plotter.

NOTE

Voltage reading of the X Output will be negative left of the center vertical graticule line and positive to the right of the center vertical graticule line. Voltage reading of the Y output will be negative below the center horizontal graticule line and positive above the center horizontal graticule line.
f. Record the voltage reading as the instrument plots the 1st and the 10th graticule line (as the intensity spot moves along the graticule line).
g. CHECK-The voltage difference between the 1st and 10 th graticule line is between 4.5 V and 5.5 V .
h. Move the volts lead of the voltmeter from pin $3(X$ Output) to pin 5 (Y Output) of the X-Y Plotter connector.
i. Press in momentarily the CURSORS button to activate the X-Y Plotter.
j. Record the voltage reading as the instrument plots the top and the bottom of the graticule lines (as the intensity spot moves along the graticule line).
k. CHECK-The voltage difference between the top and bottom graticule line is between 3.6 V and 4.4 V .
I. Disconnect the test equipment from the instrument.

ADJUSTMENT PROCEDURE

INTRODUCTION

PURPOSE

The "Adjustment Procedure" is a set of logically sequenced instructions intended to return the instrument to conformance with the Performance Requirement statements listed in Table 1-1. Adjustments contained in this procedure should only be performed after checks from the "Performance Check Procedure" (Section 4) have indicated a need for readjustment or after repairs have been made to the instrument.

STRUCTURE

This procedure is structured into subsections, each of which can be performed independently to permit adjustment of individual sections of the instrument. For example, if only the Vertical section fails to meet the Performance Requirements or has been repaired, it can be readjusted with little or no effect on other sections of the instrument.

The Power Supply section, however, affects all other sections of the instrument. Therefore, if repairs or readjustments have been made that change the absolute value of any of the supply voltages, the entire Adjustment Procedure should be performed.

At the beginning of each subsection is a list of all the front-panel control settings required to prepare the instrument for performing Step 1 in that subsection. Each succeeding step within a subsection should be performed in sequence and in its entirety to ensure that control settings will be correct for ensuing steps. All steps within a subsection should be completed.

TEST EQUIPMENT

Table 4-1 is a complete list of the test equipment required to accomplish both the "Performance Check Procedure" in Section 4 and the "Adjustment Procedure" in this section. To assure accurate measurements, it is important that test equipment used for making these checks meet or exceed the specifications described in Table 4-1. When considering use of equipment other than
that recommended, utilize the "Minimum Specification" column to determine whether available test equipment will suffice.

Detailed operating instructions for test equipment are not given in this procedure. If more operating information is required, refer to the appropriate test-equipment instruction manual.

LIMITS AND TOLERANCES

The limits and tolerances stated in this procedure are instrument specifications only if they are listed in the "Performance Requirements' column of Table 1-1. Tolerances given are applicable only to the instrument undergoing adjustment and do not include test equipment error. Adjustment of the instrument must be accomplished at an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$, and the instrument must have had a warm-up period of at least 20 minutes.

ADJUSTMENTS AFFECTED BY REPAIRS

Repairs to a circuit may affect one or more adjustment settings of the instrument. Table 5-1 identifies the adjustment(s) affected due to repairs or replacement of components on a circuit board. Refer to Table 5-1 if a partial procedure is performed or if a circuit requires readjustment due to repairs to a circuit. To use this table, first find, in the leftmost column, the circuit that was repaired. Then move to the right, across that row, until you come to a darkened square, move up the column and check the accuracy of the adjustment found at the heading of that column. Readjust if necessary.

PREPARATION FOR ADJUSTMENT

The instrument cabinet must be removed to perform the Adjustment Procedure. See the "Cabinet" remove and replace instructions located in the "Maintenance" section of the manual. When making adjustments inside the instrument, the Storage circuit board has to be lifted up and

Adjustment Procedure-2230 Service

latched to allow access to the internal adjustments. See the "Storage Circuit Board in Servicing Position" procedure in the "Removal and Replacement Instructions" part of the "Maintenance" section.

All test equipment items listed in Table 4-1 are required to accomplish a complete Adjustment Procedure. At the beginning of each subsection there is an equipmentrequired list showing only the test equipment necessary for performing the steps in that subsection. In this list, the item number following each piece of equipment corresponds to the item number listed in Table 4-1.

Before performing this procedure, do not preset any internal adjustments and do not change the -8.6 V
power-supply adjustment. Altering this adjustment may necessitate a complete readjustment of the instrument, whereas only a partial adjustment might otherwise be required. Only change an internal adjustment setting if a Performance Characteristic cannot be met with the original setting.

Before performing any procedure in this section, set the POWER switch to ON and allow a 20 -minute warm-up period.

The most accurate display adjustments are made with a stable, well-focused, low-intensity display. Unless otherwise noted, adjust the INTENSITY, FOCUS, and TRIGGER LEVEL controls as needed to view the display.

Table 5-1
Adjustments Affected by Repairs

REPAIRS MADE

INDEX TO ADJUSTMENT PROCEDURE STEPS

Power Supply and CRT Display Page

1. Check/Adjust Power Supply DC Levels 5-4
2. Adjust CRT Grid Bias 5-4
3. Adjust Astigmatism 5-5
4. Adjust Trace Alignment 5-5
5. Adjust Geometry 5-5
Vertical
6. Adjust Step Attenuator Balance 5-6
7. Adjust $2 / 5 \mathrm{mV}$ DC Balance 5-7
8. Adjust Channel 1 Variable Balance 5-7
9. Adjust Channel 2 Invert Balance 5-7
10. Adjust MF/LF Compensation and Gain Balance 5-7
11. Adjust Vertical Gain 5-8
12. Check Deflection Accuracy and Variable Range 5-8
13. Check Input Coupling 5-9
14. Check Position Range 5-9
15. Adjust/Check Acquisition Position Registration 5-9
16. Adjust Acquisition Gain 5-10
17. Check Store Deflection Accuracy 5-10
18. Adjust Store Y Offset and Gain 5-11
19. Adjust Acquisition Position Offset 5-11
20. Check Save Expansion and Compression 5-11
21. Adjust Attenuator Compensation. 5-12
22. Check Alternate Operation 5-13
23. Check Chop Operation 5-13
24. Adjust High-Frequency Compensation and Channel 2 High-Frequency Compensation 5-13
25. Adjust 2 mV Peaking Compensation 5-14
26. Adjust Acquisition High-Frequency Peaking 5-14
27. Check Store Mode Cross Talk 5-15
28. Check Store Pulse Width Amplitude. 5-15
29. Check Average Mode 5-16
30. Check Bandwidth Limit Operation 5-16
31. Check Bandwidth 5-16
32. Check Repetitive Store Mode. 5-16
33. Check Single Sweep Sample Acquisition 5-17
34. Check Non Store and Store Channel Isolation 5-17
35. Check Common-Mode Rejection Ratio 5-18
36. Check Probe Encoding 5-18
Horizontal Page
37. Adjust Horizontal Amplifier Gain 5-19
38. Adjust X10 Horizontal Amplifier Gain 5-20
39. Adjust Magnifier Registration 5-20
40. Check Sweep Length 5-20
41. Check Position Range 5-20
42. Check Variable Range 5-20
43. Adjust/Check 4 K to 1 K Display Compress 5-21
44. Adjust Delay Timing and Readout 5-21
45. Adjust High-Speed Timing 5-21
46. Adjust 5 ns Timing and Linearity 5-22
47. Check Timing Accuracy and Linearity 5-22
48. Check Delay Time Differential Accuracy 5-23
49. Check Delay Jitter 5-24
50. Adjust Vector Generator 5-24
51. Adjust Store X Offset and Gain 5-24
52. Adjust Clock Delay Timer 5-24
53. Check Store Differential and Cursor Time Difference Accuracy 5-24
54. Check Store Expansion Range. 5-25
55. Check A/B Sweep Separation 5-25
56. Adjust X Gain 5-25
57. Check X - Y Store 5-26
58. Check X Bandwidth. 5-26
59. Check A-Sweep Holdoff 5-26
Trigger
60. Adjust Channel 1 Trigger Offset 5-27
61. Adjust A and B Trigger Sensitivity 5-28
62. Adjust P-P Auto Level 5-28
63. Check Internal A and B Triggering 5-28
64. Check HF Reject A Triggering 5-29
65. Check External Triggering 5-30
66. Check External Trigger Ranges 5-30
67. Check Single Sweep Operation 5-30
68. Check Acquisition Window Trigger Point 5-31
External Z-Axis, Probe Adjust, External Clock, and X-Y Plotter
69. Check External Z-Axis Operation 5-32
70. Check Probe Adjust Operation 5-32
71. Check External Clock 5-33
72. Check X-Y Plotter 5-33

POWER SUPPLY AND CRT DISPLAY

Equipment Required (See Table 4-1):
Leveled Sine-Wave Generator (Item 2)
Time-Mark Generator (Item 3)
Digital Voltmeter (Item 7)

50Ω BNC Cable (Item 8)
$50 \Omega \mathrm{BNC}$ Termination (Item 12)
Screwdriver (Item 19)

See ADUUSTMENTLOCATIONS 1 at the back of this manual for location of test points and adjustments.

initial Control settings

Vertical

POSITION (both)	Midrange
VERTICAL MODE	CH 1
X-Y	On (button in)
CH 1 VOLTS/DIV Variable	CAL detent
Channel 1 AC-GND-DC	GND

Horizontal

```
POSITION
HORIZONTAL MODE
SEC/DIV Variable
X10 Magnifier
```

A TRIGGER
VAR HOLDOFF
Mode
SLOPE
LEVEL
HF REJECT
A\&B INT
A SOURCE
A EXT COUPLING

Storage

STORE/NON STORE
SAVE/CONTINUE PRETRIG/POST TRIG ROLL/SCAN
$1 \mathrm{~K} / 4 \mathrm{~K}$
POSITION CURS/
SELECT WAVEFORM
WAVEFORM
REFERENCE/
MENU SELECT

PROCEDURE STEPS

1. Check/Adjust Power Supply DC Levels (R938) NOTE
 Review the information at the beginning of the Adjustment Procedure before starting this step.

a. Connect the digital voltmeter low lead to chassis ground and connect the volts lead to the -8.6 V supply (W961).
b. CHECK—Voltmeter reading is -8.56 to -8.64 V . If the reading is within these limits, skip to part d.
c. ADJUST-The - 8.6 V Adj potentiometer (R938) for a voltmeter reading of -8.6 V .
d. CHECK—Voltage levels of the remaining power supplies listed in Table 5-2 are within the specified limits.
e. Disconnect the test equipment from the instrument.

2. Adjust CRT Grid Bias (R851)

a. Connect a 50Ω termination to the EXT Z AXIS INPUT connector located on the rear panel.
b. Adjust the front-panel FOCUS control to produce a well-defined dot.
c. Rotate the A INTENSITY control fully counterclockwise.

Table 5-2
Power Supply Limits

Power Supply	Test Point	Reading (Volts)
-8.6 V	W 961	-8.56 to -8.64
-5.0 V	W9020	-4.75 to -5.25
+5.0 V	W 9068	+4.75 to +5.25
+8.6 V	W 960	+8.43 to +8.77
+30 V	W 956	+29.1 to +30.9
+100 V	$W 954$	+97.0 to +103.0

d. ADJUST-Grid Bias (R851) for a visible dot. Then back off the Grid Bias potentiometer until the dot just disappears.
e. Disconnect the 50Ω termination from the EXT Z AXIS INPUT connector.

3. Adjust Astigmatism (R874)

a. Set:

A INTENSITY	Visible display
X-Y	Off (button out)
Channel 1 AC-GND-DC	DC
A SEC/DIV	$5 \mu \mathrm{~s}$

b. Connect the leveled sine-wave generator output via a 50Ω cable and a 50Ω termination to the CH 1 OR X input connector.
c. Set the generator to produce a 50 kHz , 4-division display.
d. ADJUST—Astig (R874) and the front-panel FOCUS control for the best defined waveform.
e. Disconnect the test equipment from the instrument.

4. Adjust Trace Alignment

a. Position the trace to the center horizontal graticule line.
b. ADJUST-The front-panel TRACE ROTATION control for optimum alignment of the trace with the center horizontal graticule line.

5. Adjust Geometry (R870)

a. Set:

CH 1 VOLTS/DIV	50 mV
A SEC/DIV	0.1 ms

b. Connect $50 \mu \mathrm{~s}$ time markers from the time-mark generator via a 50Ω cable and a 50Ω termination to the CH 1 OR X input connector.
c. Adjust the Channel 1 POSITION control to position the baseline part of the display below the bottom horizontal graticule line.
d. Adjust the SEC/DIV Variable control for 5 markers per division.
e. ADJUST-Geom (R870) for minimum curvature of the time markers at the left and right edges of the graticule.
f. Set the Channel 1 AC-GND-DC switch to GND.
g. ADJUST-Geom (R870) for minimum curvature of the baseline trace when positioned at the top and bottom horizontal graticule lines using the Channel 1 POSITION control.
h. Set the Channel 1 AC-GND-DC switch to DC.
i. Repeat parts e through h for optimum compromise between the vertical and horizontal displays.
j. Disconnect the test equipment from the instrument.

VERTICAL

```
Equipment Required (See Table 4-1):
    Calibration Generator (Item 1)
    Leveled Sine-Wave Generator (Item 2)
    50\Omega BNC Cable (Item 8)
    Dual-Input Coupler (Item 9)
    50\Omega BNC Termination (Item 12)
```

```
10X Attenuator (Item 14)
BNC Male-to-Miniature-Probe Tip (Item 16)
Low-Capacitance Alignment Tool (Item 18)
Screwdriver (Item 19)
10X Probe (Included with instrument)
```

See ADJUSTMENT LOCATIONS 1, ADJUSTMENT LOCATIONS 2, ANO ADJUSTMENT LOCATIONS 4
at the back of this manual for test point and adjustment locations.

INITIAL CONTROL SETTINGS	
Vertical (Both Channels)	
POSITION	Midrange
VERTICAL MODE	CH 1
X-Y	Off (button out)
BW LIMIT	On (button in)
VOLTS/DIV	10 mV
VOLTS/DIV Variable	CAL detent
INVERT	Off (button out)
AC-GND-DC	GND

Horizontal

POSITION	Midrange
HORIZONTAL MODE	A
A SEC/DIV	0.5 ms
SEC/DIV Variable	CAL detent
X10 Magnifier	Off (knob in)

A TRIGGER

VAR HOLDOFF	NORM
Mode	P-P AUTO
SLOPE	OUT
LEVEL	Midrange
HF REJECT	OFF
A\&B INT	VERT MODE
A SOURCE	INT
A EXT COUPLING	AC

Storage

```
STORE/NON STORE
SAVE/CONTINUE
PRETRIG/POST TRIG
ROLL/SCAN
1K/4K
POSITION CURS/
    SELECT WAVEFORM
WAVEFORM
    REFERENCE/
    MENU SELECT
NON STORE (button out) CONTINUE (button out) POST TRIG (button out)
SCAN (button out)
4K (button out) POSITION CURS (button in)
WAVEFORM REFERENCE (button in)
```


PROCEDURE STEPS

1. Adjust Step Attenuator Balance (R10 and R60)

a. Position the trace on the center horizontal graticule line using the Channel 1 POSITION control.
b. Set the CH 1 VOLTS/DIV switch to 5 mV .
c. ADJUST-Step Attn Bal (R10) to set the trace on the center horizontal graticule line.
d. Set the CH 1 VOLTS/DIV switch to 10 mV .
e. Repeat parts a through d until there is no trace shift when changing the CH 1 VOLTS/DIV switch from 50 mV to 5 mV .
f. Set the VERTICAL MODE switch to CH 2.
g. Repeats parts a through e for Channel 2, adjusting Step Attn Bal (R60) in part c.

2. Adjust $\mathbf{2 / 5} \mathbf{~ m V}$ DC Balance (R83 and R33)

a. Set the CH 2 VOLTS/DIV switch to 5 mV .
b. Position the trace on the center horizontal graticule line using the Channel 2 POSITION control.
c. Set the CH 2 VOLTS/DIV switch to 2 mV .
d. ADJUST- $2 / 5 \mathrm{mV}$ Dc Bal (R83) to set the trace on the center horizontal graticule line.
e. Repeat parts a through d until there is no trace shift when changing the CH 2 VOLTS/DIV switch from 5 mV to 2 mV .
f. Set the VERTICAL MODE switch to CH 1.
g. Repeat parts a through e for Channel 1, adjusting $2 / 5 \mathrm{mV}$ Dc Bal (R33) in part d.

3. Adjust Channel 1 Variable Balance (R25)

a. Set both VOLTS/DIV switches to 2 mV .
b. Rotate the CH 1 VOLTS/DIV Variable control fully counterclockwise.
c. Position the trace on the center horizontal graticule line using the Channel 1 POSITION control.
d. Rotate the CH 1 VOLTS/DIV Variable control clockwise to the CAL detent.
e. ADJUST-Var Bal (R25) to set the trace to the center horizontal graticule line.
f. Repeat parts b through e until there is no trace shift between the fully clockwise and the fully counterclockwise positions of the CH 1 VOLTS/DIV Variable control.
g. Return the CH 1 VOLTS/DIV Variable control to the CAL detent.

4. Adjust Channel 2 Invert Balance (R75)

a. Set the VERTICAL MODE switch to CH 2.
b. Position the trace on the center horizontal graticule line using the Channel 2 POSITION control.
c. Set the INVERT button to On (button in).
d. ADJUST-Invert Bal (R75) to set the trace to the center horizontal graticule line.
e. Set the INVERT button to Off (button out).
f. Repeat parts b through e until there is no trace shift when switching the INVERT button between the On and Off positions.
5. Adjust MF/LF Compensation and Gain Balance (C53, R97, C3, and R47)
a. Set:

VERTICAL MODE	CH 2
VOLTS/DIV (both)	10 mV
AC-GND-DC (both)	DC
A SEC/DIV	$20 \mu \mathrm{~S}$

b. Connect the high-amplitude square wave output via a 50Ω cable, a 10 X attenuator, and a 50Ω termination to the $\mathrm{CH} 2 \mathrm{OR} Y$ input connector.
c. Set the generator to produce a $10 \mathrm{kHz}, 5$-division display.
d. Set the top of the display on the center horizontal graticule line using the Channel 2 POSITION control.
e. ADJUST-MF/LF Comp (C53) and MF/LF Gain Bal (R97) for the best front corner and flat top.
f. Move the cable from the $\mathrm{CH} 2 \mathrm{OR} Y$ input connector to the CH 1 OR X input connector. Set the VERTICAL MODE switch to CH 1.
g. Set the top of the display on the center horizontal graticule line using the Channel 1 POSITION control.
h. ADJUST—MF/LF Comp (C3) and MF/LF Gain Bal (R47) for the best front corner and flat top.
i. Disconnect the test equipment from the instrument.

6. Adjust Vertical Gain (R145, R195, R76, and R26)

a. Connect a 50 mV standard-amplitude signal from the Calibration Generator via a 50Ω cable to the CH 1 OR X input connector.
b. Set the A SEC/DIV switch to 0.2 ms .
c. Center the display within the graticule using the Channel 1 POSITION control.
d. ADJUST—Ch 1 Gain (R145) for an exact 5-division display.
e. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector. Set the VERTICAL MODE switch to CH 2.
f. Center the display within the graticule using the Channel 2 POSITION control.
g. ADJUST-Ch 2 Gain (R195) for an exact 5-division display.
h. Change the generator output to 10 mV and set both VOLTS/DIV switches to 2 mV .
i. Repeat parts d and g until the gain of the two channels is identical.
j. ADJUST-2 mV Gain (R76) for an exact 5-division display.
k. Move the cable from the CH 2 OR Y input connector to the CH 1 OR X input connector. Set the VERTICAL MODE switch to CH 1.
I. ADJUST-2 mV Gain (R26) for an exact 5-division display.
m. Set both AC-GND-DC switches to GND.
n. CHECK-That no trace shift occurs when switching between the 5 mV and 2 mV positions of the CH 1 VOLTS/DIV switch. If trace shift is observed, repeat Step 2 of this procedure.
o. Set the VERTICAL MODE switch to CH 2.
p. CHECK-That no trace shift occurs when switching between the 5 mV and 2 mV positions of the CH 2 VOLTS/DIV switch. If trace shift is observed, repeat Step 2 of this procedure.

7. Check Deflection Accuracy and Variable Range

a. Set:

VERTICAL MODE	CH 1
AC-GND-DC (both)	DC

b. CHECK—Deflection accuracy is within the limits given in Table 5-3 for each CH 1 VOLTS/DIV switch setting and corresponding standard-amplitude signal. When at the 20 mV VOLTS/DIV switch setting, rotate the CH 1 VOLTS/DIV Variable control fully counterclockwise and CHECK that the display decreases to 2 divisions or less. Then return the CH 1 VOLTS/DIV Variable control to the CAL detent and continue with the 50 mV check.

Table 5-3
Deflection Accuracy Limits

VOLTS/DIV Switch Setting	Standard Amplitude Signal	Accuracy Limits (Divisions)
2 mV	10 mV	4.90 to 5.10
5 mV	20 mV	3.92 to 4.08
10 mV	50 mV	4.90 to 5.10
20 mV	0.1 V	4.90 to 5.10
50 mV	0.2 V	3.92 to 4.08
0.1 V	0.5 V	4.90 to 5.10
0.2 V	1 V	4.90 to 5.10
0.5 V	2 V	3.92 to 4.08
1 V	5 V	4.90 to 5.10
2 V	10 V	4.90 to 5.10
5 V	20 V	3.92 to 4.08

c. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector. Set the VERTICAL MODE switch to CH 2.
d. Repeat part b using the Channel 2 controls.

8. Check Input Coupling

a. Set both VOLTS/DIV switches to 10 mV .
b. Set the calibration generator to produce a 20 mV signal.
c. Set the bottom of the signal on the center horizontal graticule line using the Channel 2 POSITION control.
d. Set the Channel 2 AC-GND-DC switch to AC.
e. CHECK—Display is centered about the center horizontal graticule line.
f. Move the cable from the CH 2 OR Y input connector to the CH 1 OR X input connector. Set the VERTICAL MODE switch to CH 1.
g. Repeat parts c through e using the Channel 1 controls.

9. Check Position Range

a. Set both VOLTS/DIV switches to 50 mV .
b. Set the calibration generator to produce a 0.5 V signal.
c. Adjust the CH 1 VOLTS/DIV Variable control to produce a 4.4-division display. Set the CH 1 VOLTS/DIV switch to 10 mV .
d. CHECK-The bottom and top of the trace may be positioned above and below the center horizontal graticule line by rotating the Channel 1 POSITION control fully clockwise and counterclockwise respectively.
e. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector. Set the VERTICAL MODE switch to CH 2.
f. Repeat parts c and dusing the Channel 2 controls.

10. Adjust/Check Acquisition Position Registration (R2138)

a. Set:

VERTICAL MODE	BOTH and ALT
VOLTS/DIV (both)	10 mV
AC-GND-DC (both)	GND
A SEC/DIV	$10 \mu \mathrm{~S}$

b. Position both traces exactly on the center horizontal graticule line using the Channel 1 and Channel 2 POSITION controls.
c. Set STORE/NON STORE switch to STORE (button in)
d. ADJUST—Acq Offset (R2138) to position the traces exactly on the center horizontal graticule line.
e. Set:

VERTICAL MODE CH 2
STORE/NON STORE
NON STORE (button out)
f. Set STORE/NON STORE switch to STORE (button in).
g. CHECK-Trace remains within 0.5 division of the center horizontal graticule line.
h. Set:

VERTICAL MODE
CH 1
STORE/NON STORE
NON STORE (button out)
i. Repeat parts f and g for Channel 1 trace.
j. Position the trace 0.5 division below the top horizontal graticule line using the Channel 1 POSITION control.
k. Set SAVE/CONTINUE switch to SAVE (button in).
I. CHECK-Trace shift of 0.5 division or less.
m. Set SAVE/CONTINUE switch to CONTINUE (button out).
n. Position the trace 0.5 division above the bottom horizontal graticule line using the Channel 1 POSITION control.
o. CHECK-Trace shift of 0.5 division or less.
p. Set the VERTICAL MODE switch to CH 2.
q. Repeat parts j through o for Channel 2 trace.

11. Adjust Acquisition Gain (R2108 and R2118)

a. Set:

AC-GND-DC (both)	DC
STORE/NON STORE	STORE (button in)
SAVE/CONTINUE	CONTINUE (button out)
$1 \mathrm{~K} / 4 \mathrm{~K}$	1 K (button in)

b. Set the calibration generator output to 50 mV .
c. Center the display within the graticule using the Channel 2 POSITION control.
d. ADJUST—Ch 2 Acq Gain (R2108) for an exact 5division display.
e. Move the cable from the CH 2 OR Y input connector to the CH 1 OR X input connector. Set the VERTICAL MODE switch to CH 1.
f. Center the display within the graticule using the Channel 2 POSITION control.
g. ADJUST—Ch 1 Acq Gain (R2118) for an exact 5division display.

12. Check Store Deflection Accuracy

a. Set:

CH 1 VOLTS/DIV	2 mV
POSITION CURS/	POSITION CURS
SELECT WAVEFORM	(button in)

b. Set the calibration generator output to 10 mV .
c. Use the CURSORS control and SELECT C1/C2 switch to set one cursor at the bottom and the other cursor at the top of the square wave.
d. CHECK-Deflection accuracy is within the limits given in Table 5-4 for each CH 1 VOLTS/DIV switch setting and corresponding standard-amplitude signal.
e. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector. Set the VERTICAL MODE switch to CH 2.
f. Repeat parts c and d for each CH 2 VOLTS/DIV switch setting.

Table 5-4
Store Deflection Accuracy

VOLTS/ DIV Switch Setting	Standard Ampli- tude Signal	Divisions of Deflection	Voltage Readout Limits
2 mV	10 mV	4.90 to 5.10	9.80 to 10.20 mV

13. Adjust Store Y Offset and Gain (R9224 and R9222)

a. Set the WAVEFORM REFERENCE/MENU SELECT switch to MENU SELECT (button out).
b. Use the Menu controls to display the rectangle test waveforms on the screen by selecting ADVANCE FUNCTIONS, DIAGNOSTICS, CAL AIDS, and BOX in that order.
c. ADJUST—Store Y Offset (R9224) so that the bottom trace of the outside box is exactly aligned with the bottom horizontal graticule line.
d. ADJUST-Store Y Gain (R9222) so that the height of the inside box is exactly 6 vertical divisions.
e. INTERACTION—Repeat parts c and d until the height of the inside box is exactly 6 vertical divisions and the bottom trace of the outside box is aligned with the bottom horizontal graticule line.

14. Adjust Acquisition Position Offset (R7325 and R7335)

a. Set:

VERTICAL MODE	BOTH and ALT
AC-GND-DC (both)	GND

b. Use the Menu controls to call up Calibrate Vertical Position procedure on the screen by selecting CAL__V_ POS in the Menu. The display will consist of three short and two baseline traces on the screen.
c. Vertically position the two baseline traces exactly on the short center stationary trace.
d. Press in momentary the SELECT C1/C2 switch to advance to the next level of the test routine. The two short movable traces should be vertically centered near the two overlapping baseline traces.
e. Vertically position Channel 1 baseline trace to the top and bottom of the screen using the Channel 1 POSITION control. Note the separation of the short trace from the baseline trace at the top and bottom of the screen.
f. ADJUST-Ch 1 Acq Pos Offset (R7325) for minimum separation of the Channel 1 baseline and the short trace at the top and bottom of the screen.
g. Repeat part e for Channel 2 baseline trace.
h. ADJUST—Ch 2 Acq Pos Offset (R7335) for minimum separation of the Channel 2 baseline and the short trace at the top and bottom of the screen.

15. Check Save Expansion and Compression

a. Set:

VERTICAL MODE	CH 2
VOLTS/DIV (both)	0.1 V
AC-GND-DC (both)	DC
WAVEFORM	WAVEFORM
REFERENCE/	REFERENCE
MENU SELECT	(button in)

b. Set the calibration generator to produce a 50 mV signal.
c. Set the SAVE/CONTINUE switch to SAVE (button in).
d. Set the CH 2 VOLTS/DIV switch to 10 mV and reposition the display.
e. CHECK-The display is expanded to 5 divisions in amplitude.
f. Set:

CH 2 VOLTS/DIV	0.1 V
SAVE/CONTINUE	CONTINUE (button out)

g. Set the calibration generator to produce a 0.5 V signal.
h. Set the SAVE/CONTINUE switch to SAVE (button in).
i. Set the CH 2 VOLTS/DIV switch to 1 V .
j. CHECK—The display is compressed to 0.5 division in amplitude.
k. Move the cable from the CH 2 OR Y input connector to the CH 1 OR X input connector.
i. Set:

$$
\begin{array}{ll}
\text { VERTICAL MODE } & \text { CH } 1 \\
\text { SAVE/CONTINUE } & \text { CONTINUE (button out) }
\end{array}
$$

m. Repeat parts c through j.
n. Disconnect the test equipment from the instrument.
16. Adjust Attenuator Compensation (C12, C11, C5, C4, C62, C61, C55, C54)
a. Set:

VOLTS/DIV (both)	0.1 V
STORE/NON STORE	NON STORE (button out)

b. Connect the high-amplitude square wave output via a 50Ω termination, a probe-tip-to-BNC adapter, and the 10X probe to the CH 1 OR X input connector.
c. Set the generator to produce a $1 \mathrm{kHz}, 5$-division display and compensate the probe using the probe compensation adjustment (see the probe instruction manual).
d. Set the CH 1 VOLTS/DIV switch to 0.1 V .
e. Replace the probe and probe-tip-to-BNC adapter with a 50Ω cable.
f. Set the generator to produce a 5-division display.

NOTE

Use Table 5-5 to identify the correct capacitor for each channel adjustment.
g. ADJUST-The 10X Attn (C12) for best front corner.

Table 5-5
Attenuator Compensation Adjustments

Adjustment	Channel 1	Channel 2
10X Attn (LF Comp)	C 12	C 62
10X Attn (Input C)	C 11	C 61
100X Attn (LF Comp)	C 5	C 55
100X Attn (Input C)	C 4	C 54

h. Replace the 50Ω cable and 50Ω termination with the probe and probe-tip-to-BNC adapter.
i. Set the generator to produce a 5-division display.
j. ADJUST-The 10X Attn (C11) for best flat top.
k. Repeat parts e through juntil no further improvement is noted.
I. Set the CH 1 VOLTS/DIV switch to 1 V .
m . Replace the probe and probe-tip-to-BNC adapter with the 50Ω cable and 50Ω termination.
n. Set the generator to produce a 5-division display.
o. ADJUST-The 100X Attn (C5) for best front corner.
p. Replace the 50Ω cable and 50Ω termination with the probe and probe-tip-to-BNC adapter.
q. Set the generator to produce a 5-division display.
r. ADJUST-The 100X Attn (C4) for best flat top.
s. Repeat parts m through r until no further improvement is noted.
t. Set the VERTICAL MODE switch to CH 2.
u. Repeat parts b through \mathbf{s} for Channel 2 attenuators.
v. Disconnect the test equipment from the instrument.

17. Check Alternate Operation

a. Set:

VERTICAL MODE
BOTH and ALT
AC-GND-DC (both)
GND
A and B SEC/DIV $\quad 50 \mathrm{~ms}$
A\&B INT
CH 1
b. Position the Channel 1 and Channel 2 traces about 2 divisions apart using the Channel 1 and Channel 2 POSITION controls.
c. CHECK—Sweeps alternate for all the A SEC/DIV switch settings.

NOTE

At sweep speeds of 2 ms per division or faster, the trace alternations occur too rapidly to be observed.

18. Check Chop Operation

a. Set:

VERTICAL MODE
BOTH and CHOP
A SEC/DIV
A\&B INT
A SOURCE
$1 \mu \mathrm{~s}$
VERT MODE
EXT
b. Connect the 10X probe to the EXT INPUT connector.
c. Connect the 10X probe tip to TP537.
d. CHECK-Period of one complete square-wave cycle is between 1.6 and 2.6 horizontal divisions.
e. Disconnect the 10X probe from TP537 and the EXT INPUT connector.
f. CHECK-Two traces are visible for all A SEC/DIV switch settings.
19. Adjust High-Frequency Compensation (C237, R240 and R241) and Channel 2 High-Frequency Compensation (C180)
a. Set:

VERTICAL MODE	CH 1
BW LIMIT	Off (button out)
VOLTS/DIV (both)	10 mV
AC-GND-DC (both)	DC
A SEC/DIV	$0.05 \mu \mathrm{~s}$
A SOURCE	INT

b. Connect the positive-going fast-rise square wave output via a 50Ω cable, a 10 X attenuator, and a 50Ω termination to the CH 1 OR X input connector.
c. Set the generator to produce a $1 \mathrm{MHz}, 5$-division display.
d. Set the top of the display to the center horizontal graticule line using the Channel 1 POSITION control.
e. ADJUST-HF Comp (C237) for 2% overshoot (0.1 division) on the displayed signal.
f. ADJUST_-HF Comp (R240 and R241) for best flat top on the front corner.
g. Repeat parts e and f until no further improvement is noted.
h. Set the CH 1 VOLTS/DIV switch to 5 mV .
i. Set the generator to produce a 5-division display.
j. CHECK—Display aberrations are within 4% (0.2 division or less).
k. Repeat part j for each of the following CH 1 VOLTS/DIV switch settings: 5 mV through 0.5 V . Adjust the generator output and add or remove the 10X attenuator as necessary to maintain a 5-division display at each VOLTS/DIV switch setting.

1. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector. Set the VERTICAL MODE switch to CH 2.
m . Set the generator to produce a 5 -division display.
n. Set the top of the display to the center horizontal graticule line using the Channel 2 POSITION control.
o. ADJUST—Ch 2 HF Comp (C180) for 2% overshoot (0.1 division) on the displayed signal.
p. Set the CH 2 VOLTS/DIV switch to 5 mV .
q. Repeat parts ithrough k for Channel 2.

20. Adjust 2-mV Peaking Compensation (C76 and C26)

a. Set both VOLTS/DIV switches to 2 mV .
b. Set the generator to produce a 5-division display.
c. Set the top of the display to the center horizontal graticule line using the Channel 2 POSITION control.
d. ADJUST-2mV Peak (C76) for 2% overshoot of the displayed signal.
e. Move the cable from the CH 2 OR Y input connector to the CH 1 OR X input connector. Set the VERTICAL MODE switch to CH 1 .
f. ADJUST-2mV Peak (C26) for 2% overshoot of the displayed signal.

21. Adjust Acquisition High Frequency Peaking (C2103, R2149, and C2113)

a. Set:

$$
x+2600-17
$$

VOLTS/DIV (both) 10 mV
STORE/NON STORE sTORE (button in) SAVE/CONTINUE CONTINUE (button out) PRETRIG/POST TRIG
b. Set the WAVEFORM REFERENCE/MENU SELECT switch to MENU SELECT (button out).
c. Use the Menu controls to call up SELECT MODE Table on the screen and select AVERAGE with the SELECT C1/C2 button. Reset the WAVEFORM REFERENCE/MENU SELECT switch to WAVEFORM REFERENCE (button out).
d. Set the generator to produce a 5-division display.
e. Set the top of the display to the center horizontal graticule line using the Channel 1 POSITION control.
f. ADJUST—Ch 1 Acq HF Peak (C2103) and Acq HF Peak (R2149) for best front corner.
g. Set the SAVE/CONTINUE switch to SAVE (button in).
h. CHECK—Display aberrations are within 4\% (0.2 division or less).
i. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector. Set the VERTICAL MODE switch to CH 2.
j. Set the SAVE/CONTINUE switch to CONTINUE (button out).
k. Repeat part e using Channel 2 POSITION control.
I. ADJUST—Ch 2 Acq HF Peak (C2113) for best front corner.
m. Repeat parts g and h for Channel 2.
n. INTERACTION_It may be necessary to compromise the Ch 1 Acq HF Peak (C2103) and Acq HF Peak (R2149) adjustments in part f and the Ch 2 Acq HF peak (C2113) adjustment in part I, to obtain the best highfrequency match between Channel 1 and Channel 2.
o. Disconnect the test equipment from the instrument.

22. Check Store Mode Cross Talk

a. Set:

VERTICAL MODE	BOTH and CHOP
Channel 1 AC-GND-DC	GND
Channel 2 AC-GND-DC	AC
VOLTS/DIV (both)	0.1 V
A SEC/DIV	10μ s
STORE/NON STORE	STORE (button in)

b. Connect the Pulse Generator pulse-period output via a 50Ω cable and a 50Ω termination to CH 2 OR Y input connector.
c. Set the generator to produce a $100 \mathrm{kHz}, 5$-division display.
d. Use the Channel 2 POSITION control to center the display.
e. Set CH 2 VOLTS/DIV switch to 50 mV for a 10 division display.
f. CHECK-Display amplitude on Channel 1 is less than 1\% (0.1 division).
g. Set the A SEC/DIV switch to 10 ms .
h. CHECK—Display amplitude on Channel 1 is less than 1% (0.1 division).
i. Move the cable from the $C H 2 O R Y$ input connector to the CH 1 OR X input connector.
j. Set:

CH 2 VOLTS/DIV 0.1 V
Channel 1 AC-GND-DC
AC
Channel 2 AC-GND-DC GND
k. Use the Channel 1 POSITION control to center the display.
I. Set the CH 1 VOLTS/DIV switch to 50 mV for a 10 division display.
m . Repeat parts f through h for Channel 2.

23. Check Store Puise Width Amplitude

a. Set:

AC-GND-DC (both)	DC
VERTICAL MODE	CH 2
SEC/DIV	1 ms
STORE/NON STORE	NON STORE (button out)
ROLL/SCAN	SCAN (button out)
1K/4K	1K (button in)

b. Set the generator to produce a 1 ms period, 100 ns duration, 5 -division display.
c. Set the STORE/NON STORE switch to STORE (button in).
d. CHECK-The amplitude of the display is 2.5 divisions or greater.
e. Set the A SEC/DIV switch to 0.1 sec .
f. CHECK-The amplitude of the display is 2.5 divisions or greater.
g. Set ROLL/SCAN switch to ROLL (button in).
h. CHECK-The amplitude of the display is 2.5 divisions or greater.
i. Set:

VERTICAL MODE	BOTH and CHOP
A SEC/DIV	1 ms
STORE/NON STORE	NON STORE (button out)
ROLL/SCAN	SCAN (button out)

j. Set the generator to produce a 0.1 s period, 2 ms duration, 5 -division display.
k. Repeat parts c through h.
I. Set:

A SEC/DIV	1 ms
STORE/NON STORE	NON STORE (button out)
ROLL/SCAN	SCAN (button out)

m . Set the generator to produce a 1 ms period, $20 \mu \mathrm{~s}$ duration, 5-division display.
n. Repeat parts c and d.
o. Disconnect the test equipment from the instrument.

24. Check Average Mode

a. Set the WAVEFORM REFERENCE/MENU SELECT switch to MENU SELECT (button out).
b. Use the Menu controls to select SWP LIMIT.
c. CHECK-The SWP LIMIT is adjustable from 1 to 2047 or NO LIMIT by rotating the CURSORS control.

NOTE

Install the instrument cabinet for the remaining vertical checks and allow a 20-minute warm-up period before continuing with the Adjustment Procedure. See the "Cabinet" remove and replace instructions located in the "Maintenance" section of the manual.

25. Check Bandwidth Limit Operation

a. Set:

Vertical POSITION (both)	Midrange
VERTICAL MODE	CH 1
BW LIMIT	On (button in)
VOLTS/DIV Variable (both)	CAL detent
AC-GND-DC (both)	DC
A SEC/DIV	20μ S
STORE/NON STORE	NON STORE (button out)

b. Connect the leveled sine-wave generator output via a 50Ω cable and a 50Ω termination to the CH 1 OR X input connector.
c. Set the generator to produce a 50 kHz , 6-division display.
d. Increase the generator output frequency until the display amplitude decreases to 4.2 divisions.
e. CHECK-Generator output frequency is between 18 MHz and 22 MHz .

26. Check Bandwidth

a. Set:
$\begin{array}{ll}\text { BW LIMIT } & \text { Off (button out) } \\ \text { VOLTS/DIV (both) } & 2 \mathrm{mV}\end{array}$
b. Set the generator to produce a $50 \mathrm{kHz}, 6$-division display.
c. CHECK-Display amplitude is 4.2 divisions or greater as the generator output frequency is increased up to the value shown in Table 5-6 for the corresponding VOLTS/DIV switch setting.

Table 5-6
Settings for Bandwidth Checks

VOLTS/DIV Switch Setting	Generator Output Frequency
2 mV	80 MHz
5 mV to 5 V	100 MHz

d. Repeat parts b and c for all $C H 1$ VOLTS/DIV switch settings, up to the output-voltage upper limit of the sine-wave generator being used.
e. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector. Set the VERTICAL MODE switch to CH 2.
f. Repeat parts b and c for all CH 2 VOLTS/DIV switch settings, up to the output-voltage upper limit of the sinewave generator being used.

27. Check Repetitive Store Mode

a. Set:

CH 2 VOLTS/DIV	10 mV
A SEC/DIV	0.2 ms

b. Set the generator to produce a 50 kHz , 6-division display.
c. Set:
$\begin{array}{ll}\text { A SEC/DIV } & 0.05 \mu \mathrm{~s} \\ \text { X10 Magnifier } & \text { On (knob out) }\end{array}$
d. Set the generator to produce a 100 MHz display.
e. Set:

STORE/NON STORE SAVE/CONTINUE

STORE (button in) CONTINUE (button out)

NOTE
Allow the points to accumulate for a few seconds before saving the display.
f. CHECK—The 100 MHz display will accumulate and store.

g. Set:

VERTICAL MODE
BOTH and ALT SAVE/CONTINUE
h. Repeat part f.
28. Check Single Sweep Sample Acquisition
a. Set:

VERTICAL MODE	CH 2
A SEC/DIV	$5 \mu \mathrm{~S}$
X10 Magnifier	Off (knob in)
A TRIGGER Mode	NORM
A\&B INT	CH 2
SAVE/CONTINUE	CONTINUE (button out)
1K/4K	1 K (button in)

b. Set the generator to produce a $50 \mathrm{kHz}, 6$-division display.
c. Press in the A TRIGGER Mode SGL SWP button.
d. Set the generator output to 2 MHz .
e. Press in the A TRIGGER Mode SGL SWP button.
f. CHECK-The minimum peak-to-peak envelope amplitude is greater than 5.6 divisions.
29. Check Non Store and Store Channel Isolation
a. Set:

VOLTS/DIV (both)
0.1 V

VOLTS/DIV Variable (both)
INVERT
Channel 1 AC-GND-DC GND
A SEC/DIV $0.1 \mu \mathrm{~S}$
A TRIGGER Mode P-P AUTO
A\&B INT
VERT MODE
STORE/NON STORE
b. Set the generator to produce a $50 \mathrm{MHz}, 5$-division display.
c. Set the VERTICAL MODE switch to CH 1.
d. CHECK—Display amplitude is 0.05 division or less.
e. Move the cable from the CH 2 OR Y input connector to the CH 1 OR X input connector.
f. Set:

VERTICAL MODE	CH 2
Channel 1 AC-GND-DC	DC
Channel 2 AC-GND-DC	GND

g. CHECK—Display amplitude is 0.05 division or less.
h. Set:

CH 1 VOLTS/DIV 50 mV STORE/NON STORE SAVE/CONTINUE STORE (button in) CONTINUE (button out)
i. CHECK—Display amplitude is 0.1 division or less.
j. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector.
k. Set:

VERTICAL MODE	CH 1
CH 1 VOLTS/DIV	0.1 V
CH 2 VOLTS/DIV	50 mV
Channel 1 AC-GND-DC	GND
Channel 2 AC-GND-DC	DC

I. CHECK—Display amplitude is 0.1 division or less.
m . Disconnect the test equipment from the instrument.

30. Check Common-Mode Rejection Ratio

a. Set:

VOLTS/DIV (both) $\quad 10 \mathrm{mV}$

INVERT
AC-GND-DC (both)
STORE/NON STORE

On (button in)
DC
NON STORE (button out)
b. Connect the leveled sine-wave generator output via a 50Ω cable, a 50Ω termination, and a dual-input coupler to the CH 1 OR X and CH 2 OR Y input connectors.
c. Set the generator to produce a 50 MHz , 6-division display.
d. Vertically center the display using the Channel 1 POSITION control. Then set the VERTICAL MODE switch to CH 2 and vertically center the display using the Channel 2 POSITION control.
e. Set the VERTICAL MODE switches to BOTH and ADD.
f. CHECK—Display amplitude is 0.6 division or less.
g. If the check in part f meets the requirement, skip to part p. If it does not, continue with part h.
h. Set the VERTICAL MODE switch to CH 1.
i. Set the generator to produce a 50 kHz , 6-division display.
j. Set the VERTICAL MODE switch to BOTH.
k. Adjust the CH 1 or CH 2 VOLTS/DIV Variable control for minimum display amplitude.
I. Set the VERTICAL MODE switch to CH 1.
m . Set the generator to produce a 50 MHz , 6-division display.
n. Set the VERTICAL MODE switch to BOTH.
o. CHECK—Display amplitude is 0.6 division or less.
p. Disconnect the test equipment from the instrument.

31. Check Probe Encoding

a. Set:

VOLTS/DIV (both) 0.1 V
VERTICAL MODE CH 1
b. Read the 0.1 V on the Channel 1 VOLTS/DIV portion of the crt readout.
c. Connect the standard accessory 10X probe to the CH 1 OR X connector.
d. CHECK-The Channel 1 VOLTS/DIV portion of the crt readout changes from 0.1 V to 1 V .
e. Set VERTICAL MODE to CH 2.
f. Move the 10 X probe from the CH 1 OR X input connector to the CH 2 OR Y input connector.
g. CHECK-The Channel 2 VOLTS/DIV portion of the crt readout changes from 100 mV to 1 V .
h. Disconnect the 10X probe from the instrument.

NOTE

To continue with the Adjustment Procedure, remove the instrument cabinet and allow a 20-minute time period to elapse before continuing with the Adjustment Procedure. See the "Cabinet" removal instructions located in the "Maintenance" section of the manual.

HORIZONTAL

```
Equipment Required (See Table 4-1):
```

Calibration Generator (Item 1)
Leveled Sine-Wave Generator (Item 2)
Time-Mark Generator (Item 3)
Test Oscilloscope (Item 6)
50Ω Cable (Item 8)
50Ω BNC Termination (Item 12)
Low-Capacitance Alignment Tool (Item 18)
Screwdriver (Item 19)
at the back of this manual for test point and adjustment locations.

INITIAL CONTROL SETTINGS

Vertical	
POSITION (both)	Midrange
VERTICAL MODE	CH 1
X-Y	Off (button out)
BW LIMIT	Off (button out)
CH 1 VOLTS/DIV	0.5 V
CH 1 VOLTS/DIV Variable	CAL detent
Channel 1 AC-GND-DC	DC

Horizontal
POSITION
HORIZONTAL MODE
A and B SEC/DIV
SEC/DIV Variable
X10 Magnifier
B DELAY TIME POSITION
Midrange
A
0.1 ms

CAL detent
Off (knob in)
Fully counterclockwise

B TRIGGER

```
SLOPE
LEVEL
```

OUT
Fully clockwise

Storage

STORE/NON STORE	NON STORE (button out)
SAVE/CONTINUE	CONTINUE (button out)
PRETRIG/POST TRIG	POST TRIG (button out)
ROLL/SCAN	SCAN (button out)
1K/4K	4K (button out)
POSITION CURS/	POSITION CURS
SELECT WAVEFORM	(button in)
WAVEFORM	WAVEFORM
REFERENCE/	REFERENCE
MENU SELECT	(button in)

PROCEDURE STEPS

1. Adjust Horizontal Amplifier Gain

 (R740 and R730)a. Connect 0.1 ms time markers from the time-mark generator via a 50Ω cable and a 50Ω termination to the CH 1 OR X input connector.
b. Use the Horizontal POSITION control to align the 1 st time marker with the 1 st vertical graticule line.
c. ADJUST—A Sweep Gain (R740) for 1 time marker per division over the center 8 divisions.

NOTE

When making timing measurements, use as a reference the tips of the time markers positioned at the center horizontal graticule line.
d. Set the HORIZONTAL MODE switch to B.
e. ADJUST-B Sweep Gain (R730) for 1 time marker per division.

2. Adjust X10 Horizontal Amplifier Gain (R754)

a. Set:

HORIZONTAL MODE
X10 Magnifier
A On (knob out)
b. Select $10 \mu \mathrm{~s}$ time markers from the time-mark generator.
c. Align the nearest time marker to the 1st vertical graticule line with the 1st graticule line.
d. ADJUST-X10 Gain (R754) for 1 time marker per division.

3. Adjust Magnifier Registration (R749)

a. Set the A SEC/DIV switch to 0.2 ms .
b. Select 1 ms time markers from the time-mark generator.
c. Position the middle time marker to the center vertical graticule line using the Horizontal POSITION control.
d. Set the X10 Magnifier to Off (knob in).
e. ADJUST-Mag (R749) to position the middle time marker to the center vertical graticule line.
f. Set the X10 Magnifier to On (knob out) and CHECK for no horizontal shift in the time marker.
g. Repeat parts c through f until no further improvement is noted.

4. Check Sweep Length

a. Set:

Channel 1 AC-GND-DC	GND
X10 Magnifier	Off (knob in)

b. Position the start of the sweep at the 1st vertical graticule line using the Horizontal POSITION control.
c. CHECK-End of the sweep is to the right of the 11th vertical graticule line.

5. Check Position Range

a. Set:

Channel 1 AC-GND-DC DC
A SEC/DIV $10 \mu \mathrm{~S}$
b. Select $10 \mu \mathrm{~s}$ time markers from the time-mark generator.
c. CHECK_Start of the sweep can be positioned to the right of the center vertical graticule line by rotating the Horizontal POSITION control fully clockwise.
d. CHECK - The 11th time marker can be positioned to the left of the center vertical graticule line by rotating the Horizontal POSITION control fully counterclockwise.
e. Select $50 \mu \mathrm{~S}$ time markers from the time-mark generator.
f. Align the 3rd time marker with the center vertical graticule line using the Horizontal POSITION control.
g. Set the X10 Magnifier to On (knob out).
h. CHECK-Magnified time marker can be positioned to the left of the center vertical graticule line by rotating the Horizontal POSITION control fully counterclockwise.
i. CHECK-Start of the sweep can be positioned to the right of the center vertical graticule line by rotating the Horizontal POSITION control fully clockwise.

6. Check Variable Range

a. Set:

Horizontal POSITION	Midrange
A SEC/DIV	0.2 ms
SEC/DIV Variable	Fully counterclockwise
X10 Magnifier	Off (knob in)

b. Select 0.5 ms time markers from the time-mark generator.
c. CHECK-Time markers are 1 division or less apart.

7. Adjust/Check 4K to 1K Display Compress (R7507)

a. Set

A SEC/DIV	$50 \mu \mathrm{~S}$
STORE/NON STORE	STORE (button in)
SAVE/CONTINUE	CONTINUE (button out)
$1 \mathrm{~K} / 4 \mathrm{~K}$	4 K (button out)

b. Set Store Reset plug (P9104) to reset position.
c. Select 0.2 ms time markers from the time-mark generator.
d. ADJUST—Ratio Adj (R7507) for 1 time marker per division over the center 8 divisions.
e. Set the Store Reset plug (P9104) to normal position.
f. Select 0.1 ms time markers from the time-mark generator and check that the time markers are 2 divisions apart.
g. Rotate the SEC/DIV Variable control out of detent.
h. CHECK-For 2 time markers per division over the center 8 divisions.

8. Adjust Delay Timing and Readout

(R646, R652, and R6119)
a. Set:

HORIZONTAL MODE	BOTH
A SEC/DIV	0.1 ms
B SEC/DIV	$1 \mu \mathrm{~s}$
SEC/DIV Variable	CAL detent
STORE/NON STORE	NON STORE (button out)

b. Select 0.1 ms time markers from the time-mark generator.
c. Adjust the A/B SWP SEP control to separate the A and B Sweeps.
d. Position the start of the trace exactly on the 1st vertical graticule line using the Horizontal POSITION control.
e. Rotate the B DELAY TIME POSITION control fully counterclockwise.
f. ADJUST—Delay Start (R646) so that the intensified zone starts at 0.2 divisions.
g. Rotate the B DELAY TIME POSITION control fully clockwise.
h. ADJUST-D-End (R652) so that the intensified zone starts at 10.05 divisions.
i. Repeat parts e through h until no further improvement is noted.
j. Rotate the B DELAY TIME POSITION control until the 2nd A-Sweep time marker is aligned with a selected reference vertical graticule line on the B Sweep. Record the $\mathrm{DLY}>$ readout for part I .
k. Rotate the B DELAY TIME POSITION control until the 10th A-Sweep time marker is aligned with the same selected reference vertical graticule line on the B Sweep as in part j.
I. ADJUST-Delay Readout (R6119) until the DLY $>$ readout display between the 2nd time marker and the 10th time marker is 0.800 ms .

9. Adjust High-Speed Timing (C703 and C713)

a. Set:

HORIZONTAL MODE

A

A SEC/DIV $1 \mu \mathrm{~s}$
A SEC/DIV Variable CAL detent
b. Select $1 \mu \mathrm{~s}$ time markers from the time-mark generator.
c. ADJUST-A High Speed Timing (C703) for 1 time marker per division over the center 8 divisions.
d. Set:

HORIZONTAL MODE	B
A SEC/DIV	2μ S
B SEC/DIV	$1 \mu \mathrm{~S}$

e. ADJUST-B High Speed Timing (C713) for 1 time marker per division over the center 8 divisions.
10. Adjust 5 ns Timing and Linearity (C775 and C785)
a. Set:

CH 1 VOLTS/DIV	0.2 V
Horizontal POSITION	Midrange
HORIZONTAL MODE	A
A SEC/DIV	$0.05 \mu \mathrm{~s}$
X10 Magnifier	On (knob out)

b. Select 10 ns time markers from the time-mark generator.
c. Align the time markers with the vertical graticule lines using the Horizontal POSITION control.
d. ADJUST-5 ns Timing (C775 and C785 alternately) for one time marker every 2 divisions over the center 8 divisions of the magnified sweep.
e. CHECK-Time markers between the 2nd and 4th vertical graticule lines should be aligned within 0.05 division. If not, a slight compromise between timing and linearity should be made by readjusting the 5 ns Timing capacitors (C775 and C785).

11. Check Timing Accuracy and Linearity

a. Set:

CH 1 VOLTS/DIV	0.5 V
X10 Magnifier	Off (knob in)

b. Select 50 ns time markers from the time-marker generator.
c. Adjust the A TRIGGER LEVEL control for a stable, triggered display.
d. Use the Horizontal POSITION control to align the 2nd time marker with the 2nd vertical graticule line.
e. CHECK-Timing accuracy is within 2% (0.16 division at the 10th vertical graticule line), and linearity is within 5% (0.1 division over any 2 of the center 8 divisions).

NOTE

For checking the timing accuracy of the A SEC/DIV switch settings from 50 ms to 0.5 s , watch the time marker tips only at the 2nd and 10th vertical graticule lines while adjusting the Horizontal POSITION control.
f. Repeat parts c through e for the remaining A SEC/DIV and time-mark generator setting combinations shown in Table 5-7 under the "Normal (X1)" column.
g. Set:

A SEC/DIV	$0.05 \mu \mathrm{~s}$
X 10 Magnifier	On (knob out)

h. Select 10 ns time markers from the time-mark generator.
i. Use the Horizontal POSITION control to align the 1st time marker that is 25 ns beyond the start of the sweep with the $2 n d$ vertical graticule line.
j. CHECK—Timing accuracy is within 3% (0.24 division at the 10th vertical graticule line), and linearity is within 5% (0.1 division over any 2 of the center 8 divisions). Exclude any portion of the sweep past the 100th magnified division.
k. Repeat parts i and j for the remaining A SEC/DIV and time-mark generator setting combinations shown in Table 5-7 under the "X10 Magnified" column.
I. Set:

HORIZONTAL MODE	B
A SEC/DIV	$0.1 \mu \mathrm{~s}$
B SEC/DIV	$0.05 \mu \mathrm{~s}$
X10 Magnifier	Off (knob in)

Table 5-7
Settings for Timing Accuracy Checks

SEC/DIV Switch Setting	Time-Mark Generator Setting	
	Normal (X1)	X10 Magnified
$0.05 \mu \mathrm{~s}$	50 ns	10 ns
$0.1 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	10 ns
$0.2 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	20 ns
$0.5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	50 ns
$1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$
$2 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$
$5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$
$10 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
$20 \mu \mathrm{~s}$	$20 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$
$50 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
0.1 ms	0.1 ms	$10 \mu \mathrm{~s}$
0.2 ms	0.2 ms	$20 \mu \mathrm{~s}$
0.5 ms	0.5 ms	$50 \mu \mathrm{~s}$
1 ms	1 ms	0.1 ms
2 ms	2 ms	0.2 ms
5 ms	5 ms	0.5 ms
10 ms	10 ms	1 ms
20 ms	20 ms	2 ms
50 ms	50 ms	5 ms
	Aweep Only	
0.1 s	0.1 s	10 ms
0.2 s	0.2 s	20 ms
0.5 s	0.5 s	50 ms

m. Pepeat parts b through k for the B Sweep. Keep the A SEC/DIV switch one setting slower than the B SEC/DIV switch.
b. Use the Horizontal POSITION control to align the start of the A Sweep with the 1st vertical graticule line.
c. Set the B DELAY TIME POSITION control fully counterclockwise.
d. CHECK-Intensified portion of the trace starts within 0.5 division of the start of the sweep.
e. Rotate the B DELAY TIME POSITION control fully clockwise.
f. CHECK-Intensified portion of the trace is past the 11th vertical graticule line.
g. Set the A and B SEC/DIV switch to $0.5 \mu \mathrm{~s}$.
h. Repeat parts \mathbf{b} through f .
i. Set:

Channel 1 AC-GND-DC	DC
B SEC/DIV	$0.05 \mu \mathrm{~s}$
B DELAY TIME POSITION	Fully counterclockwise

j. Select $0.5 \mu \mathrm{~s}$ time markers from the time-mark generator.
k. Rotate the B DELAY TIME POSITION control so that the top of the 2nd time marker on the B Sweep is aligned with a selected reference vertical line. Record the DLY $>$ readout for part m.
I. Rotate the B DELAY TIME POSITION control fully clockwise until the top of the 10th time marker on the B Sweep is aligned with the same selected reference vertical line as in part k. Record the DLY> readout for part m.
m . CHECK—Delay time readout is within the limits given in Table 5-8 (Delay Readout Limits column) by subtracting the delay time reading in part k from part l.
n. Repeat parts k through m for the remaining B SEC/DIV and time-mark generator settings given in Table 5-8, check the 8-division delay time accuracy for each A SEC/DIV switch setting given in column 1 of the table.

Table 5-8
Settings for Delay Time Differential Checks

Time-Mark Generator and A SEC/DIV Settings	B SEC/DIV Setting	Eight Division Delay	Delay Readout Limits
$0.5 \mu \mathrm{~s}$	$0.05 \mu \mathrm{~s}$	$4.000 \mu \mathrm{~s}$	3.948 to $4.052 \mu \mathrm{~s}$
$5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	$40.00 \mu \mathrm{~s}$	39.48 to $40.52 \mu \mathrm{~s}$
$50 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$400.0 \mu \mathrm{~s}$	394.8 to $405.2 \mu \mathrm{~s}$
0.5 ms	$50 \mu \mathrm{~s}$	4.000 ms	3.948 to 4.052 ms
5 ms	0.5 ms	40.00 ms	39.48 to 40.52 ms
50 ms	5 ms	400.0 ms	394.8 to 405.2 ms
0.5 s	50 ms	4.000 s	3.948 to 4.052 s

13. Check Delay Jitter

a. Set:

A SEC/DIV	0.5 ms
B SEC/DIV	$0.5 \mu \mathrm{~s}$
B DELAY TIME POSITION	Fully clockwise

b. Select $50 \mu \mathrm{~s}$ time markers from the time-mark generator.
c. Rotate the B DELAY TIME POSITION control counterclockwise to position a time marker within the graticule area for each major dial division and CHECK that the jitter on the leading edge does not exceed 0.5 division. Disregard slow drift.

14. Adjust Vector Generator (R6312 and R6321)

a. Set the WAVEFORM REFERENCE/MENU SELECT switch to MENU SELECT (button out).
b. Use the Menu controls to display rectangle test waveforms on the screen by selecting ADVANCE FUNCTIONS, DIAGNOSTICS, CAL AIDS, and BOX in that order.
c. ADJUST-X and Y Vector/Dot Alignment (R6312 and R6321) for best displays of the delta symbols (no tails or tilting) located at each of the four corners on the screen.

15. Adjust Store X Offset and Gain (R9214 and R9212)

a. ADJUST—Store X Offset (R9214) so that the left trace of the outside box is exactly aligned with the 1st vertical graticule line.
b. ADJUST-Store X Gain (R9212) so that the inside box is exactly 8 divisions wide. The inside box is horizontally centered with the Horizontal POSITION control.
c. INTERACTION-Repeat parts a and b until the inside box is exactly 8 horizontal divisions wide and the left trace of the outside box is aligned with the 1 st vertical graticule line.

16. Adjust Clock Delay Timer (R4213 and C4202)

a. Use the Menu controls to select CAL__CLK_DLY.
b. ADJUST—CDT XY (R4213) to vertically align the horizontal trace with the center horizontal graticule line.
c. ADJUST-CDT X (C4202) to horizontally align the vertical trace with the center vertical graticule line. Both traces will intersect within the center box.
d. Repeat part b and c until both traces are aligned with the center graticule lines within the boxes.
17. Check Store Differential and Cursor Time Difference Accuracy
a. Set:

Channel 1 AC-GND-DC	GND
HORIZONTAL MODE	A
A SEC/DIV	0.1 ms
STORE/NON STORE	STORE (button in)
$1 \mathrm{~K} / 4 \mathrm{~K}$	1 K (button in)

b. Use the Channel 1 POSITION control to center the base line vertically and the Horizontal POSITION control to align the start of the trace with the 1st vertical graticule line.
c. Use the CURSORS control and SELECT C1/C2 switch to set one cursor exactly on the 2 nd vertical graticule line and position the active cursor to the right using the CURSORS control until ΔT readout displays 0.800 ms .
d. CHECK-Graticule indication of cursor difference at the 10 th vertical graticule line is within 0.16 division.
e. Set the Channel 1 AC-GND-DC switch to DC.
f. Select 0.1 ms time markers from the time-mark generator.
g. Use the Horizontal POSITION control to align the 2nd time marker with the 2nd vertical graticule line.
h. Set the SAVE/CONTINUE switch to SAVE (button in) for a stable display.
i. Use the CURSORS control and SELECT C1/C2 switch to set the first cursor on the trailing edge of the 2nd time marker.
j. Press in the $\mathrm{C} 1 / \mathrm{C} 2$ button to activate the second cursor.
k. Set the second cursor on the trailing edge of the 10th time marker at the same voltage level as on the 2nd time marker.
I. CHECK-The ΔT readout is between 0.798 ms and 0.802 ms .
m . Set the SAVE/CONTINUE switch to CONTINUE (button out).
n. Set the A SEC/DIV switch to $0.5 \mu \mathrm{~s}$.
o. Select $0.5 \mu \mathrm{~s}$ time markers from the time-mark generator.
p. Use the Horizontal POSITION control to align the 2nd time marker with the 2nd vertical graticule line.

NOTE

Allow the points to accumulate for a few seconds before saving the display.
q. Repeat parts h through k.

NOTE

Pulses with fast rise and fall times have only a few sample points, and it may not be possible to place the cursors at exactly the same voltage levels.
r. CHECK_The ΔT readout is between 397.0 ns and 403.0 ns .

18. Check Store Expansion Range

a. Set:
A SEC/DIV
0.1 ms
SAVE/CONTINUE
CONTINUE (knob out)
b. Select $10 \mu \mathrm{~S}$ time markers from the time-mark generator.
c. Use the Horizontal POSITION control to align the start of the A Sweep with the 1st vertical graticule line.
d. Set the X10 Magnifier knob to On (knob out).
e. CHECK-The time markers are 1 division apart.

19. Check A/B Sweep Separation

a. Set:

HORIZONTAL MODE BOTH
A and B SEC/DIV $\quad 0.5 \mathrm{~ms}$
STORE/NON STORE NON STORE
b. Use the Channel 1 POSITION control to set the A Sweep at the center horizontal graticule line.
c. CHECK-The B Sweep can be positioned more than 3.5 divisions above and below the A Sweep when the A/B SWP SEP control is rotated fully clockwise and counterclockwise respectively.

20. Adjust X Gain (R760)

a. Set:

X-Y	On (button in)
CH 1 VOLTS/DIV	10 mV
Horizontal POSITION	Midrange

b. Connect the standard-amplitude signal from the Calibration Generator via a 50Ω cable to the CH 1 OR X input connector.
c. Use the Channel 2 POSITION and Horizontal POSITION controls to center the display.
d. Set the generator to produce a 50 mV signal.
e. ADJUST-X-Gain (R760) for exactly 5 divisions of horizontal deflection.
f. Disconnect the test equipment from the instrument.

21. Check X-Y Store

a. Set the STORE/NON STORE switch to STORE (button in).
b. Set the generator to produce a 50 mV signal.
c. CHECK-The display can be move vertically and horizontally with the Channel 2 POSITION and Horizontal POSITION controls.
d. Set the SAVE/CONTINUE switch to SAVE (button in).
e. Repeat part c.
f. Disconnect the test equipment from the instrument.

22. Check X Bandwidth

a. Set:

CH 2 AC-GND-DC
GND
STORE/NON STORE
NON STORE (button out)
b. Connect the leveled sine-wave generator output via a 50Ω cable and a 50Ω termination to the CH 1 ORX input connector.
c. Set the generator to produce a 5-division horizontal display at an output frequency of 50 kHz .
d. Increase the generator output frequency to 2.5 MHz .
e. CHECK—Display is at least 3.5 horizontal divisions.
f. Disconnect the test equipment from the instrument.

23. Check A-Sweep Holdoff

a. Set:

X-Y	Off (button out)
HORIZONTAL MODE	A
A SEC/DIV	1 ms
VAR HOLDOFF	NORM

b. Connect the test oscilloscope and its 10X probe tip to the front end of R707 (toward the front panel) which is located on the Timing circuit board.
c. CHECK-The A-Sweep holdoff is greater then 3 ms but less than 7 ms .
d. Rotate the VAR HOLDOFF control to the maximum clockwise position (MAX).
e. CHECK—The A-Sweep holdoff has increased by a factor of 10 or more.
f. Disconnect the test oscilloscope 10X probe from R707.

TRIGGER

Equipment Required (See Table 4-1):

Leveled Sine-Wave Generator (Item 2)	BNC T-Connector (Item 11)
Low-Frequency Generator (Item 4)	$50 \Omega \mathrm{BNC}$ Termination (Item 12)
50Ω BNC Cable (Item 8)	$600 \Omega \mathrm{BNC}$ Termination (Item 13)
Dual-Input Coupler (Item 9)	Screwdriver (Item 19)

See ADUUSTMENT LOCATIONS 1
 and ADJUSTMENT LOCATIONS 3

at the back of the manual for test points and adjustment locations.

INITIAL CONTROL SETTINGS	
Vertical (Both Channels)	
POSITION	Midrange
VERTICAL MODE	BOTH-ALT
X-Y	Off (button out)
BW LIMIT	Off (button out)
VOLTS/DIV	0.5 V
VOLTS/DIV Variable	CAL detent
INVERT	Off (button out)
AC-GND-DC	GND
Horizontal	
POSITION	Midrange
HORIZONTAL MODE	A
A and B SEC/DIV	1 ms
SEC/DIV Variable	CAL detent
X1O Magnifier	Off (knob in)
B DELAY TIME POSITION	Fully counterclockwise
B TRIGGER	
SLOPE	OUT
LEVEL	Midrange
A TRIGGER	
VAR HOLDOFF	NORM
MOde	P-P AUTO
SLOPE	OUT
LEVEL	Midrange
HF REJECT	OFF
A\&B INT	VERT MODE
A SOURCE	ANT
A EXT COUPLING	AC

Storage

STORE/NON
SAVE/CONTINUE
PRETRIG/POST TRIG
ROLL/SCAN
$1 \mathrm{~K} / 4 K$
POSITION CURS/
SELECT WAVEFORM
WAVEFORM
REFERENCE/
MENU SELECT

STORE
CONTINUE (button out)
POST TRIG (button out)
SCAN (button out)
4K (button out)
POSITION CURS
(button in)
WAVEFORM
REFERENCE
(button in)

PROCEDURE STEPS

1. Adjust Channel 1 Trigger Offset (R309)

a. Set the Channel 1 trace and the Channel 2 trace to the center horizontal graticule line using the Channel 1 and Channel 2 POSITION controls.
b. Connect the digital voltmeter low lead to chassis ground and the high (volts) lead to TP460, located on the bottom side of the Main circuit board.
c. CHECK—Note the offset voltage reading at TP460 for use in part e.
d. Set the A\&B INT switch to CH 1.
e. ADJUST-Trig Offset (R309) so that the voltage reading is the same as that obtained in part c.
f. Set the A\&B INT switch to CH 2.
g. Repeat parts cthrough f until there is 1 mV or less difference in the voltmeter readings between the CH 1 and CH 2 positions of the A\&B INT switch.
h. Disconnect the test equipment from the instrument.

2. Adjust A and B Trigger Sensitivity (R471 and R627)

a. Set:

VERTICAL MODE	CH 1
CH 1 VOLTS/DIV	0.1 V
AC-GND-DC (both)	AC
A SEC/DIV	$10 \mu \mathrm{~S}$

b. Connect the leveled sine-wave generator output via a 50Ω cable and a 50Ω termination to the CH 1 OR X input connector.
c. Set the generator to produce a $50 \mathrm{kHz}, 2.2$-division display.
d. Set the CH 1 VOLTS/DIV switch to 1 V .
e. ADJUST—Trig Sens (R471) while rotating the A TRIGGER LEVEL control slowly so that the A Trigger is just able to be maintained.
f. Set the HORIZONTAL MODE switch to B. .
g. ADJUST-B Trig Sens (R627) while rotating the B TRIGGER LEVEL control slowly so that the B Trigger is just able to be maintained.

3. Adjust P-P Auto Level (R434 and R435)

a. Set:

CH 1 VOLTS/DIV	50 mV
A TRIGGER SLOPE	OUT
A TRIGGER LEVEL	Fully clockwise

b. Set the leveled sine-wave generator to produce a $50 \mathrm{kHz}, 6$-division display.
c. Set the CH 1 VOLTS/DIV switch to 0.5 V .
d. ADJUST-(+) P-P Auto Level (R434) so that the vertical display just solidly triggers on the positive peak of the signal.
e. Set:

A TRIGGER SLOPE	IN
A TRIGGER LEVEL	Fully counterclockwise

f. ADJUST-(-) P-P Auto Level (R435) so that the display just solidly triggers on the negative peak of the signal.
g. Disconnect the test equipment from the instrument.

4. Check Internal A and B Triggering

a. Set:

CH 1 VOLTS/DIV	5 mV
CH 2 VOLTS/DIV	50 mV
HORIZONTAL MODE	A
A and B SEC/DIV	$0.2 \mu \mathrm{~s}$
A\&B INT	CH 1
A SOURCE	INT

b. Connect the leveled sine-wave generator output via a 50Ω cable and a 50Ω termination to the CH 1 OR X input connector.
c. Set the generator to produce a 10 MHz , 3-division display.
d. Set the CH 1 VOLTS/DIV switch to 50 mV .
e. CHECK—Stable display can be obtained by adjusting the A TRIGGER LEVEL control for each switch combination given in Table 5-9.

Table 5-9
Switch Combinations for A Triggering Checks

A TRIGGER Mode	A TRIGGER SLOPE
NORM	OUT
NORM	IN
P-P AUTO	IN
P-P AUTO	OUT

f. Set the HORIZONTAL MODE switch to B.
g. CHECK-Stable display can be obtained by adjusting the B TRIGGER LEVEL control in a position other than the B RUNS AFTER DLY position for both the OUT and IN positions of the B TRIGGER SLOPE switch.
h. Set:

VERTICAL MODE	CH 2
HORIZONTAL MODE	A
A\&B INT	CH 2

i. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector.
j. Repeat parts e through g.
k. Set:

HORIZONTAL MODE
A SEC/DIV
X10 Magnifier
A
$0.1 \mu \mathrm{~s}$ On (knob out)
I. Set the generator to produce a $60 \mathrm{MHz}, 1.0$-division display.
m. Repeat parts e through g.
n. Set:

VERTICAL MODE
CH 1
HORIZONTAL MODE
A\&B INT
A
CH 1
o. Move the cable from the CH 2 OR Y input connector to the CH 1 OR X input connector.
p. Repeat parts e through g.
q. Set:

HORIZONTAL MODE A
A SEC/DIV $\quad 0.05 \mu \mathrm{~s}$
r. Set the generator to produce a 100 MHz , 1.5division display.
s. Repeat parts e through g.
t. Set:

VERTICAL MODE	CH 2
HORIZONTAL MODE	A
A\&B INT	CH 2

u. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector.
v. Repeat parts e through g.
w. Disconnect the test equipment from the instrument.

5. Check HF Reject A Triggering

a. Set:

VERTICAL MODE	CH 1
VOLTS/DIV (both)	50 mV
HORIZONTAL MODE	A
A SEC/DIV	$5 \mu \mathrm{~s}$
A TRIGGER Mode	NORM
A TRIGGER LEVEL	Midrange
A\&B INT	CH 1

b. Connect the low-frequency generator output via a 50Ω cable and a 600Ω termination to the CH 1 OR X input connector.
c. Set the low-frequency generator output to produce a 250 kHz , 1-division display.
d. Adjust the A TRIGGER LEVEL control for a stable display.
e. Set HF REJECT switch to ON.
f. CHECK-Stable display cannot be obtained by adjusting the A TRIGGER LEVEL control for each switch combination given in Table 5-9.
g. Set:

VERTICAL MODE CH 2
A\&B INT
CH 2
h. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector.
i. Repeat part f .
j. Disconnect the test equipment from the instrument.

6. Check External Triggering

a. Set:

VERTICAL MODE	CH 1
CH 1 VOLTS/DIV	5 mV
HORIZONTAL MODE	A
A SEC/DIV	$0.1 \mu \mathrm{~s}$
X10 Magnifier	Off (knob in)
HF REJECT	OFF
A\&B INT	CH 1
A SOURCE	EXT

b. Connect the leveled sine-wave generator output via a 50Ω cable, a 50Ω termination, and a dual-input coupler to both the CH 1 OR X and EXT INPUT connectors.
c. Set the leveled sine-wave generator output voltage to 35 mV and the frequency to 10 MHz .
d. CHECK-Stable display can be obtained by adjusting the A TRIGGER LEVEL control for each switch combination given in Table 5-9.
e. Set CH 1 VOLTS/DIV switch to 50 mV .
f. Set the generator output voltage to 120 mV and the frequency to 60 MHz . Set the X10 Magnifier to On (knob out).
g. Repeat part d.
h. Set the generator output voltage to 150 mV and the frequency to 100 MHz .

7. Check External Trigger Ranges

a. Set:

CH 1 VOLTS/DIV	0.5 V
A SEC/DIV	$20 \mu \mathrm{~s}$
X10 Magnifier	Off (knob in)
A TRIGGER SLOPE	OUT
A TRIGGER Mode	NORM

b. Set the generator to produce a $50 \mathrm{kHz}, 6.4$-division display.
c. CHECK—Display is triggered along the entire positive slope of the waveform as the A TRIGGER LEVEL control is rotated.
d. CHECK-Display is not triggered (no trace) at either extreme of rotation.
e. Set the A TRIGGER SLOPE button to IN.
f. CHECK-Display is triggered along the entire negative slope of the waveform as the A TRIGGER LEVEL control is rotated.
g. CHECK—Display is not triggered (no trace) at either extreme of rotation.

8. Check Single Sweep Operation

a. Adjust the A TRIGGER LEVEL control to obtain a stable display.
b. Set:

Channel 1 AC-GND-DC
GND
A SOURCE
INT
c. Press in the SGL SWP button. The READY LED should illuminate and remain on.
d. Set the Channel 1 AC-GND-DC switch to DC.

NOTE

The A INTENSITY control may require adjustment to observe the single-sweep trace.
e. CHECK—READY LED goes out and a single sweep occurs.
f. Press in the SGL SWP button several times.
g. CHECK—Single-sweep trace occurs, and the READY LED illuminates briefly every time the SGL SWP button is pressed in and released.
h. Disconnect the test equipment from the instrument.

9. Check Acquisition Window Trigger Point

a. Set:

A TRIGGER Mode	P-P AUTO
1K/4K	4K (button out)
PRETRIG/POST TRIG	POST TRIG (button out)
WAVEFORM REFERENCE/	MENU SELECT
MENU SELECT	(button out)

b. Use the Menu controls to select A TRIG POS.
c. CHECK—The A TRIG POS default number is $\mathbf{5 1 2}$.
d. Press in momentarily the PRETRIG/POST TRIG switch to activate the trigger point display on the crt. Return the PRETRIG/POST TRIG switch to POST TRIG (button out).
e. CHECK—The trigger point (T) appears near the 2 nd vertical graticule line below the Menu.
f. Set the PRETRIG/POST TRIG switch to PRETRIG (button in).
g. CHECK—The A TRIG POS default number is 3584 and the trigger point (T) appears near the 9 th vertical graticule line below the Menu.
h. Set the $1 \mathrm{~K} / 4 \mathrm{~K}$ switch to 1 K (button in).
i. CHECK-The A TRIG POS default number is 896 and the trigger point (T) appears near the 9 th vertical graticule line below the Menu.
j. Set the PRETRIG/POST TRIG switch to POST TRIG (button out).
k. CHECK—The A TRIG POS default number is 128 and the trigger point (T) appears near the 2nd vertical graticule line below the Menu.
I. CHECK—The trigger point (T) can be moved between the 1st and the center vertical graticule lines as the CURSORS control is rotated.
m. Set the PRETRIG/POST TRIG switch to PRETRIG (button in).
n. CHECK-The trigger point (T) can be moved between the 10 th and the center vertical graticule lines as the CURSORS control is rotated.
o. Set the $1 \mathrm{~K} / 4 \mathrm{~K}$ switch to 4 K (button out).
p. Repeat part n for PRETRIG mode and part I for POST TRIG mode.

EXTERNAL Z-AXIS, PROBE ADJUST, EXTERNAL CLOCK, AND X-Y PLOTTER

Equipment Required (see Table 4-1):

Leveled Sine-Wave Generator (Item 2)
50Ω BNC Termination (Item 12)
Pulse Generator (Item 5)
BNC Male-to-Tip Plug (Item 17)
Two 50Ω BNC Cables (Item 8)
10X Probe (Proveded with Instrument)
BNC T-Connector (Item 11)

INITIAL CONTROL SETTINGS

Vertical	
Channel 1 POSITION	Midrange
VERTICAL MODE	CH 1
X-Y	Off (button out)
BW LIMIT	Off (button out)
CH 1 VOLTS/DIV	1 V
CH 1 VOLTS/DIV Variable	CAL detent
Channel 1 AC-GND-DC	DC
Horizontal	
POSITION	Midrange
HORIZONTAL MODE	A
A SEC/DIV	$20 \mu \mathrm{~S}$
SEC/DIV Variable	CAL detent
X10 Magnifier	Off (knob in)
A TRIGGER	
VAR HOLDOFF	NORM
Mode	P-P AUTO
SLOPE	OUT
LEVEL	Midrange
HF REJECT	OFF
A\&B INT	VERT MODE
A SOURCE	INT
Storage	
STORE/NON STORE	NON STORE (button out)
SAVE/CONTINUE	CONTINUE (button out)
PRETRIG/POST TRIG	POST TRIG (button out)
ROLL/SCAN	SCAN (button out)
1K/4K	4K (button out)
POSITION CURS/ SELECT WAVEFORM	POSITION CURS (button in)
WAVEFORM	WAVEFORM
REFERENCE/	REFERENCE
MENU SELECT	(button in)

PROCEDURE STEPS

1. Check External Z-Axis Operation

a. Connect the leveled sine-wave generator output via a 50Ω cable and a T-connector to the CH 1 OR X input connector. Then connect a 50Ω cable and a 50Ω termination from the T-connector to the EXT Z AXIS INPUT connector on the rear panel.
b. Set the generator to produce a $5 \mathrm{~V}, 50 \mathrm{kHz}$ signal.
c. CHECK-For noticeable intensity modulation. The positive part of the sine wave should be of lower intensity than the negative part.
d. Disconnect the test equipment from the instrument.

2. Check Probe Adjust Operation

a. Set:

CH 1 VOLTS/DIV	10 mV
A SEC/DIV	0.5 ms

b. Connect the 10 X Probe to the CH 1 OR X input connector and insert the probe tip into the PROBE ADJUST jack on the instrument front panel. If necessary, adjust the probe compensation for a flat-topped squarewave display.
c. CHECK——Display amplitude is 4.75 to 5.25 divisions.
d. Disconnect the probe from the instrument.

3. Check External Clock

a. Set:

CH 1 VOLTS/DIV	1 V
X-Y	Off (button out)
A SEC/DIV	1 ms

b. Connect the pulse generator high-amplitude output via a 50Ω cable and a 50Ω termination to the CH 1 OR X input connector.
c. Set the generator to produce a $1 \mathrm{kHz}, 5$-division display.
d. Disconnect the cable from the CH 1 OR X input connector and connect it to the BNC male-to-tip plug via BNC female-to-BNC-female connector.
e. Insert the BNC male-to-tip plug signal lead and ground lead into pin 1 and pin 9 respectively of the $X-Y$ Plotter connector.
f. Set the A SEC/DIV switch to 0.1 sec .
g. Connect the calibration generator high-amplitude output via a 50Ω cable and a 50Ω termination to CH 1 OR X input connector.
h. Set the generator to produce a $100 \mathrm{~Hz}, 5$-division display.
i. Set:

A SEC/DIV
EXT CLK
STORE/NON STORE
SAVE/CONTINUE
STORE (button in)
CONTINUE (button out)
j. CHECK-The 100 Hz signal is displayed on the screen and updated.
k. Set the SAVE/CONT!NUE switch to SAVE (button in).
I. CHECK - The display is saved.
m . Disconnect the test equipment from the instrument.

4. Check X-Y Plotter

a. Connect the digital voltmeter low lead to either chassis ground or pin 9 (signal ground) of the X-Y Plotter connector. Connect the volts lead to pin 3 (X Output) of the X-Y Plotter connector.
b. Set the digital voltmeter to the 20 V scale.
c. Set the WAVEFORM REFERENCE/MENU SELECT switch to MENU SELECT (button out).
d. Use the Menu controls to select PLOT and then ON for GRATICULE.
e. Press in momentarily the CURSORS button to activate the X-Y Plotter.

NOTE

Voltage reading of the X Output will be negative left of the center vertical graticule line and positive to the right of the center vertical graticule line. Voltage reading of the Y Output will be negative below the center horizontal graticule line and positive above the center horizontal graticule line.
f. Record the voltage reading as the instrument plots the 1st and the 10th graticule line (as the intensity spot moves along the graticule line).
g. CHECK-The voltage difference between the 1st and 10 th graticule line is between 4.5 V and 5.5 V .
h. Move the volts lead of the voltmeter from pin 3 (X Output) to pin 5 (Y Output) of the X-Y Plotter connector.
i. Press in momentarily the CURSORS button to activate the X-Y Plotter.
j. Record the voltage reading as the instrument plots the top and the bottom graticule line (as the intensity spot moves along the graticule line).
k. CHECK-The voltage difference between the top and bottom graticule lines is between 3.6 V and 4.4 V .
I. Disconnect the test equipment from the instrument.

MAINTENANCE

This section contains information for conducting preventive maintenance, troubleshooting, and corrective maintenance on the instrument. Circuit board removal procedures are included in the corrective maintenance part of this section.

STATIC-SENSITIVE COMPONENTS

The following precautions are applicable when performing any maintenance involving internal access to the instrument.

Static discharge can damage any semiconductor component in this instrument.

This instrument contains electrical components that are susceptible to damage from static discharge. Table 6-1 lists the relative susceptibility of various classes of semiconductors. Static voltages of 1 kV to 30 kV are common in unprotected environments.

When performing maintenance, observe the following precautions to avoid component damage:

1. Minimize handling of static-sensitive components.
2. Transport and store static-sensitive components or assemblies in their original containers or on a metal rail. Label any package that contains static-sensitive components or assemblies.
3. Discharge the static voltage from your body by wearing a grounded antistatic wrist strap while handling these components. Servicing static-sensitive components or assemblies should be performed only at a static-free work station by qualified service personnel.
4. Nothing capable of generating or holding a static charge should be allowed on the work station surface.
5. Keep the component leads shorted together whenever possible.
6. Pick up components by their bodies, never by their leads.

Table 6-1
Relative Susceptibility to
Static-Discharge Damage

Semiconductor Classes	Relative Susceptibility Levels ${ }^{\text {a }}$
MOS or CMOS microcircuits or discretes, or linear microcircuits with MOS inputs (Most Sensitive)	
ECL	1
Schottky signal diodes	2
Schottky TTL	3
High-frequency bipolar transistors	4
JFETs	5
Linear microcircuits	6
Low-power Schottky TTL	7
TTL	8

${ }^{a}$ Voltage equivalent for levels (voltage discharged from a 100 pF capacitor through a resistance of $\mathbf{1 0 0} \mathbf{~ o h m s}$):

$1=100$ to $500 \vee$	$4=500 \vee$	$7=400$ to $1000 \vee$ (est)
$2=200$ to $500 \vee$	$5=400$ to $600 \vee$	$8=900 \vee$
$3=250 \vee$	$6=600$ to $800 \vee$	$9=1200 \vee$

7. Do not slide the components over any surface.
8. Avoid handling components in areas that have a floor or work-surface covering capable of generating a static charge.
9. Use a soldering iron that is connected to earth ground.
10. Use only approved antistatic, vacuum-type desoldering tools for component removal.

PREVENTIVE MAINTENANCE

INTRODUCTION

Preventive maintenance consists of cleaning, visual inspection, and checking instrument performance. When performed regularly, it may prevent instrument malfunction and enhance instrument reliability. The severity of the environment in which the instrument is used determines the required frequency of maintenance. An appropriate time to accomplish preventive maintenance is just before instrument adjustment.

GENERAL CARE

The cabinet minimizes accumulation of dust inside the instrument and should normally be in place when operating the oscilloscope. The front cover supplied with the instrument provides both dust and damage protection for the front panel and crt. The front cover should be on whenever the instrument is stored or is being transported.

INSPECTION AND CLEANING

The instrument should be visually inspected and cleaned as often as operating conditions require. Accumulation of dirt in the instrument can cause overheating and component breakdown. Dirt on components acts as an insulating blanket, preventing efficient heat dissipation. It also provides an electrical conduction path that could result in instrument failure, especially under high-humidity conditions.

caution
 cnamanans

Avoid the use of chemical cleaning agents which might damage the plastics used in this instrument. Use a nonresidue-type cleaner, preferably isopropyl alcohol or a solution of 1% mild detergent with 99% water. Before using any other type of cleaner, consult your Tektronix Service Center or representative.

Exterior

INSPECTION. Inspect the external portions of the instrument for damage, wear, and missing parts; use

Table 6-2 as a guide. Instruments that appear to have been dropped or otherwise abused should be checked thoroughly to verify correct operation and performance. Deficiencies found that could cause personal injury or could lead to further damage to the instrument should be repaired immediately.

To prevent getting moisture inside the instrument during external cleaning, use only enough liquid to dampen the cloth or applicator.

CLEANING. Loose dust on the outside of the instrument can be removed with a soft cloth or small soft-bristle brush. The brush is particularly useful for dislodging dirt on and around the controls and connectors. Dirt that remains can be removed with a soft cloth dampened in a mild detergent-and-water solution. Do not use abrasive cleaners.

A plastic light filter is provided with the oscilloscope. Clean the light filter and the crt face with a soft lint-free cloth dampened with either isopropyl alcohol or a mild detergent-and-water solution.

Interior

To gain access to internal portions of the instrument for inspection and cleaning, refer to the "Removal and Replacement Instructions" in the "Corrective Maintenance' part of this section.

INSPECTION. Inspect the internal portions of the instrument for damage and wear, using Table 6-3 as a guide. Deficiencies found should be repaired immediately. The corrective procedure for most visible defects is obvious; however, particular care must be taken if heat-damaged components are found. Overheating usually indicates other trouble in the instrument; therefore, it is important that the cause of overheating be corrected to prevent recurrence of the damage.

Table 6-2
External Inspection Check List

Item	Inspect For	Repair Action
Cabinet, Front Panel, and Cover	Cracks, scratches, deformations, damaged hardware or gaskets.	Touch up paint scratches and replace defective components.
Front-panel Controls	Missing, damaged, or loose knobs, buttons, and controls.	Repair or replace missing or defective items.
Connectors	Broken shells, cracked insulation, and deformed contacts. Dirt in connectors.	Replace defective parts. Clean or wash out dirt.
Carrying Handle	Correct operation.	Replace defective parts.
Accessories	Missing items or parts of items, bent pins, broken or frayed cables, and damaged con- nectors.	Replace damaged or missing items, frayed cables, and defective parts.

Table 6-3
Internal Inspection Checklist

Item	Inspect For	Repair Action
Circuit Boards	$\begin{array}{l}\text { Loose, broken, or corroded solder connec- } \\ \text { tions. Burned circuit boards. Burned, bro- } \\ \text { ken, or cracked circuit-run plating. }\end{array}$	$\begin{array}{l}\text { Clean solder corrosion with an eraser and } \\ \text { flush with isopropyl alcohol. Resoider defec- } \\ \text { tive connections. Determine cause of } \\ \text { burned items and repair. Repair defective } \\ \text { circuit runs. }\end{array}$
Resistors	Burned, cracked, broken, blistered.	$\begin{array}{l}\text { Replace defective resistors. Check for } \\ \text { cause of burned component and repair as } \\ \text { necessary. }\end{array}$
Solder Connections	Cold solder or rosin joints.	$\begin{array}{l}\text { Resolder joint and clean with isopropyl } \\ \text { alcohol. }\end{array}$
Capacitors	$\begin{array}{l}\text { Damaged or leaking cases. Corroded solder } \\ \text { on leads or terminals. }\end{array}$	$\begin{array}{l}\text { Replace defective capacitors. Clean solder } \\ \text { connections and flush with isopropyl } \\ \text { alcohol. }\end{array}$
Semiconductors	Loosely inserted in sockets. Distorted pins.	$\begin{array}{l}\text { Firmly seat loose semiconductors. Remove } \\ \text { devices having distorted pins. Carefully } \\ \text { straighten pins (as required to fit the } \\ \text { socket), using long-nose pliers, and reinsert }\end{array}$
firmly. Ensure that straightening action does		
not crack pins, causing them to break off.		

If any electrical component is replaced, conduct a Performance Check for the affected circuit and for other closely related circuits (see Section 4). If repair or replacement work is done on any of the power supplies, conduct a complete Performance Check and, if so indicated, an instrument readjustment (see Sections 4 and 5).

To prevent damage from electrical arcing, ensure that circuit boards and components are dry before applying power to the instrument.

CLEANING. To clean the interior, blow off dust with dry, low-pressure air (approximately 9 psi). Remove any remaining dust with a soft brush or a cloth dampened with a solution of mild detergent and water. A cotton-tipped applicator is useful for cleaning in narrow spaces and on circuit boards. If these methods do not remove all the dust or dirt, the instrument may be spray washed using a solution of 5% mild detergent and 95% water as follows:

1. Gain access to the parts to be cleaned by removing easily accessible shields and panels (see "Removal and Replacement Instructions').
2. Spray wash dirty parts with the detergent-and-water solution; then use clean water to thoroughly rinse them.
3. Dry all parts with low-pressure air.
4. Dry all components and assemblies in an over or drying compartment using low-temperature $\left(125^{\circ} \mathrm{F}\right.$ to $150^{\circ} \mathrm{F}$) circulating air.

SWITCH CONTACTS. The VOLTS/DIV and SEC/DIV switches are mounted on circuit boards within the instrument. Care must be exercised to preserve the highfrequency characteristics of these switches. Switch maintenance is seldom necessary, but if required, use this procedure.

1. Cam-activated VOLTS/DIV Attenuator switches.

Most spray-type circuit coolants contain Freon 12 as a propellant. Because many Freons adversely affect switch contacts, do not use spray-type coolants on the switches or attenuators.

The only recommended circuit coolants for the VOLT/DIV attenuators are dry ice $\left(\mathrm{CO}_{2}\right)$ and isopropyl alcohol.
a. Use only isopropyl alcohol as a cleaning agent for switches, especially in the area of the Vertical Attenuator circuit board. Carbon based solvents will damage the board material.
b. Apply the alcohol with a small, camel-hair brush. Do not use cotton tipped applicators as the cotton tends to snag and possibly damage the switch contacts.
2. Rotary-activated SEC/DIV switch contacts.

Use only deionized or distilled water at about $55^{\circ} \mathrm{C}$ ($131^{\circ} \mathrm{F}$) to clean the SEC/DIV timing switch. Tap water contains impurities that remain as residual deposits after evaporation.
a. Spray hot water into the slots at the top of each switch housing while rotating the switch control knob. Use an atomizing spray device, and spray for only about five seconds.
b. Dry the switch and circuit board on which it is mounted with dry low-pressure air.
c. Bake the switch and circuit board in an oven or drying compartment using dry circulating air at about $75^{\circ} \mathrm{C}$ $\left(167^{\circ} \mathrm{F}\right)$ for 15 minutes.
d. After drying, spray a very small amount of a recommended lubricant, such as No-Noise R, into the slots at the top of the switch housing. One short squirt from a spray-type dispenser is sufficient. (Do not over lubricate.)
e. Rotate the switch control knob 180 degrees, and again spray a very small amount of lubricant into each slot. Wipe off any excess lubricant from the switch body.

LUBRICATION

Most of the potentiometers used in this instrument are permanently sealed and generally do not require periodic lubrication. All switches, both rotary- and lever-type, are installed with proper lubrication applied where necessary and will rarely require any additional lubrication. A regular periodic lubrication program for the instrument is therefore, not recommended.

SEMICONDUCTOR CHECKS

Periodic checks of the transistors and other semiconductors in the oscilloscope are not recommended. The best check of semiconductor performance is actual operation in the instrument.

PERIODIC READJUSTMENT

To ensure accurate measurements, check the performance of this instrument every 2000 hours of operation, or if used infrequently, once each year. In addition, replacement of components may necessitate readjustment of the affected circuits.

Complete Performance Check and Adjustment instructions are given in Sections 4 and 5. The Performance Check Procedure can also be helpful in localizing certain troubles in the instrument. In some cases, minor problems may be revealed or corrected by readjustment. If only a partial adjustment is performed, see the interaction chart, Table 5-1, for possible adjustment interaction with other circuits.

TROUBLESHOOTING

INTRODUCTION

Preventive maintenance performed on a regular basis should reveal most potential problems before an instrument malfunctions. However, should troubleshooting be required, the following information is provided to facilitate location of a fault. In addition, the material presented in the "Theory of Operation" and "Diagrams" sections of this manual may be helpful while troubleshooting.

TROUBLESHOOTING AIDS

Diagnostic Firmware

The operating firmware in this instrument contains diagnostic routines that aid in locating malfunctions of the digital storage portions of the instrument. When instrument power is applied, power-up kernel tests are performed to verify proper operation of the instrument's microprocessor, RAM and ROM. If a failure is detected, this information is passed on to the operator, if possible. The failure information directs the operator to the failing block of memory. If the failure is such that the processor can still execute the diagnostic routines, the user can call up specific tests to further check the failing circuitry. The specific diagnostic routines are explained later in this section.

Schematic Diagrams

Complete schematic diagrams are located on tabbed foldout pages in the "Diagrams" section. Portions of circuitry mounted on each circuit board are enclosed by heavy black lines. The assembly number and name of the circuit are shown near either the top or the bottom edge of the enclosed area.

Functional blocks on schematic diagrams are outlined with a wide grey line. Components within the outlined area perform the function designated by the block label. The "Theory of Operation" uses these functional block names when describing circuit operation as an aid in crossreferencing between the theory and the schematic diagrams.

Component numbers and electrical values of components in this instrument are shown on the schematic diagrams. Refer to the first page of the "Diagrams" section for the reference designators and symbols used to identify components. Important voltages and waveform reference numbers (enclosed in hexagonal-shaped boxes) are also shown on each diagram. Waveform illustrations are located adjacent to their respective schematic diagram.

Circuit Board Illustrations

Circuit board illustrations showing the physical location of each component are provided for use in conjunction with each schematic diagram. Each board illustration is found in the "Diagrams" section on the back of a foldout page, preceding the first schematic diagram(s) to which it relates.

The locations of waveform test points are marked on the circuit board illustrations with hexagonal outlined numbers corresponding to the waveform numbers on both the schematic diagram and the waveform illustrations.

Also provided in the "Diagrams" section is an illustration of the bottom side of the Main circuit board. This illustration aids in troubleshooting by showing the connection pads for the components mounted on the top side of the circuit board. By using this illustration, circuit tracing and probing for voltages and signals that are inaccessible from the top side of the board may be achieved without dismantling portions of the instrument.

Circuit Board Locations

The placement of each circuit board in the instrument is shown in board locator illustrations. These illustrations are located on foldout pages along with the circuit board illustration.

Circuit Board Interconnections

A circuit board interconnection diagram is provided in the "Diagrams" section to aid in tracing a signal path or power source between boards. All wire, plug, and jack numbers are shown along with their associated wire or pin numbers.

Power Distribution

Power Distribution diagrams (diagrams 10, 11, and 21) are provided to aid in troubleshooting power supply problems. This diagram shows the service jumper connections used to apply power to the various circuit boards. Excessive loading on a power supply by a circuit board fault may be isolated by disconnecting the appropriate service jumpers.

Grid Coordinate System

Each schematic diagram and circuit board illustration has a grid border along its left and top edges. A table located adjacent to each diagram lists the grid coordinates of each component shown on that diagram. To aid in physically locating components on the circuit board, this table also lists the grid coordinates of each component on the circuit board illustration.

Near each circuit board illustration is an alphanumeric listing of all components mounted on that board. The second column in each listing identifies the schematic diagram in which each component can be found. These component-locator tables are especially useful when more than one schematic diagram is associated with a particular circuit board.

Component Color Coding

Information regarding color codes and markings of resistors and capacitors is located on the color-coding illustration (Figure 9-1) at the beginning of the "Diagrams" section.

RESISTOR COLOR CODE. Resistors used in this instrument are carbon-film, composition, or precision metal-film types. They are usually color coded with the EIA color code; however, some metal-film type resistors may have the value printed on the body. The color code is interpreted starting with the stripe nearest to one end of the resistor. Composition resistors have four stripes; these represent two significant digits, a multiplier, and a tolerance value. Metal-film resistors have five stripes representing three significant digits, a multiplier, and a tolerance value.

CAPACITOR MARKINGS. Capacitance values of common disc capacitors and small electrolytics are marked on the side of the capacitor body. White ceramic capacitors are color coded in picofarads, using a modified EIA code.

Dipped tantalum capacitors are color coded in microfarads. The color dot indicates both the positive lead and the voltage rating. Since these capacitors are easily destroyed by reversed or excessive voltage, be careful to observe the polarity and voltage rating when replacing them.

DIODE COLOR CODE. The cathode end of each glassencased diode is indicated by either a stripe, a series of stripes or a dot. For most diodes marked with a series of stripes, the color combination of the stripes identifies three digits of the Tektronix Part Number, using the resistor color-code system. The cathode and anode ends of a metal-encased diode may be identified by the diode symbol marked on its body.

Semiconductor Lead Configurations

Figure 9-2 in the "Diagrams" section shows the lead configurations for semiconductor devices used in the instrument. These lead configurations and case styles are typical of those used at completion of the instrument design. Vendor changes and performance improvement
changes may result in changes of case styles or lead configurations. If the device in question does not appear to match the configuration shown in Figure 9-2, examine the associated circuitry or consult the manufacturer's data sheet.

Multipin Connectors

Multipin connector orientation is indexed by two triangles; one on the holder and one on the circuit board. Slot numbers are usually molded into the holder. When a connection is made to circuit board pins, ensure that the index on the holder is aligned with the index on the circuit board (see Figure 6-1).

Storage Board Latch

WARNING

Turn off POWER switch before placing the Storage circuit board in Servicing Position.

While servicing the interior of the instrument, the Storage circuit board may be latched in the Servicing Position. See the "Storage Circuit Board in Servicing Position" in the "Removal and Replacement Instructions' part of this section. The two signal leads of the four-wire connectors P2111 and P2112 need to be grounded when disconnected from the Storage circuit board. Grounding the signal leads of P2111 and P2112 permits the VERTICAL POSITION controls to work properly.

Figure 6-1. Multi-connector holder orientation.

The center signal leads may be connected to the outside ground leads of P2111 and P2112 by using four 1 -inch long number 22 tinned copper wires (two wires for each connector). Bend the wires in a U-shape and insert the wires between pins 1 and 2, and between pins 3 and 4 of the connectors (see Figure 6-2).

Analog Isolation

The digital portion of the instrument may be isolated from the analog portion of the instrument. Use of this procedure enables disabling and isolation of the digital portion of the instrument while permitting troubleshooting on the analog portion.

1. Disconnect connectors P6110, P6120, and P6130 from the right edge of the Input/Output board (A11A1).
2. Disconnect connectors P6410 and P6420 from the right edge of the Vector Generator board (A11A2).

Figure 6-2. Grounding the signal lines of P2111 and P2112.
3. Disconnect connector P6421 from the Sweep Interface board (A13).
4. Disconnect connector P9010 from the middle right edge of the Main board (A1).
5. Latch Storage circuit board in the servicing position (see "Storage Circuit Board in the Servicing Position" in the "Removal and Replacement Instructions" part of this section.
6. Ground the two signal leads (pins 2 and 3) of fourwire connectors P2111 and P2112 (see preceding "Storage Board Latch" part of this section).
7. Disconnect connector P9410 from the Sweep Reference board (A16).
8. Connect together pins 2 and 4 of J 9410.
9. Disconnect connector P4220 from the middle right side of the Alternate Sweep board (A5).
10. Disconnect connector P4210 from the middle right half of the Main board (A1).
11. Disconnect connector P9050 from the middle of the Main board (A1).
12. Disconnect connector P9060 from the middle of the Main board (A1).
13. Disconnect connector P9320 from the front of the Main board (A1).
14. Disconnect connector P9301 (P8100 if the instrument contains Option 10 or Option 12) from the middle left corner of the X / Y Plotter board.

Kernel Isolation

The Kernel (Microprocessor, Clock, and Address Latch) may be isolated from the rest of the circuitry. The Kernel can then be troubleshot. When the Kernel is functional, the power-up diagnostics may be used to further troubleshoot the digital circuitry. Isolate the Kernel by:

1. Removing P9105A.
2. Moving P9105B to its TEST position.
3. Moving P9105C to its TEST position.
4. Moving P9105D to its TEST position.

Figure 6-3 shows the isolated Kernel timing diagrams. After the Kernel is repaired, restore normal operation by using the reverse of the preceding procedure.

Switch Interface Voltages

Voltages generated by the interface to front-panel switches may be used to troubleshoot the instrument. Timing switch interface voltages are shown in Table 6-4. VERTICAL VOLTS/DIV switch interface voltages are shown in Table 6-5. Interface voltages for the AC GND DC switches are shown in Table 6-6.

Figure 6-3. Isolated kernel timing.

ع1O） $01-$	001＇G Of ESL゙も	001．g of L6S＇t	$\wedge 0$	$\wedge 0$	00L＇S ot L6S＇b	$\mathrm{SH}^{\prime \prime} \mathrm{SO} 0$
とし of 01－			$\wedge 0$	$\wedge 0$	てt＜＇$¢$ Ot 91L＇Z	st ${ }^{\prime} \cdot 0$
ع！ $0 \downarrow 01-$	こSL゙ャ O＋L L	001＇S of 169＇${ }^{\circ}$	$\wedge 0$	$\wedge 0$	06S＇ャ Ot \＆ャL＇	stro
ع＇1 Of 01－	$\angle \triangleright S^{\prime} 1$ O＋$\varepsilon 19^{\circ} 0$	001＇S Of L6s＇${ }^{\text {b }}$	$\wedge 0$	$\wedge 0$	SLL＇Z Ot LSI＇t	$\mathrm{s}^{\text {r }} \mathrm{s} 0$
どロO） 0 －	2L9＇0 Ot 00で0－	801．L Of OSE＊O－	$\wedge 0$	$\wedge 0$	001＇S Of L6S＇t	$\mathrm{SH}^{\boldsymbol{H}} 1$
ع＇ $0+0$－	609 ${ }^{\circ}$ O＋ $8 \mathrm{tS} \mathrm{S}^{\prime}$	S上ぐて Of 601＇1	$\wedge 0$	$\wedge 0$	001＇s of 16G＇t	$\mathrm{s}^{+1} \mathrm{Z}$
ع！Of 0．-	$9 \vdash S^{\circ} \varepsilon$ 아 OLS＇Z	0019 Of L6S＇t	$\wedge 0$	$\wedge 0$	OG1．し Ot OSZで0－	$\mathrm{str}^{\text {r }}$
て¢ 아 ¢		001＇S of L6s＇${ }^{\circ}$	$\wedge 0$	$\wedge \mathrm{S}$		$\mathrm{s}^{\mathrm{H}} \mathrm{OL}$
て＇ع $\circ+\frac{1}{}$	こSL゙ャ O＋LZでゅ	00L＇S of L6S＇t	$\wedge 0$	$\wedge \mathrm{S}$	06S＇ャ 아 عtL＇	$\mathrm{s}^{+1} 02$
て¢ $0+1$	$\angle \triangleright S^{*} 1$ Ot E190	001＇s of L6S＇t	$\wedge 0$	$\wedge \mathrm{G}$	SLLて Ot LGI＇	$5^{+1} 09$
	2190 $0100 \mathrm{Cl}^{\circ} \mathrm{O}$	801．1 아 O980－	$\wedge 0$	$\wedge \mathrm{S}$	001． Of 16S＇t	sul＇0
でと $0+\frac{1}{}$	60G＇ C O＋8tG＇1	GLLC O 601－1	$\wedge 0$	$\wedge \mathrm{G}$	001＇g of L6S＇t	su z＇0
て＇ $0+\frac{1}{}$	$9 \downarrow S^{\prime} \varepsilon$ 아 019＇Z	001＇g of L6S＇t	$\wedge 0$	$\wedge \mathrm{G}$	OSL゙レ Ot OGZ゚O－	sum ${ }^{\text {co }}$
0 ¢ Of て＇	9てZ＇ャ 아 $\angle \triangleright S^{\circ} \mathrm{E}$	0019 of l6s＇	$\wedge S$	$\wedge 0$	てヤL＇ 아 91L＇Z	sul
0 ¢ Ot $て$ ¢	ZSL゙七 O＋LZでゅ	001＇g of L6s＇t	$\wedge \mathrm{G}$	$\wedge 0$		sw 乙
0 ¢ 0	$\angle \triangleright G^{\prime} \cdot$ O＋ع 190	0019 of L6s＇${ }^{\circ}$	$\wedge G$	$\wedge 0$	SLL゙て O＋LSL•	sus
0 G O＋乙－	2190 O O OOZO－	801．1 아 OSE ${ }^{-}$	$\wedge \mathrm{G}$	$\wedge 0$	001＇g of L6S＇t	sm OL
OG Of て＇	$60 S^{\prime} \mathrm{Z}$ 아 87G＇	SLL＇Z Of 601－1	$\wedge S$	$\wedge 0$	001．g of L6s＇t	smoz
	$9 ャ S^{\prime} \varepsilon$ 아 OLS＇Z	001．9 아 L6S＇t	$\wedge S$	$\wedge 0$	OSF－아 OSZ ${ }^{-}$	sm 0 S
0 S Of Z ＇ε	$97 S^{\prime} \varepsilon$ Of OLS ${ }^{\text {c }}$	でL゙と 아 91ぐZ	$\wedge \mathrm{G}$	$\wedge 0$	001＇S Ot L6S＇も	S 10
0＇9 of て＇${ }^{\text {c }}$	$9 t S^{\prime} \varepsilon$ 아 01S＇乙	065＊ 아 てもぐと	$\wedge \mathrm{G}$	$\wedge 0$	001＇S Of L6s＇t	s 20
0 ¢ Of $て$ ¢	$9 \downarrow S^{\prime} \varepsilon$ 아 OLS ${ }^{\text {c }}$	OOL＇S Of L6S＇も	$\wedge G$	$\wedge 0$	00L＇g of L6＇t	s Go
$0 ¢ \mathrm{G}$ Of $\chi^{\prime} \varepsilon$	$9 t S^{\circ} \varepsilon$ 아 OLS ${ }^{\text {c }}$		$\wedge G$	$\wedge S$	00L＇S of L6S＇t	$\begin{aligned} & \text { Yาכ } \\ & \text { 1Xヨ } \end{aligned}$
```#uld Lてъ9「 Sd\forallO G```	a6uey    ¢ u！d เ乙ъ9「 S34 8	e6uey abeton   1 u！L Lてt9 ZS3y甘	$\begin{aligned} & \text { 乙 u!d } \\ & \text { ع̌เ9M } \\ & \text { Zכナ } \end{aligned}$	$\begin{aligned} & 1 \text { u!d } \\ & \varepsilon ट เ 9 M \\ & \text { LפV } \end{aligned}$	```abuey 26ep!o^ z u!l LZゅ9「 LSヨYV```	AID」ed 035 8 pue $\forall$



Table 6-5
Vertical VOLTS/DIV Switch Interface Voltages

SWITCH   SETTING	CH1 ATN and   CH2 ATN   (J6111 pin 2 and   J6112 pin 2)
2 mV per division	2.104 to 2.340
5 mV per division	4.167 to 4.712
10 mV per division	3.199 to 3.440
20 mV per division	2.502 to 2.702
50 mV per division	0 to 2.104
0.1 V per division	2.938 to 3.199
0.2 V per division	2.340 to 2.502
0.5 V per division	4.712 to $5.000+$
1 V per division	3.731 to 4.167
2 V per division	3.440 to 3.731
5 V per division	2.702 to 2.938

Table 6-6
AC GND DC Switch Interface Voltages

Variable   VOLTS/DIV	SWITCH   POSITION	CH1 STAT and   CH2 STAT   (J6111 pin 3 and   J6112 pin 3)
OUT OF DETENT	AC	0 to 2.423
	GND	2.696 to 3.070
	DC	3.623 to 4.457
IN DETENT	AC	2.423 to 2.696
	GND	3.070 to 3.623
	DC	4.457 to $5.000+$

## TROUBLESHOOTING EQUIPMENT

The equipment listed in Table 4-1 of this manual, or equivalent equipment, may be useful when troubleshooting this instrument.

## TROUBLESHOOTING TECHNIQUES

The following procedure is arranged in an order that enables checking simple trouble possibilities before requiring more extensive troubleshooting. The first two steps use diagnostic aids inherent in the instrument's operating
firmware and will locate many circuit faults. The next four steps ensure proper control settings, connections, operation, and adjustment. If the trouble is not located by these checks, the remaining steps will aid in locating the defective component. When the defective component is located, replace it using the appropriate replacement procedure given under "Corrective Maintenance" in this section.


Before using any test equipment to make measurements on static-sensitive, current-sensitive, or voltage-sensitive components or assemblies, ensure that any voltage or current supplied by the test equipment does not exceed the limits of the component to be tested.

## 1. Power-up Tests

The instrument performs automatic verification of the instrument's Microprocessor, ROM, and RAM (the operating kernel) when power is first applied. If all Kernel tests pass, a second level of diagnostic tests are performed. The Diagnostic tests, when passed, give the user a high degree of assurance that the instrument's storage circuitry is functioning properly.

If a diagnostic test fails, the faulty circuitry is identified by a message on the crt (if the instrument is able to produce a display), and by an LED display. If a failure occurs, refer to the "Diagnostics" discussion later in this section for definitions of error messages.

## 2. Diagnostic Test Routines

Many of the diagnostic routines may be selected from the front panel to further clarify the nature of a suspected failure. The desired test is selected using the MENU. The Diagnostics are explained in the "Diagnostics" discussion later in this section.

## 3. Check Control Settings

Incorrect control settings can give a false indication of instrument malfunction. If there is any question about the correct function or operation of any control, refer to either the "Operating Information" in Section 2 of this manual or to the Operators Manual.

## 4. Check Associated Equipment

Before proceeding, ensure that any equipment used with the instrument is operating correctly. Verify that input signals are properly connected and that the interconnecting cables are not defective. Check that the ac-powersource voltage to all equipment is correct.

## 5. Visual Check

## WARNING

To avoid electrical shock, disconnect the instrument from the ac power source before making a visual inspection of the internal circuitry.

Perform a visual inspection. This check may reveal broken connections or wires, damaged components, semiconductors not firmly mounted, damaged circuit boards, or other clues to the cause of an instrument malfunction.

## 6. Check Instrument Performance and Adjustment

Check the performance of either those circuits where trouble appears to exist or the entire instrument. The apparent trouble may be the result of misadjustment. Complete performance check and adjustment instructions are given in Sections 4 and 5 of this manual.

## 7. Isolate Trouble to a Circuit

To isolate problems to a particular area, use any symptoms noticed to help locate the trouble. Refer to the "Diagnostics" discussion in this section as an aid in locating a faulty circuit.

## 8. Check Power Supplies

## WARNING

For safety reasons, an isolation transformer must be connected whenever troubleshooting is done in the Preregulator and Inverter Power Supply sections of the instrument.

When trouble symptoms appear in more that one circuit, first check the power supplies; then check the affected circuits by taking voltage and waveform readings. Check first for the correct output voltage of each individual supply. These voltages are measured between the power supply test points and ground (see the associated circuit board illustration and Table 6-7).

Voltages levels may be measured either with a DMM or with an oscilloscope. Voltage ripple amplitudes must be measured using an oscilloscope. Before checking powersupply circuitry, set the INTENSITY control to normal brightness, the $A$ and $B$ SEC/DIV switch to 0.1 ms , the HORIZONTAL MODE to B, the ON/OFF READOUT TOGGLE to display the readout, the A TRIGGER Mode to P-P AUTO, and set the VERTICAL MODE switch to CH 1.

When measuring ripple, use a 1 X probe having a bayonet ground assembly (see Table 6-7) attached to the probe tip to minimize stray pickup. Insert the bayonet assembly signal tip into the first test point indicated in Table 6-7, and touch the bayonet assembly ground tip to the chassis near the test point. The ripple values listed are based on a system limited in bandwidth to 30 kHz . Using a system with wider bandwidth will result in higher readings.

Table 6-7
Power Supply Voltage and Ripple Limits

Power   Supply	Test   Point	Reading   (Volts)	P-P   Ripple   (mV)
-8.6 V	$W 961$	-8.56 to -8.64	$<1.5$
-5.0 V	$W 9020$	-4.75 to -5.25	$<20$
+5.0 V	$W 9068$	+5.75 to +5.25	$<20$
+8.6 V	$W 960$	+8.43 to +8.77	$<8$
+30 V	$W 956$	+29.1 to +30.9	$<30$
+100 V	$W 954$	+97.0 to +103.0	$<100$

If the power-supply voltages and ripple are within the ranges listed in Table 6-7, the supply can be assumed to be working correctly. If they are outside the range, the supply may be either misadjusted or operating incorrectly. Use the "Power Supply and CRT Display" subsection in the "Adjustment" procedure to adjust the -8.6 V supply.

A defective component elsewhere in the instrument can create the appearance of a power-supply problem and may also affect the operation of other circuits.

## 9. Check Circuit Board Interconnections

After the trouble has been isolated to a particular circuit, again check for loose or broken connections, improperly seated semiconductors, and heat-damaged components.

## 10. Check Voltages and Waveforms

Often the defective component can be located by checking circuit voltages or waveforms. Typical voltages are listed on the schematic diagrams. Waveforms indicated on the schematic diagrams by hexagonal-outlined numbers are shown adjacent to the diagrams. Waveform test points are shown on the circuit board illustrations.

## NOTE

Voltages and waveforms indicated on the schematic diagrams are not absolute and may vary slightly between instruments. To establish operating conditions similar to those used to obtain these readings, see the "Voltage and Waveform Setup Conditions" preceding the waveform illustrations in the "Diagrams" section.

Note the recommended test equipment, front-panel control settings, voltage and waveform conditions, and cableconnection instructions. Any special control settings required to obtain a given waveform are noted under the waveform illustration. Changes to the control settings from the initial setup, other than those noted, are not required.

## 11. Check Individual Components

## WARNING

To avoid electric shock, always disconnect the instrument from the ac power source before removing or replacing components.

The following procedures describe methods of checking individual components. Two-lead components that are soldered in place are most accurately checked by first disconnecting one end from the circuit board. This isolates the measurement from the effects of the surrounding circuitry. See Figure 9-1 for component value identification and Figure 9-2 for semiconductor lead configurations.


When checking semiconductors, observe the staticsensitivity precautions located at the beginning of this section.

TRANSISTORS. A good check of a transistor is actual performance under operating conditions. A transistor can most effectively be checked by substituting a known-good component. However, be sure that circuit conditions are not such that a replacement transistor might also be damaged. If substitute transistors are not available, use a dynamic-type transistor checker for testing. Static-type transistor checkers are not recommended, since they do not check operation under simulated operating conditions.

When troubleshooting transistors in the circuit with a voltmeter, measure both the emitter-to-base and emitter-to-collector voltages to determine whether they are consistent with normal circuit voltages. Voltages across a transistor may vary with the type of device and its circuit function.

Some of these voltages are predictable. The emitter-tobase voltage for a conducting silicon transistor will normally range from 0.6 V to 0.8 V . The emitter-to-collector voltage for a saturated transistor is about 0.2 V . Because these values are small, the best way to check them is by connecting a sensitive voltmeter across the junction rather that comparing two voltages taken with respect to ground. If the former method is used, both leads of the voltmeter must be isolated from ground.

If voltage values measured are less that those just given, either the device is shorted or no current is flowing in the external circuit. If values exceed the emitter-to-base values given, either the junction is reverse biased or the device is defective. Voltages exceeding those given for typical emitter-to-collector values could indicate either a nonsaturated device operating normally or a defective (open-circuited) transistor. If the device is conducting, voltage will be developed across the resistors in series with it; if open, no voltage will be developed across the resistors unless current is being supplied by a parallel path.

## CAUTION

When checking emitter-to-base junctions, do not use an ohmmeter range that has a high internal current. High current may damage the transistor. Reverse biasing the emitter-to-base junction with a high current may degrade the current-transfer ratio (Beta) of the transistor.

A transistor emitter-to-base junction also can be checked for an open or shorted condition by measuring the resistance between terminals with an ohmmeter set to a range having a low internal source current, such as the $\mathrm{R} \times 1 \mathrm{k} \Omega$ range. The junction resistance should be very high in one direction and much lower when the meter leads are reversed.

When troubleshooting a field-effect transistor (FET), the voltage across its elements can be checked in the same manner as previously described for other transistors. However, remember that in the normal depletion mode of operation, the gate-to-source junction is reverse biased; in the enhanced mode, the junction is forward biased.

INTEGRATED CIRCUITS. An integrated circuit (IC) can be checked with a voltmeter, test oscilloscope, or by direct substitution. A good understanding of circuit operation is essential when troubleshooting a circuit having IC components. Use care when checking voltages and waveforms around the IC so that adjacent leads are not shorted together. An IC test clip provides a convenient means of clipping a test probe to an IC.

When checking a diode, do not use an ohmmeter scale that has a high internal current. High current may damage a diode. Checks on diodes can be performed in much the same manner as those on transistor emitter-to-base junctions. Do not check tunnel diodes or back diodes with an ohmmeter; use a dynamic tester, such as the TEKTRONIX 576 Curve Tracer.

DIODES. A diode can be checked for either an open or a shorted condition by measuring the resistance between terminals with an ohmmeter set to a range having a low internal source current, such as the R $\times 1 \mathrm{k} \Omega$ range. The diode resistance should be very high in one direction and much lower when the meter leads are reversed.

Silicon diodes should have 0.6 V to 0.8 V across their junctions when conducting; Schottky diodes about 0.2 V to 0.4 V . Higher readings indicate that they are either reverse biased or defective, depending on polarity.

RESISTORS. Check resistors with an ohmmeter. Refer to the "Replaceable Electrical Parts" list for the tolerances of resistors used in this instrument. A resistor normally does not require replacement unless its measured value varies widely from its specified value and tolerance.

INDUCTORS. Check for open inductors by checking continuity with an ohmmeter. Shorted or partially shorted inductors can usually be found by checking the waveform response when high-frequency signals are passed through the circuit.

CAPACITORS. A leaky or shorted capacitor can best be detected by checking resistance with an ohmmeter set to one of the highest ranges. Do not exceed the voltage rating of the capacitor. The resistance reading should be high after the capacitor is charged to the output voltage of the ohmmeter. An open capacitor can be detected with a capacitance meter or by checking whether the capacitor passes ac signals.

## 12. Repair and Adjust the Circuit

If any defective parts are located, follow the replacement procedures given under "Corrective Maintenance" in this section. After any electrical component has been replaced, the performance of that circuit and any other closely related circuit should be checked. Since the power
supplies affect all circuits, performance of the entire instrument should be checked if work has been done on the power supplies or if the power transformer has been replaced. Readjustment of the affected circuitry may be necessary. Refer to the "Performance Check" and "Adjustment Procedure," Sections 4 and 5 of this manual and to Table 5-1 (Adjustment affected by repairs).

## DIAGNOSTICS

## Introduction

A list of the instrument diagnostic tests is shown in Table 6-8. The diagnostics are run automatically during power-up and/or manually via the menu. The location in the menu of each test is shown in Figure 6-4. Only the digital storage portion of the instrument is checked. Circuitry checked, and/or used by each test is shown in Table 6-9. During a normal power-up, only the first error of each test is displayed. If the CURSORS SELECT C1/C2 button is held in during power-up (invoking extended DIAGNOSTICS) the first 15 errors from all tests are displayed. If the instrument contains the RS-232-C Option, an ASCII version of all errors found during power-up is sent to the option. In addition to displaying the errors on the crt, the errors are also displayed on U4119 (see Table 6-10). Timing for the error codes displayed on U4119 is shown in Figure 6-5. A list of all possible error messages is shown in Table 6-11.

Table 6-8
Diagnostic Messages and Tests

MESSAGEa	POWER-UP	MENU
PU : <message>	X	
MI : <message>	X	
SYS_ROM_n : <message>		$x$
SYS_RAM : <message>		X
NIB_RAM : <message>		$x$
ACQ_AB : <message>	X	X
ACQ_MEM : <message>	X	X
PRC : <message>	X	$x$
HS_ACQ : <message>	X	X
TBD <rng> : <message>	X	X
MM_ACQ : <message>	X	X
XY_ACQ : <message>	X	X
CDT : <message>	X	X
FP_A2D : <message>	X	X

[^8]Table 6-9
Circuitry Checked by Each Test and Exerciser

Test	Circuitry Checked
PU	KERNEL $=$ Y4100, U4102, U9104, U9102, U9108, U9101, U9111, U9109, U9110, U9112, U9114, U9103, U9107, and U9113
MI	KERNEL, U9200, and U9105
SYS_ROM	KERNEL, and IO_BLOCK_DECODING $=$ U9105, and U9106
SYS_RAM	KERNEL
NIB_RAM	KERNEL
ACQ_AB	KERNEL, IO_BLOCK_DECODING, U3423, U3424, U3425, U3427, U3428, and U3426
ACQ_MEM	KERNEL, IO_BLOCK_DECODING, U3423, U3424, U3425, U3427, U3428, U3426, U3418, U3419, U3421, U3422, U3417, U3416, U3420, and U3422
PRC	KERNEL, IO_BLOCK_DECODING, U4115, U4116, U4117, U4123, U4124, U4122, U4114, U4121, U4118, and U4119
HS_ACQ	KERNEL, IO_BLOCK_DECODING, PRC, ACQ_AB, ACQ_MEM, U4104, U4102, U4103, U4125, U4114, U4119, U4118, U4126, U4127, U4128, U4227, U4320, U3310, U3306, U3309, U3308, U3307, U3313, U3426, U3229, U3230, U3231, U3232, U3234, U3236, U3239, U4104, U3101, U3105, U3307, U3104, U3105, and U3308
TBD	KERNEL, IO_BLOCK_DECODING, HS_ACQ, U4107, U4108, U4109, U4110, U4111, U4112, U6106, U4105, U4103, U4127, U4113, and U4114
MM_ACQ	HS_ACQ
XY_ACQ	HS_ACQ
CDT	HS_ACQ, U4230, U4231, U4122, U4232, U4229, U4127, U4120, U4108, U3428, Q4207, Q4203, Q4204, Q4205, Rs, and Cs
FP_A2D	KERNEL, IO_BLOCK_DECODING, U6103, U6104, U6106, U6108, U6102, U6101, and R4912
CAL_PU	NMI, U9111, U9109, U9110, U9201, U9202, U9203, U9231, U9232, U9233, U9208, U3310, U6301A, U6301B, U6301C, U6303, U6304, U6305, U6306, U6307, U6308, U6401A, U6401B, U6401C, U6401D, U6401E, U6402A, U6402B, U6402C, U6402D, U6403A, and U6403D
OUT_PORTS	U3423, U3424, U3425, (U3427 U3428), U3310, U4119, U4113, and U6104

Table 6-10
U4119 Error Code Display

Test	U4119 Signal and Pin Number							
	$\begin{aligned} & \text { AD7 } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { AD6 } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { AD5 } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { AD4 } \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ADO } \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD1 } \\ & 17 \end{aligned}$	$\begin{aligned} & \text { AD2 } \\ & 18 \end{aligned}$	$\begin{aligned} & \text { AD3 } \\ & 19 \end{aligned}$
$\begin{aligned} & \text { ACQ TESTS } \\ & \text { HS } \end{aligned}$	0	0	1	0	FILL	ACQ MEM	PRC	EOR
TBD HS/2 PS/2	0	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	FILL FILL	ACQ MEM   ACQ MEM	PRC PRC	EOR   EOR
PS/5	0	1	0	1	FILL	ACQ MEM	PRC	EOR
PS/10	0	1	1	0	FILL	ACQ MEM	PRC	EOR
/10	0	1	1	1	FILL	ACQ MEM	PRC	EOR
1100	1	0	0	0	FILL	ACQ MEM	PRC	EOR
/1K	1	0	0	1	FILL	ACQ MEM	PRC	EOR
/10K	1	0	1	0	FILL	ACQ MEM	PRC	EOR
/100K	1	0	1	1	FILL	ACQ MEM	PRC	EOR
MM_ACQ	1	1	0	0	FILL	ACQ MEM	PRC	EOR
XY	1	1	0	1	FILL	ACQ MEM	PRC	EOR
CDT	1	1	1	0	DELT   UNCAL	MIN UNCAL	PRE   DETRIG	TIMEOUT
FPA/D	1	1	1	1	GND	$\begin{aligned} & \text { DELTA } \\ & \text { POT } \\ & \hline \end{aligned}$	0	timeout
MI	0	0	0	1	0	stuck $\mathrm{HI}$	NO   RESET	timeout
PU	0	0	0	0	1	1	1	1
ACQ AB	0	0	0	0	1	0	0	1
ACQ MEM 1	0	0	0	0	0	1	0	1
ACQ MEM 2	0	0	0	0	1	1	0	1
PRC	0	0	0	0	0	0	1	1

Table 6-11

## Diagnostic Messages

Access Group		Message
Power-up	Menu	
Power-up		PU : ROM/RAM/NMI : <hex_value>
Power-up		MI : line stuck high   MI : Display controller : TIMEOUT   MI : Display controller : unable to reset mi
	Menu	SYS_ROM_0 : <actual_check_sum> <> <expected_check_sum $>$ SYS_ROM_1 : <actual_check_sum> <> <expected_check_sum >
	Menu	SYS_RAM : @ <address>
	Menu	NIB_RAM : @ <address>
Power-up	Menu	ACQ_AB : read-back <actual> <> <expected> (this message may appear more than once)
Power-up	Menu	ACQ_MEM : @ <address>
Power-up	Menu	PRC : read-back <actual> <> <expected> (this message may appear more than once)
Power-up	Menu	HS_ACQ : latent END_OF_RECORD   HS_ACQ : acq_mem cntr <mem_actual> <> <mem_expected>   HS_ACQ : prc <prc_actual> <> <prc_expected>   HS_ACQ : fill @ <fill_address> : <fill_actual> <> <fill_expected>
Power-up	Menu	TBD hs/2 : latent END_OF_RECORD   TBD hs/2 : acq_mem cntr <mem_actual> <> <mem_expected>   TBD hs/2 : prc <prc_actual> <> <prc_expected>   TBD hs/2 : fill @ <fill_address> : <fill_actual> <> <fill_expected>
Power-up	Menu	TBD ps/2 : latent END_OF_RECORD   TBD ps/2 : acq_mem cntr <mem_actual> <> <mem_expected>   TBD ps/2 : prc <prc_actual> <> <prc_expected>   TBD ps/2 : fill @ <fill*ddress> : <fill_actual> <> <fill_expected>
Power-up	Menu	TBD ps/5 : latent END_OF_RECORD   TBD ps/5 : acq_mem cntr <mem_actual> <> <mem_expected>   TBD ps/5 : prc <prc_actual> <> <prc_expected>   TBD ps/5 : fill @ <fill_address> : <fill_actual> <> <fill_expected>
Power-up	Menu	TBD ps/10 : latent END_OF_RECORD   TBD ps/10 : acq_mem cntr <mem_actual> <> <mem_expected>   TBD ps/10 : prc <prc_actual> <> <prc_expected>   TBD ps/10 : fill @ <fill_address> : <fill_actual> <> <fill_expected>
Power-up	Menu	TBD /10 : latent END_OF_RECORD   TBD / 10 : acq_mem cntr <mem_actual> <> <mem_expected>   TBD / 10 : prc <prc_actual> <> <prc_expected>   TBD /10 : fill @ <fill_address> : <fill_actual> <> <fill_expected>

Table 6-11 (cont)

Acess Group		Message
Power-up	Menu	
Power-up	Menu	TBD /100 : latent END_OF_RECORD   TBD /100 : acq_mem cntr <mem_actual> <> <mem_expected>   TBD /100 : prc <prc_actual> <> <prc_expected>   TBD /100 : fill @ <fill_address> : <fill_actual> <> <fill_expected>
Power-up	Menu	TBD /1k : latent END_OF_RECORD   TBD /1k : acq_mem cntr <mem_actual> <> <mem_expected>   TBD /1k : prc <prc_actual> <> <prc_expected>   TBD /1k : fill @ <fill_address> : <fill_actual> <> <fill_expected>
Power-up	Menu	TBD /10k : latent END_OF_RECORD   TBD /10k: acq_mem cntr <mem_actual> <> <mem_expected>   TBD /10k : prc <prc_actual> <> < prc_expected>   TBD /10k : fill @ <fill_address> : <fill_actual> <> <fill_expected>
Power-up	Menu	TBD /100k : latent END_OF_RECORD   TBD /100k : acq_mem cntr <mem_actual> <> <mem_expected>   TBD /100k : prc <prc_actual> <> <prc_expected>   TBD /100k : fill @ <fill_address> : <fill_actual> <> <fill_expected>
Power-up	Menu	MM_ACQ : latent END_OF_RECORD   MM_ACQ : prc <prc_actual> <> <prc_expected>   MM_ACQ : acq_mem cntr <acq_mem_actual> <><acq_mem_expected>   MM_ACQ : fill @ <fill_address> : <fill_actual> <> <fill_expected>
Power-up	Menu	$X Y _A C Q$ : latent END_OF_RECORD   XY_ACQ : prc < prc_actual> <> <prc_expected>   XY_ACQ : acq_mem cntr <acq_mem_actual> <> <acq_mem_expected>   XY_ACQ : fill @ <fill_address> : <fill_actual><><fill_expected>
Power-up	Menu	CDT : TIMED-OUT <tb_mode_reg_pattern>   CDT : PRE_DETRIG <tb_mode_reg_pattern>   CDT : uncaled : min = <min_actual>   CDT : uncaled : delta $=$ <delta_actual>
Power-up	Menu	$\begin{aligned} & \text { FP_A2D : cursor : } \mathrm{a}=<\text { actual }>\mathrm{b}=<\text { actual }> \\ & \text { FP_A2D : gnd }=<\text { actual }><>5 \\ & \text { FP_A2D : TIME OUT } \end{aligned}$

```
 SPECIAL FUNCTIONS
DIAGNOSTICS
TESTS
ROM
 SYS_ROM_0
 SYS_ROM_0:<message>
 SYS_ROM_1
 SYS_ROM_1:<message>
 RAM
 SYSTEM
 SYS_RAM : <message>
 NIBBLE
 NIB_RAM : <message>
 \(A C Q A B\)
 ACQ_AB:<message>
 ACQ MEM
 ACQ_MEM:<message>
 SYSTEM
 ACQ AB
 ACQAB:<message>
 PRC
 PRC : <message>
 HS_ACQ
 HS_ACQ : <message>
 TBD
 TBD <range> :<message>
 MM ACQ
 MM_ACQ : < message>
 XY_ACQ : <message>
 CDT
 CDT : <message>
 FP_A2D
 FP_A2D: <message>
 OPTION
 ROM
 RAM
 10
```

Figure 6-4. Diagnostic Menu.

Information in Table 6-12 is used to set up the acquisitions used in diagnostic tests. Start Address and Post Record Start data is valid just before ACQENA goes TRUIE. Timebase Mode Register, Timebase Divider Register, and Acquisition Mode Register data is valid while ACQENA is TRUE, and causes the Timebase Divider to divide by the Real Divide Ratio. Record Length is the length of the record being acquired. RECCLK Period is the time that ACQENA is TRUE before ENDREC goes TRUE. Fill Test Start is the first value of the data being acquired. Fill Delta ( $B / C N T$ ) is the increment used to select succeeding data points from the Diagnostic Generator. Effected Sweep Speed is the sweep speed used for the acquisition.

The following sequence of events occurs during powerup:

Set up temporary interrupt vectors (single task).
Do the power-up (PU) Kernel tests (each sets a bit in a q buffer).

ROM tests (Send error codes to U4113 and U4119 once for each detected error).
RAM tests (Send error codes to U4113 and U4119 once for each detected error).

Non maskable interrupt test (Send error codes to U4113 and U4119 once for each detected error).

Initialize system (two tasks: RAM refresh and diagnostics).

If the CURSORS SELECT C1/C2 button is pressed:
Enable extended error display.
Enable RS-232-C error reporting.
If a Menu/DISPLAY ON/OFF button is pressed:
Enable RS-232-C error reporting.
Do power-up calibration/diagnostic routines:
Rotate ones in control ports (OUT_PORTS).
Display the Box without maskable interrupt support (BOX).
Run Clock Delay Timer calibration routine (CAL_CLK_DLY).

Run Store/Nonstore Position Balance
(CAL_V_POS).
Start building the power-up fault display.
Generate text about PU test results found in PU Q buffer.

Do System Diagnostic tests:
(when a failure is found, one line of text is generated for later display).

Maskable interrupt test (MI).
Acquisition memory address bus (ACQ mem access).
Acquisition memory (ACQ MEM).
Post record counter (PRC).
High speed acquisition (HS ACQ).
Time base divider (TBD).
Min/Max acquisition (MM ACQ).
$X / Y$ acquisition (XY ACQ).
Clock delay timer (CDT).
Front panel A/D converter (FP A2D).


Figure 6-5. Error code timing (U4119).

Table 6-12
Diagnostic Acquisition Values

Test	TB MOD REG U41 19	TB   DIV   REG   U41   13		Real   DIV   Ratio	REC   LEN	Start ADDR	Post   REC   Start	Fill   Text   Start	RECCLK   Period	Fill Delta (B/ CNT)	Effected SWP Speed
HS_ACQ	1E	00	85	1.	260.	0F9E	F4F	OFAO	50 ns	1.	$5 \mu \mathrm{~S}$
TBD											
hs/2	1A	00	85	2.	24.	OFFE	FDB	0000	100 ns	2.	$0 \mu \mathrm{~S}$
ps/2	15	FC	85	2.	24.	OFFE	FDB	0000	200 ns	2.	$20 \mu \mathrm{~S}$
ps/5	15	FB	85	5.	24.	OFFE	FDB	0000	500 ns	5.	$50 \mu \mathrm{~s}$
ps/10	15	F8	85	10.	24.	OFFE	FDB	0000	$1 \mu \mathrm{~s}$	10.	0.1 ms
110	15	F5	85	10.	24.	OFFE	FDB	0000	$1 \sigma$	10.	$0.2-1 \mathrm{~ms}$
/100	15	ED	85	91.	24.	OFFE	FDB	0000	$9.1 \mu \mathrm{~S}$	91.	$2-10 \mathrm{~ms}$
/1k	15	DD	85	901.	24.	OFFE	FDB	0000	$90.1 \mu \mathrm{~s}$	133.	0.02-0.1 s
/10k	15	BD	85	9001.	8.	OFFE	FEB	0000	$900.1 \mu \mathrm{~S}$	41.	0.2-1 s
/100k	15	7D	85	90001.	8.	OFFE	FEB	0000	$9000.1 \mu \mathrm{~s}$	145.	$2-5 \mathrm{~s}$
MM_ACQ	16	E4	A5	200.	32.	OFFE	FD3	0000	100 ns	199.	
										$\begin{array}{r} \text { or } \\ 255 . \end{array}$	
$X Y$ _ACQ	16	FC	8 C	2.	16.	OFFE	FE3	0000	100 ns	1.	
										or 3.	
CDT											
mın	8E	00	8A	1.	4082.	OFFE	001	n/a	50 ns	n/a	
max	8F	00	9A	1.	4082.	OFFE	001	n/a	50 ns	n/a	

If there were power-up faults:
Display the power-up faults on U4119.
Display the power-up faults on the crt without maskable interrupt support:

Until a Menu button is changed.
Start normal instrument operation.

## Diagnostic Tests

PU TEST. At power-up, this kernel test does a quick check of the instruments dynamic RAM (random access memory), ROM (read only memory), and NMI (non maskable interrupt) circuitry. If no errors are found, additional diagnostic tests are run.

If errors are found, their code is displayed (at power-up before NMI or MI go HI and before other tests are run) repeatedly, for approximately 2 sec , on U4113 and U4119 (see Table 6-13). The instrument also tries to display the errors on the crt as a four digit hexadecimal number:
PU : ROM/RAM/NMI : <hex_value>

For example: if ROM U9110, RAM U9232 and RAM U9231 fail, the instrument will:

1. Flash failure codes on U4113 and U4119:
```
PIN 12 . . . PIN 19
 0 1 0 0 0 0 1 0
 1 0 0 0 0 0 0 1
 1 0 1 0 0 1 0 1
```

2. If possible, display error message on the crt (see Figure 6-6):

## NOTE

More than one bad RAM usually means that something else is causing the problem.
MI. The maskable interrupt ( MI ) diagnostic creates and displays a single dark vector display (low resolution). Then a $\overline{\text { NTT-RST }}$ (U9105 pin 11) is issued followed by a FRAME (U9105 pin 10). The MI (INTR at U9111 pin 18) should then go TRUE until another INT-RST is generated. All other MI sources are tested inherently by normal operation. The test sequence is:

Microprocessor (CPU) : pulse INT-RST LO (U9105 pin 11, U9208 pin 10)

DSP : set INTR (U9208 pin 6) FALSE

CPU : check MI by enabling MIs (U9136 pin 8)
Generate fault message.
Pulse FRAME LO (U9105.10, U9208.7)
Enable MIs
DSP : set INTR (U9208 pin 8) TRUE
CPU : if time is too great
Generate fault messages
Disable MIs
CPU : pulse INT-RST LO (U9105 pin 11, U9208 pin 10)
DSP : set INTR (U9208 pin 6) FALSE
CPU : check MI by enabling MIs (U9103G pin 8)
Generate fault messages

A fault generates one or more of the following error messages:

MI : line stuck high
MI : Display controller : TIMEOUT
MI : Display controller : unable to reset mi

SYS_ROM_n. SYS_ROM_n checks each ROM by calculating and then comparing its checksum to what is stored in the ROM.

If an error is found, the calculated value and the value expected are displayed on the crt:

```
SYS_ROM_n : calculated_value <>> expected_value
```



Figure 6-6. PU error display.

Table 6-13
PU TEST Failure Codes

Failed   Part	U4113 and U4119 Code				Crt Failure Code   In Binary   (from pu q)
	Pins   12   19	$\begin{gathered} \text { Pins } \\ 13 \\ 18 \end{gathered}$	Pins   14   17	Pins   15   16	
ROM					
U9109 (E0000)	0	0	1	0	
U9110 (E8000)	0	1	0	0	
RAM					
U9203	0	1	0	1	
U9202	0	1	1	0	
U9233	0	1	1	1	
U9232	1	0	0	0	
U9201	1	0	0	1	
U9231	1	0	1	0	
NMI	1	0	1	1	x $\mathrm{xxx} \times \mathrm{xxx} 1 \mathrm{xxxx} \mathrm{xxxx}$

For example, if the calculated value is A4D2 and the value stored in the ROM is 23DA the following error message is displayed on the crt:
SYS_ROM_1: A4D2 <> 23DA

SYS_RAM. This test checks the system RAM. The test writes a 0xAA55 into 100 bytes of display memory. It then checks the data to make sure that the data has not changed. The test is then repeated using 0x55AA.

## NOTE

Firmware version 01 only displays the address of the bad RAM.

If an error is found, the address (greater than 0 but less than 8000) of the error, the actual data found at the address, and the data that was expected at that address are displayed on the crt:

SYS_RAM : @ <address> <actual data> <> <expected data>

For example, if the address of the bad cell is $0 \times 4000$, the data found at that address is $0 \times 0 \mathrm{~F}$, and the expected
data for that address is $0 \times 4 \mathrm{~F}$ the following error message is displayed on the crt:

$$
\text { SYS_RAM : @ } 4000 \text { OF }<>4 \text { F }
$$

NIB_RAM. This test checks the nibble RAM. The test procedure and the error message format are the same as for SYS_RAM.

ACQ_AB. This test checks the address bus of the acquisition memory. Twenty one unique patterns are written into the address counters (U3423 U3424 and U3425) and read back through the acquisition address buffers (U3427 U3428).

## NOTE

At power-up this test and all others are transient and not active at the time of the power-up failure messages.

Push the SELECT C1/C2 switch to stop pattern changes. The test loops using the pattern for the first error found. All patterns used are shown in Table 6-14.

If an error is found, the value read back and the value expected are displayed on the crt:
ACQ_AB : read-back <actual> <> <expected>

Table 6-14
Acquisition Address Bus Test Patterns

$\begin{array}{lll}  & \text { Binary } \\ \text { A12 } & \\ & \text { A1 } \end{array}$	Hexadecimal A1
000000000010	002
000000000110	006
000000001110	O0E
000000011110	01E
000000111110	03E
000001111110	07E
000011111110	OFE
000111111110	1FE
001111111110	3FE
011111111110	7FE
111111111110	FFE
111111111100	FFC
111111111000	FF8
111111110000	FFO
111111100000	FEO
111111000000	FC0
111110000000	F80
111100000000	F00
111000000000	E00
110000000000	COO
100000000000	800

For example, if the value read back is 008 and the value expected is 00 F the following error message is displayed on the crt:

$$
\text { ACQ_AB : read-back } 008<>00 F
$$

## NOTE

The outputs of the Record Counters should be about $50 \%$ duty cycle square waves of 1.1 seconds duration.

If the oscilloscope is operating in extended diagnostics mode, the error display is expanded to include all errors,
not just the first error. Also, in extended diagnostics mode the RS-232-C Option can be used to send the error reports to a terminal or computer. This enables analysis of the data for pattern recognition. For example, if bit 5 (U3424 pin 15) is shorted to ground all patterns where bit 5 should be a one will have a zero in bit position 5 and therefore fail.

ACQ_MEM. This test checks the acquisition memory and it's microprocessor interface.

## NOTE

Software version 01 always claims address 0 is bad no matter what errors are actually found.

Firmware version 01 fills the acquisition memory with a ramp and then checks to see if the values are correct. The value at each physical_address is the (physical_address$0 \times 48000$ ) mod 256 . Firmware version 02 fills the acquisition memory with a checkerboard pattern of AA55 and 55AA and checks to see if the values are correct.

The microprocessor can not reliably write to acquisition memory without clobbering the adjacent byte (the microprocessor has byte wide memory). Each acquisitionmemory device is tested separately (U3418 first and then U3419. An error message identifying a faulty address implies the faulty device via its address. An even address value implies that RAM (U3418) or transceiver (U3421) may be faulty. An odd address implies U3419 or U3422.

## NOTE

Firmware version 01 only displays the address of an error.

If an error is found the address of the error, the actual data found at the address, and the data expected at the address are displayed on the crt:

ACQ_MEM : odd @ <address> <actual data>
$<><$ expected data>
ACQ_MEM : even @ <address> <actual data> $<><$ expected data>

## NOTE

The displayed address is offset from $0 \times 40000$ (acq_mem_block) and is a 4 digit hexadecimal number between 0 and 4096.

For example, if the address of an error is 48008 , the actual data found at the address is FO, and the expected
data at that address is F4, the following error message is displayed on the crt:

$$
\text { ACQ_MEM : even@ @ } 4008 \text { F0 <> F4 }
$$

PRC. This test checks the Post Record Counter write and the B-TRIG read circuitry. Twenty four unique patterns are written into the Post Record Counter (U4115 U4116 and U4117) and read through the B Delay Timer (U4123 U4124).

The B Delay Timer is clocked by a write to the Time Base Divider register (U4114 pin 8 through U4107 pin 4), the inactive B-GATE (U4121B pin 11), and the TRGD (U4121B pin 13) signals.

Push the SELECT C1/C2 switch to stop pattern changes. The test loops using the pattern for the first error found. All patterns used are shown in Table 6-15.

## NOTE

If rec-clk is active unpredictable results occur.

If an error is found, the value read back and the value expected are displayed on the crt:
PRC : read-back <actual> <><expected>

For example, if the value read back is 008 and the value expected is 00 F the following error message is displayed on the crt:

$$
\text { PRC : read-back } 008<>00 f
$$

If the oscilloscope is operating in extended diagnostics mode, the error display is expanded to include all errors, not just the first error. Also, in extended diagnostics mode the RS-232-C Option can be used to send the error reports to a terminal or computer. This enables analysis of the data for pattern recognition. For example, if bit 5 (U4116 pin 15) is shorted to ground all patterns where bit 5 should be a one will have a zero in bit position 5 and therefore fail.

HS_ACQ. This test checks the High Speed Acquisition using a 260 byte acquisition at the fastest record speed (record clock $=$ convert clock $=20 \mathrm{MHz}=50 \mathrm{~ns}$ per byte) sampling the Diagnostic Code generators.

Table 6-15
PRC Test Patterns


## NOTE

This is the only test which absolutely origins the fill; others only test the slope of the fill.

Synchronous to NMI the Acquisition Address Counter (U3423, U3424, and U3425) is loaded with $0 \times 1000-0 \times 96$ ( $0 \times 0 \mathrm{~F} 6 \mathrm{~A}$ ) and the Post Record Counter (U4115, U4116,
and U4117) is loaded with 0xFF1 - $240+0 \times 96$ ( $0 \times$ F9F). The Time Base Divisor Register (U4113) is set to 0x00, the Acquisition Mode Register (U3310) is set to $0 \times 85$ and the Time Base Mode Register (U4119) is set to 0x1E. See Table 6-12 for more acquisition data.

To start the acquisition a $0 \times 10$ is ORed into the Time Base Mode Register (U4119), generating ACQENA TRUE synchronous to CONV CLK. Two activities are then done at the same time:

1. The microprocessor polls the Memory Address Buffer bit 16 (U3428 pin 9) (ENDREC) 4000 times before aborting the second activity.
2. The acquisition runs asynchronous to the microprocessor.

CONV clock propagates through U4103B, U4125A, and U4125B becoming SAVECLK. CONV and SAVECLK propagate through U4104B, U3101A, U3105B, U3105A (becoming ACQWRITE), and U3417 to clock the data from the swap (Acquisition Buffer Sequencer) registers (U3236 and U3239) into the Acquisition Memory (U3418 and U3419) in 16-bit chunks. The signals from U3417 also clock the acquisition Address Counters (U3423, U3424, and U3425).

The microprocessor sets TEST FALSE (U3310) disabling the DATA IN BUFFER (U3229). A LO TEST causes the output of the DIAGNOSTIC CODE GENERATORS (U3230 and U3231) to be used instead of the A/D CONVERTER data.

The microprocessor uses the ACQUISITION MODE REGISTER (U3310) to tie MAXCLK and MINCLK (U3309 pin 7 and U3309 pin 9) to EVENCLK and ODDCLK (U3101B pin 8 and U3103B pin 8) respectively through U3309. $\overline{\text { ODDCLK }}$ and EVENCLK are $50 \%$ duty cycle complements of each other and have a period of two CONV clocks. This means that the MIN REGISTER is latched with a test value and 50 ns later the MAX REGISTER is latched with a value one greater. After another 25 ns the swap (Acquisition Buffer/Sequencer) registers (U3236, U3237, U3238, and U3239) latch a 16 -bit word comprised of the output of the MIN REGISTER and the MAX REGISTER.

When the Acquisition Address Counter overflows PREFULL (U3425 pin 7) goes HI. This in turn makes STO RDY (U4226A pin 5) HI. CALTIMER (from U3310 pin 12) makes
multiplexer U4227 select STO RDY and pass it through to U4227 pin 7. Convert clock (CONV) then passes the signal through U4228A, U4127C, and U4226B making TRIGD (U4226B pin 9) HI. TRIGD enables the Post Record Counter to count at RECCLK (CONV clock) rates.

One RECCLK after the Post Record Counter reaches a hexadecimal count of FFO, U4105B creates ENDREC (not end of record) LO. When the microprocessor finds ENDREC LO, the values in the Acquisition Memory Address Counters (U3423, U3424, and U3425) and the Post Record Counter (U4115, U4116, and U4117) are analyzed. Then the Acquisition Memory is checked to see if it contains the proper values.

If an error is found, one of the following messages is displayed on the crt:

$$
\begin{aligned}
& \text { HS_ACQ : latent END_OF_RECORD } \\
& \text { HS_ACQ : acq_mem ontr <mem_actual> <> } \\
& \text { <mem_expected> } \\
& \text { HS_ACQ : prc <prc_actual> <> <prc_expected> } \\
& \text { HS_ACQ : fill @ <fill_address> : <fill_actual> <> } \\
& \text { <fill_expected> }
\end{aligned}
$$

Where:
Latent END_OF_RECORD means the microprocessor polled for an ENDREC 4000 times and never saw one.

Acq_mem cntr means the completion value of the Acquisition Memory Counter was not what was expected (see Table 6-12).

Prc means the completion value of the Post Record Counter was not what was expected (see Table 6-12).

Fill means the fill value at the indicated address was not what was expected (see Table 6-12).

Prc_actual, prc_expected, mem_actual and mem_expected are all 3 digit hexadecimal numbers.

Fill_address is a 4 digit hexadecimal number representing an offset from $0 \times 48000$ (start of Acquisition Memory).

Fill_actual and fill_expected are each 2 digit hexadecimal numbers.

TBD. This test checks the Time Base Divider string using nine different Time Base Divider test ranges (rng).

An acquisition is run as in HS_ACQ except that U4103B selects an input that makes RECCLK a submultiple of CONV clock. As in HS_ACQ, ENDREC is polled and the Post Record Counter and Acquisition Memory completion values are checked. Although the acquisition is similar to the HS ACQ acquisition, the fill is different (see Table 6-12).

## NOTE

See Table 6-12, (Diagnostic Acquisition Values) for specific signals, register values, and terms used in the following discussion.

If the SELECT C1/C2 button is held in while the test is running, the test loops on the first error. If an error is detected, one of the following messages is displayed on the crt:

TBD <rng> : <error>
Where:
Rng is one of the following:

```
hs/2
ps/2
ps/5
ps/10
/10
/100
/1k
/10k
/100k
```

Error is one of the following:

```
latent END_OF_RECORD
prc <prc_actual> <> <prc_expected>
acq_mem cntr <mem_actual> <>
<mem_expected>
fill @ <address> : <fill_actual> <>
<fill_expected>
```

MM_ACQ. This test checks the acquisition circuitry as it relates to MIN/MAX.

## NOTE

This test also runs the $X Y _A C Q$ test.

RECCLK is set using the Time Base Divider to $1 / 200$ th of the CONV clock. Then an acquisition is performed as in HS ACQ, ENDREC is polled, and the Post Record Counter and Acquisition Memory Counter completion values are checked.

Fill testing starts at acq_mem address 0000. The fill is tested for max (odd) byte minus min (even) byte to give either 255 or 200.

## NOTE

The error message values are as in HS_ACQ except for the fill values.

If an error is found, one of the following messages is displayed on the crt:

```
MM_ACQ : latent END_OF_RECORD
MM_ACQ: prc <prc_actual> <> <prc_expected>
MM_ACQ : acq_mem cntr <acq_mem_actual> <>
<acq_mem_expected>
MM_ACQ : fill @ <fill_address> : <fill_actual>
<> <fill_expected>
```

$X Y$ _ACQ. This test checks the acquisition circuitry as it relates to $X-Y$.

## NOTE

This test has no menu entry, however it is run by $M M _A C Q$.

As in HS_ACQ, an acquisition is performed, $\overline{\text { ENDREC }}$ is polled, and the Post Record Counter and Acquisition Memory Counter completion values are checked. The fill is tested for $n, n+1, n+4, n+5, n+8, n+9, \ldots$ starting at Acquisition Memory address 0000 .

## NOTE

The test and the error message values are as in HS_ACQ except for the fill values.

If an error is found, one of the following messages is displayed on the crt:

```
XY_ACQ : latent END_OF_RECORD
XY_ACQ : prc <prc_actual> <> <prc_expected>
XY_ACQ : acq_mem cntr <acq_mem_actual> <>
<acq_mem_expected>
XY_ACQ : fill @ <fill_address> : <fill_actual> <>
<fill_expected>
```

CDT. This test checks the Clock Delay Timer. The CDT (clock delay timer) is a dual-siope integrator used to
measure the time between an asynchronous trigger (either the A or the B Gate) and the acquisition systems master clock. The timer divides the 50 ns convert clock (CONV) into 200 time periods.

The CDT diagnostic checks the Clock Delay Timer circuit using two self-triggered acquisitions. Each test acquisition is started when the microprocessor sets CALTIMER (U4247 pin 2) TRUE and TEST (U4228 pin 10) is set first LO and then HI. When PREFULL (U4228 pin 2) goes HI, U4127 pin 4 goes TRUE causing the charge cycle of the CDT (C4201) to start. The discharge cycle begins 100 to 150 ns later when TRGD goes TRUE forward biasing Q4203.

The time that the voltage on C4201 is above the voltage at U4229 pin 2 (set by R4214, R4215 and R4216) during the discharge cycle is proportional to the time difference between U4127 pin 4 going HI and TRGD (U4226 pin 9) going TRUE. This time is counted by U4230 (at the CONV clock rate) and U4231B. The MSB of the CDT word (bit 8) is shared with BYTEINT (the hardware flag signifying that a byte interrupt has occurred). This shared bit is read by the microprocessor through U3428 pin 8.

If an error is found, one of the following messages is displayed on the crt:

CDT : TIME-OUT <tb_mode_reg_pattern>
CDT : PRE-DETRIG <tb_mode_reg_pattern>
CDT : uncaled : $\mathrm{min}=<$ min_actual $>$
CDT : uncaled : delta = <delta_actual>
Where:
TIME-OUT is caused by not receiving a ENDREC.
Tb__mode_reg_pattern is a 2-digit hexadecimal value indicating the pattern used in the Time Base Mode Register during the test acquisition.

PRE-DETRIG is caused by the CDT counter overflowing (CNTCLR U4231 pin 6).

Tb_mode_reg_pattern is a 2-digit hexadecimal value indicating the pattern used in the Time Base Mode Register during the test acquisition.

Min_actual is the value ( 85.0 to 115.0 ) read from U4230 + CDT msb (U3428 pin 8) during a test acquisition with TEST LO.

Delta_actual is the value ( 200 to 210 ) read from U 4230 + CDT msb (U3428 pin 8) during a test acquisition with TEST HI minus the value of the previous min cycle.

FP_A2D. This test checks the front panel A/D converter circuitry. A conversion is done on three of the analog inputs (A CURS, U6106 pin 12, B CURS, U6106 pin 13, and ground, U6108 pin 5). The algebraic sum of $A$ CURS and B CURS are checked. Their sum should be between $0 \times 100$ and $0 \times 700$. Ground is also checked. It should be between 0 and 5 front panel A/D converter counts ( $5 \div 1024$ of VREF).

During power-up this test defines a variable (FP_POLLED) that controls how the microprocessor works with the front panel. If during testing a MI is not generated, it is assumed that the front panel will never generate a MI and the microprocessor must poll the front panel to see when to transfer front-panel data.

If an error is found one of the following messages is displayed on the crt:

## NOTE

In firmware version 02, the Gnd message should be FP_A2D : gnd $=<$ actual $\gg 5$ (greater than only)

$$
\begin{aligned}
& \text { FP_A2D : cursor : } a=<\text { actual }>\& b=<\text { actual }> \\
& \text { FP_A2D }: \text { gnd }=<\text { actual }><>5 \\
& \text { FP_A2D : TIME-OUT }
\end{aligned}
$$

Where:
Actual is a 3-digit hexadecimal number representing the result of a front-panel digitization.

TIME-OUT indicates A/D INT FLAG (U6101D pin 13) did not occur within $0 \times 800$ polls by the microprocessor.

CAL_AIDS. The instrument calibration aids are used to help calibrate the instrument.

CAL_V_POS. This calibration aid is used to calibrate the storage position control (see "Adjustment Procedure").

CAL_CLK_DLY. Clock Delay Timer (CDT) calibration uses a graphic display. The horizontal position of the display cross hairs is attached to the min count and the vertical position is attached to the delta count (see "Adjustment Procedure").

## NOTE

Only BOX and OUT_PORTS is run by version 01 software.

CAL_PU. Depressing one of the Menu Select/DISPLAY ON/OFF controls during power-up runs four calibration routines, BOX, OUT_PORTS, CAL_CLK_DLY, and the Storage Acquisition Offset. Each routine is run until one of the menu buttons is again pushed. The BOX and OUTPORTS routines are run at the same time. Each routine is used to adjust the instrument (see "Adjustment Procedure") except for OUT_PORTS. OUT_PORTS is used to check instrument circuitry (see OUT_PORTS).

## Exercisers

Instrument exercisers are used to aid in the repair of the instrument.

CONFIGURATION. This exerciser lists the ROM part numbers used in the instrument and the options installed in the instrument.

BOX. This exerciser displays a box (rectangle) on the crt. Two places in the Menu generate the Box. Gains and offsets of the storage display system integrators are set using the Box display (see the "Adjustment Procedure"). The Display Controiler (U9208) is synchronously stimulated (at a multiple of NMI) to display the box not using MIs.

CIRCLE. A high resolution circle is displayed on the crt by this exerciser. This is the only diagnostic that uses all 10 bits of the display DACs (U9210 and U9220).

FP_VALUES. Raw internal front-panel data is displayed on the crt by this exerciser. Table 6-16 shows the display format, and Table $6-17$ shows the bit definitions for the display.

## NOTE

Digital data is intensified when a control is changed. All other data is intensified if the data has changed more than 5 counts since the last display update.

Table 6-16
Display Format

Data	Signal Names			
Digital	AD DATA (R6101)	$\begin{aligned} & \text { ISTAT } \\ & \text { (U6103) } \end{aligned}$	SWB1 (U9302)	$\begin{gathered} \text { SWB2 } \\ (\text { U9301) } \end{gathered}$
Cursors	A CURSOR	B CURSOR	B DELAY	
CH 1	E114 E115	CH1 ATT	CH1 STAT	CH1 PROBE
CH 2	E164 E165	CH2 ATT	CH2 STAT	CH2 PROBE
A Sweep	ARES1	ARES2		
B Sweep	B RES	B CAPS		
Ground	GROUND			

Table 6-17
Display Format Bit Definitions

Signal   Names	Displayed Bit Positions							
	8	7	6	5	4	3	2	1
AD DATA			CH2 INV	T MAG	PP	TRL	SS RST	$\overline{X Y}$
ISTAT	$\overline{\text { VALT }}$	SGL SWP	AC1	AC2	CH1 SEL	$\overline{\mathrm{CH} 2 \mathrm{SEL}}$	$\overline{\text { CHOP }}$	A/D INT FLAG
SWB1	STORE ON	$\overline{\text { B ONLY }}$	HOLD	ROLL	HOR MAG	HOR CAL	PRE/POST	$\bar{A}$ ONLY
SWB2	SELECT C1/C2	MENU ADV	MEM 2	MENU	1K/4K	POS/SEL	MEM 1	MEM 3

OUT_PORTS. All microprocessor output ports of the instrument are exercised by this exerciser. If entered from the menu, rotating the cursor knob selects either a single port or all ports at once. If entered from power-up, the exerciser is run with the box display. Test patterns used in each port are shown in Table 6-18 through Table 6-22.

NOTE
The ones and zeros patterns are observed using an LED dip clip on the registers. The pattern seen on Address Counters U3423, U3424, and U3425 (U3427 and U3428) will occasionally have other data superimposed upon it.

Table 6-18
ACQ_MEM 0x48000

$\begin{gathered} \text { U3427 Pins } \\ 23456789 \end{gathered}$	$\begin{aligned} & \text { U3428 Pins } \\ & 23456789 \end{aligned}$
$000 \times 0000$	$0000 \times \times \times \times$
$001 \times 0000$	$0000 \times \mathrm{xx}$
$010 \times 0000$	$0000 \times \mathrm{xxx}$
$100 \times 0000$	$0000 \times x \times x$
$000 \times 1000$	$0000 \times \mathrm{xx}$
$000 \times 0100$	$0000 \times \mathrm{xxx}$
$000 \times 0010$	$0000 \times \mathrm{xx}$
$000 \times 0001$	$0000 \times \mathrm{xx}$
$000 \times 0000$	$1000 \times \mathrm{xx}$
$000 \times 0000$	$0100 \times \mathrm{xx}$
$000 \times 0000$	$0010 \times x \times x$
$000 \times 0000$	$0001 \times \mathrm{xx}$
$000 \times 0000$	$0000 \times \mathrm{xx}$
$001 \times 0000$	$0000 \times \mathrm{x} \times \mathrm{x}$

Table 6-19
ACQ_MODE 0x437BE

		U3310 Pins					
$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	1	0	0	0	0	1	0
0	0	1	0	0	1	0	0
0	0	0	1	1	0	0	0
0	0	0	0	0	0	0	0
$\mathbf{1}$	0	0	0	0	0	0	$\mathbf{1}$

Table 6-20
TB_MODE 0x407DE

U4119 Pins

$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0	0	0	0	0
0	0	0	1	1	0	0	0
0	0	1	0	0	1	0	0
0	1	0	0	0	0	1	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0

Table 6-21
TB_SWP_RATE 0x407EE

		U4113 Pins					
$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0
0	0	1	1	1	1	0	0
0	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0

Table 6-22
FP_A/D_CTL 0x437F6

## U6104 Pins

2	3	4	5	6	7	8	9
1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1
1	1	0	0	1	1	1	1
1	1	0	0	0	1	1	1
1	1	0	0	0	0	1	1
1	1	0	0	0	0	0	1
1	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1

INPUT_PORTS. This exerciser displays the input data for all microprocessor input ports. An explanation of the displayed data is shown in Table 6-23.

A_TO_D_TESTS/SAMPLES. This exerciser sets the number of acquisitions used to test the A/D Converter.

Turn the CURSORS control to select the number of 4096 byte acquisitions (a power of 2 is best) used to test the A/D Converter (see LINEARITY exerciser).

A_TO_D_TESTS/LINEARITY. This exerciser tests the acquisition $A / D$ converter for missing bits.

Inject a highly linear 11 division vertically centered, ( $2 \times$ $4096 \times 50$ ) ns duration triangle wave signal into the CH 1 or $X$ input. Set the trigger so that the oscilloscope triggers close to the negative peak.

If any codes are missing in samples $\times 4096$ acquisitions a message indicating that there were missing codes is displayed (and sent to the communications option if operating in extended diagnostics).

Setting the trigger point close to the positive peak tests negative going conversions.

The display is a histogram with a vertical scale of $5 \times$ samples $\times$ (codes converted) per division and a horizontal scale of 0 to 255 codes across 10 divisions left to right ( 25.5 codes per division).

COM_OPTION/DEBUG. This exerciser is used in debuging the communications option. Debug outputs a test message and displays any incoming messages (data) on the crt.

PICTURES. The picture exercisers use line drawings to exercise the instruments display system. The Tekbug is a line drawing of the Tektronix symbol. The Wizard is a multi function display. The gain of the display controller is controlled by the CURSORS control. The position of the display is controlled by the CH 1 and CH 2 POSITION controls. If the VERTICAL POSITION and CURSORS controls are not turned for about 5 seconds, the display is automatically moved through its gain (CURSORS) and POSITION ranges.

Table 6-23
Display Format Digit Definitions

Input Port Name	U Number	Crt Name	Number of   Bits Displayed
Acquisition Address Buffer	U3427 and U3428	ACQ_ADDR_BUF	16
Clock Delay Register	U4230	CLK_DELAY_REG	8
B Delay Timer	U4123 and U4124	B_DELAY_TIMER	12
Front Panel Instrument Status	U6103	FP_INSTAT	8
Front Panel Address Data	U6102	FP_AD_DATA	8

## CORRECTIVE MAINTENANCE

## INTRODUCTION

Corrective maintenance consists of component replacement and instrument repair. This part of the manual describes special techniques and procedures required to replace components in this instrument. If it is necessary to ship your instrument to a Tektronix Service Center for repair or service, refer to the "Repackaging" information in Section 2 of this manual.

## MAINTENANCE PRECAUTIONS

To reduce the possibility of personal injury or instrument damage, observe the following precautions.

1. Disconnect the instrument from the ac-power source before removing or installing components.
2. Verify that the line-rectifier filter capacitors are discharged prior to performing any servicing.
3. Use care not to interconnect instrument grounds which may be at different potentials (cross grounding).
4. When soldering on circuit boards or small insulated wires, use only a 15 -watt, pencil-type soldering iron.

## OBTAINING REPLACEMENT PARTS

Most electrical and mechanical parts can be obtained through your local Tektronix Field Office or representative. However, many of the standard electronic components can usually be obtained from a local commercial source. Before purchasing or ordering a part from a source other than Tektronix, Inc., please check the "Replaceable Electrical Parts" list for the proper value, rating, tolerance, and description.

## NOTE

Physical size and shape of a component may affect instrument performance, particularly at high frequencies. Always use direct-replacement components, unless it is known that a substitute will not degrade instrument performance.

## Special Parts

In addition to the standard electronic components, some special parts are used in the instrument. These components are manufactured or selected by Tektronix, Inc. to meet specific performance requirements, or are manufactured for Tektronix, Inc. in accordance with our specifications. The various manufacturers can be identified by referring to the "Cross Index-Manufacturer's Code number to Manufacturer" at the beginning of the "Replaceable Electrical Parts" list. Most of the mechanical parts used in this instrument were manufactured by Tektronix, Inc. Order all special parts directly from your local Tektronix Field Office or representative.

## Ordering Parts

When ordering replacement parts from Tektronix, Inc., be sure to include all of the following information:

1. Instrument type (include all modification and option numbers).
2. Instrument serial number.
3. A description of the part (if electrical, include its full circuit component number).
4. Tektronix part number.

## Selectable Components

Several components in the instrument are selectable to obtain optimum circuit operation. Value selection of these components is done during the initial factory adjustment procedure. Usually, further selection is not necessary for subsequent adjustments unless a component has been changed that affects circuitry for which a selected component has been specifically chosen.

## MAINTENANCE AIDS

The maintenance aids listed in Table 6-24 include items required for performing most of the maintenance procedures in this instrument. Equivalent products may be substituted for those given, provided their characteristics are similar.

Table 6-24
Maintenance Aids

Description	Specification	Usage	Example
1. Soldering Iron	15 to 25 W.	General soldering and unsoldering.	Antex Precision Model C.
2. Torx Screwdrivers	Torx tips \#T7, \#T9, \#T10, \#T15, and \#T20.	Assembly and disassembly.	Tektronix Part Numbers:   \#T7 003-1293-00   \#T9 003-0965-00   \#T10 003-0814-00   \#T15 003-0966-00   \#T20 003-0866-00
3. Nutdrivers	1/4 inch, $5 / 16$ inch, $1 / 2$ inch, and 9/16 inch.	Assembly and disassembly.	Xcelite \#8, \#10, \#16, and \#18.
4. Open-end Wrench	9/16 inch and 1/2 inch.	Channel Input and Ext Trig BNC Connectors.	Tektronix Part Numbers: 9/16 003-0502-00   1/2 003-0822-00.
5. Hex Wrenches	0.050 inch, $1 / 16$ inch.	Assembly and disassembly.	Allen Wrenches.
6. Long-nose Pliers		Component removal and replacement.	Diamalloy Model LN55-3.
7. Diagonal Cutters		Component removal and replacement.	Diamalloy Model M554-3.
8. Vacuum Solder	No static charge retention.	Unsoldering static sensitive devices and components on multilayer boards.	Pace Model PC-10.
9. Contact Cleaner and Lubricant	No-Noise R.	Switch and pot cleaning and lubrication.	Tektronix Part Number 006-0442-02.
10. Pin-Replacement Kit		Replace circuit board connector pins.	Tektronix Part Number 040-0542-00.
11. IC-Removal Tool		Removing DIP IC packages.	Augat T114-1.
12. Isopropyl Alcohol	Reagent grade.	Cleaning attenuator and front panel assemblies.	2-Isopropanol.
13. Isolation Transformer		Isolate the instrument from the ac power source for safety.	Tektronix Part Number 006-5953-009.
14. 1X Probe		Power supply ripple check.	TEKTRONIX P6101A Probe (1X) Part Number 010-6101-03.
15. Bayonet Ground Assembly		Signal interconnect for power supply ripple check.	Tektronix Part Number 013-0085-00.
16. LED Dip Clip		Troubleshooting.	HP 548A.

## INTERCONNECTIONS

Interconnections in this instrument are made with pins soldered onto the circuit boards. Several types of mating connectors are used for the interconnecting pins. The following information provides the replacement procedures for the various type connectors.

## End-Lead Pin Connectors

Pin connectors used to connect the wires to the interconnect pins are factory assembled. They consist of machine-inserted pin connectors mounted in plastic holders. If the connectors are faulty, the entire wire assembly should be replaced.

## Multipin Connectors

When pin connectors are grouped together and mounted in a plastic holder, they are removed, reinstalled, or replaced as a unit. If any individual wire or connector in the assembly is faulty, the entire cable assembly should be replaced. To provide correct orientation of a multipin connector, an index arrow is stamped on the circuit board, and either a matching arrow is molded into or the numeral 1 is marked on the plastic housing as a matching index. Be sure these index marks are aligned with each other when the multipin connector is reinstalled (see Figure 6-1).

## TRANSISTORS AND INTEGRATED ©IRCUITS

Transistors and integrated circuits should not be replaced unless they are actually defective. If removed from their sockets or unsoldered from the circuit board during routine maintenance, return them to their original board locations. Unnecessary replacement or transposing of semiconductor devices may affect the adjustment of the instrument. When a semiconductor is replaced, check the performance of any circuit that may be affected.

Any replacement component should be of the original type or a direct replacement. Bend transistor leads to fit their circuit board holes, and cut the leads to the same length as the original component. See Figure 9-2 in the "Diagrams" section for lead-configuration illustrations.

The chassis-mounted power supply transistor is insulated from the chassis by a heat-transferring mounting block. Reinstall the mounting block and bushings when replacing these transistors. Use a thin layer of heattransferring compound between the insulating block and chassis when reinstalling the block.

## NOTE

After replacing a power transistor, check that the collector is not shorted to the chassis before applying power to the instrument.

To remove socketed dual-in-line packaged (DIP) integrated circuits, pull slowly and evenly on both ends of the device. Avoid disengaging one end of the integrated circuit from the socket before the other, since this may damage the pins.

To remove a soldered DIP IC when it is going to be replaced, clip all the leads of the device and remove the leads from the circuit board one at a time. If the device must be removed intact for possible reinstallation, do not heat adjacent conductors consecutively. Apply heat to pins at alternate sides and ends of the IC as solder is removed. Allow a moment for the circuit board to cool before proceeding to the next pin.

## SOLDERING TECHNIQUES

The reliability and accuracy of this instrument can be maintained only if proper soldering techniques are used to remove or replace parts. General soldering techniques, which apply to maintenance of any precision electronic equipment, should be used when working on this instrument.

## WARNING

To avoid an electric-shock hazard, observe the following precautions before attempting any soldering: turn the instrument off, disconnect it from the ac power source, and wait at least three minutes for the line-rectifier filter capacitors to discharge.

Use rosin-core wire solder containing 63\% tin and 37\% lead. Contact your local Tektronix Field Office or representative to obtain the names of approved solder types.

When soldering on circuits boards or small insulated wires, use only a 15 -watt, pencil-type soldering iron. A higher wattage soldering iron may cause etched circuit conductors to separate from the board base material and melt the insulation on small wires. Always keep the soldering-iron tip properly tinned to ensure best heat transfer from the iron tip to the solder joint. Apply only enough solder to make a firm joint. After soldering, clean the area around the solder connection with an approved flux-removing solvent (such as isopropyl alcohol) and allow it to air dry.

Circuit boards in this instrument may have many conductive layers. Conductive paths between the top and bottom board layers may connect to one or more inner layers. If any inner-layer conductive path becomes broken due to poor soldering practices, the board becomes unusable and must be replaced, Damage of this nature can void the instrument warranty.


Only an experienced maintenance person, proficient in the use of vacuum-type desoldering equipment should attempt repair of any circuit board in this instrument.

Desoldering parts from multilayer circuit boards is especially critical. Many integrated circuits are static sensitive and may be damaged by solder extractors that generate static charges. Perform work involving static-sensitive devices only at a static-free work station while wearing a grounded antistatic wrist strap. Use only an antistatic vacuum-type solder extractor approved by a Tektronix Service Center.


Attempts to unsolder, remove, and resolder leads from the component side of a circuit board may cause damage to the reverse side of the circuit board. The following techniques should be used to replace a component on a circuit board:

1. Touch the vacuum desoldering tool to the lead at the solder connection. Never place the iron directly on the board; doing so may damage the board.

## NOTE

Some components are difficult to remove from the circuit board due to a bend placed in the component leads during machine insertion. To make removal of machine-inserted components easier, straighten the component leads on the reverse side of the circuit board.
2. When removing a multipin component, especially an IC, do not heat adjacent pins consecutively. Apply heat to the pins at alternate sides and ends of the IC as solder is removed. Allow a moment for the circuit board to cool before proceeding to the next pin.

Excessive heat can cause the etched circuit conductors to separate from the circuit board. Never allow the solder extractor tip to remain at one place on the board for more than three seconds. Solder wick, spring-actuated or squeeze-bulb solder suckers, and heat blocks (for desoldering multipin components) must not be used. Damage caused by poor soldering techniques can void the instrument warranty.
3. Bend the leads of the replacement component to fit the holes in the circuit board. If the component is replaced while the board is installed in the instrument, cut the leads so they protrude only a small amount through the reverse side of the circuit board. Excess lead length may cause shorting to other conductive parts.
4. Insert the leads into the holes of the board so that the replacement component is positioned the same as the original component. Most components should be firmly seated against the circuit board.
5. Touch the soldering iron to the connection and apply enough solder to make a firm solder joint. Do not move the component while the solder hardens.
6. Cut off any excess lead protruding through the circuit board (if not clipped to the correct length in step 3).
7. Clean the area around the solder connection with an approved flux-removing solvent. Be careful not to remove any of the printed information from the circuit board.

## REMOVAL AND REPLACEMENT INSTRUCTIONS

The exploded view drawings in the "Replaceable Mechanical Parts" list (Section 9) may be helpful during the removal and reinstallation of individual subassemblies or components. Circuit board and component locations are shown in the "Diagrams" section.

## Cabinet

## WARNING

To avoid electric shock, disconnect the instrument from the ac-power-input source before removing or replacing any component or assembly.

To remove the instrument cabinet, perform the following steps:

## NOTE

For instruments with a power-cord securing clamp; remove the Phillips-head screw holding the powercord securing clamp before disconnecting the power cord.

1. Disconnect the power cord from the instrument.
2. Remove two screws, one each from the right-rear side and bottom front of the cabinet.
3. Remove two screws from the rear panel (located on each side) and remove it from the instrument.
4. Remove four screws from the left rear side of the cabinet securing the side panel to the instrument side chassis.
5. Remove the side panel from the instrument.
6. Pull the front panel and attached chassis forward and out of the cabinet.

## NOTE

To ensure that the cabinet is properly grounded to the instrument chassis, the screws at the right-rear side and the bottom front of the cabinet must be tightly secured.
7. To reinstall the cabinet, perform the reverse of the preceding steps. Ensure that the cabinet is flush with the rear of the chassis and that the cabinet and rear-panel holes are align with the screw holes in the chassis frame.

## Storage Circuit Board in Servicing Position

The following procedure describes how to secure the Storage circuit board into the servicing position to facilitate instrument disassembly and reinstallation for individual components or subassemblies.

1. Remove the five MEMORY buttons, SELECT WAVEFORM button, four ACQUISITION buttons, STORE button, and extension shafts from their respective switches by inserting a small screwdriver between the
extension shaft and the switch shaft. Push down and forward until the extension shaft is disengaged and pull the shafts straight back through the front panel.
2. Disconnect the following two connectors from the Storage circuit board.
a. P2111, a four-wire connector located near the middle left edge of the Storage circuit board.
b. P2112, a four-wire connector located near the middle left edge of the Storage circuit board.
3. Remove three Storage circuit board screws that are identified by the etched words "Remove To Lift Board" (see Figure 6-7 for the location of the Storage board three screws).
4. Lift the Storage circuit board up until the cable of P9430 (on the front edge of the Storage circuit board) clears the back of the CURSORS control.
5. Remove P9430, a six-wire connector from the Storage circuit board by pulling it toward the front panel.
6. Continue to raise up the Storage circuit board to it standing position ensuring that the Board Latch clears the top of the chassis side rail. Place the Board Latch tab in the chassis side rail slot.

To lower the Storage circuit board into the instrument and to reconnect the connectors, perform the reverse of the preceding steps.

## Support Chassis

The support chassis divides the inside of the instrument into two parts by connecting the center of the rear chassis and the front chassis together. The support chassis can be removed and reinstalled as follows:

1. Perform the "Storage Circuit Board in Servicing Position' removal procedure.
2. Remove the crt anode lead and High-Voltage Multiplier lead connectors from the anode clip on the PowerSupply shield.
3. Remove the anode clip from the Power-Supply shield through the hole in the support chassis.
4. Remove the two recessed screws from the rear chassis (located directly above the Z-AXIS connector) securing the support chassis.
5. Remove the three screws securing the top attenuator shield to the support chassis.
6. Slide the front of the support chassis toward the center and over the top attenuator shield away from underneath the front chassis bracket.
7. Remove the support chassis from the instrument.

To reinstall the support chassis, perform the reverse of the preceding steps.

## Side-Chassis Assembly

The Side-Chassis Assembly can be removed and reinstalled as follows:

1. Disconnect the following three connectors from the Side-Chassis Assembly.
a. P4110, a two-wire connector located at the rear of the Side-Chassis Assembly.
b. P6423, a four-wire connector located at the rear of the Side-Chassis Assembly.
c. P9301, a five-wire connector located at the rear of the Side-Chassis Assembly.
2. Remove two screws and ground clip from the top of the side chassis and two screws from the bottom of the side chassis that secures the Side-Chassis Assembly to the instrument.
3. Remove the Side-Chassis Assembly from the instrument.

To reinstall the Side-Chassis Assembly, perform the reverse of the preceding steps.

## Storage Circuit Board

The Storage circuit board can be removed and reinstalled as follows:

1. Perform the "Storage Circuit Board in Servicing Position' removal procedure.
2. Perform the "Support Chassis" removal procedure.
3. Perform the "Side-Chassis Assembly" removal procedure.
4. Remove the ground clip near the center edge of the Storage chassis (towards the instrument).
5. Unsolder the strap from the ground clip near the center of the Storage chassis and slide the strap through the slot in the chassis when removing the Storage chassis from the instrument in step 7.
6. Remove the four circuit board shield screws from the Storage circuit board (see Figure 6-7 for location of the four circuit board shield screws). Remove the two screws located on top of the Storage circuit board last.
7. Remove the Storage chassis from the instrument by lifting it up out of the bracket spacer. See Figure 6-7 for location of the bracket spacer.
8. Disconnect the following eight connectors from the inside of the instrument. Note cable color, location, and routing for reinstallation reference.
a. P4210, a four-wire connector located on the Main circuit board behind the CH 2 VOLTS/DIV switch.
b. P4220, a two-wire connector located on the right side of the Alternate Sweep circuit board.
c. P9010, a nine-wire connector located on the right side of the Main circuit board between the Timing and Alternate Sweep circuit boards.
d. P9050, a single white-wire connector located between the Alternate Sweep circuit board and the Power-Supply shield.
e. P9060, a single black-wire connector located between the Alternate Sweep circuit board and the Power-Supply shield.
f. P9210, a seven-wire connector located on the Main Board underneath the CRT shield near the delay line.
h. P9320, a four-wire connector located on the front edge of the Main circuit board between the Attenuator and Position Interface circuit boards.
i. P9410, a seven-wire connector located on the Sweep Referenced circuit board.


Figure 6-7. Location of screws and spacers on the Storage circuit board.
9. With one hand firmly holding the Input/Output and Vector Generator circuit board assembly and with the other hand use a long-nose pliers on the top side to squeeze and push the four circuit board spacers through the holes in the Storage circuit board (see Figure 6-7 for location of the circuit board spacers). Place the Input/Output and Vector Generator circuit board assembly inside the instrument temporarily to be reinstalled later.
10. Release the Board Latch and lower the Storage circuit board into the instrument.
11. Disconnect the ribbon connector (P6100) from the Input/Output and Vector Generator circuit board assembly.
12. Remove the Storage circuit board EMI clip from the side chassis rail located behind the front hinge.
13. Remove both the recessed screw and the chassis mounted rear hinge nearest to the Board Latch from the instrument (see Figure 6-8 for removal of the chassis recessed screw and hinge).
14. Slide the Storage circuit board back until the front and middle hinges separate and lift it out of the instrument. Ensure that P6100 is free from the Storage circuit board and the chassis rail.

## NOTE

When installing the circuit board shield ensure that the black spacer tabs and the circuit board bracket are aligned with their respective holes in the shield. Also ensure that the strap (unsoldered in step 5) from the input/Output circuit board is inserted through the circuit board shield slot to be resoldered to the ground clip.

To reinstall the Storage circuit board, perform the reverse of the preceding steps.

## Input/Output and Vector Generator Circuit Boards Assembly

The Input/Output and Vector Generator circuit boards assembly can be removed and reinstalled as follows:

1. Perform the "Storage Circuit Board in Servicing Position" removal procedure.
2. Remove the circuit board shield (see "Storage Circuit Board' removal procedure steps 4 through 7).


Figure 6-8. Recessed screw and rear hinge removal.
3. Disconnect the following five connectors from the Input/Output and Vector Generator circuit boards assembly. Note cable color, location, and routing for reinstallation reference.
a. Disconnect P6410 (ten-wire connector) and P6420 (nine-wire connector) from the Input/Output circuit board.
b. Disconnect P6110 (ten-wire connector), P6120 (nine-wire connector), and P6130 (eight-wire connector) from the Vector Generator circuit board.
4. Perform step 9 of "Storage Circuit Board" removal procedure and place the input/Output and Vector Generator circuit assembly down inside the instrument temporarily for later removal in step 9 of this procedure.
5. Release the Board Latch and lower the Storage circuit board into the instrument.
6. Disconnect P6100, a ribbon connector on the Storage circuit board from the Input/Output and Vector Generator circuit board assembly.
7. Remove the screw from the chassis mounted hinge nearest to the Board Latch and separate it from the hinge on the Storage circuit board.
8. Unhinge the Storage circuit board from the chassis side rail to remove P6100 from the Storage circuit board. Set the Storage circuit board down on top of the Power Supply shield leaving enough space to lift the Input/Output and Vector Generator circuit boards assembly out of the instrument.
9. Remove the Input/Output and Vector Generator circuit boards assembly from the inside of the instrument (placed inside the instrument in step 4).

To reinstall the Input/Output and Vector Generator circuit boards assembly, perform the reverse of the preceding steps.

## Cathode-Ray Tube

## WARNING

Use care when handling a crt. Breakage of the crt may cause high-velocity scattering of glass fragments (implosion). Protective clothing and safety glasses should be worn. Avoid striking the crt on any object which may cause it to crack or implode. When storing a crt, either place it in a protective carton or set it face down on a smooth surface in a protected location with a soft mat under the faceplate.

The crt can be removed and reinstalled as follows:

1. Perform the "Storage Circuit Board in Servicing Position" removal procedure.
2. Perform the "Side-Chassis Assembly" removal procedure.
3. Disconnect four deflection-plate wires at the middle of the crt neck and unplug the Trace Rotation connector (P9006) from the Front-Panel circuit board (note the connection locations and wire colors for reinstallation reference).

## WARNING

The crt anode lead and the High-Voltage Multiplier output lead retain a high-voltage charge after the instrument is turned off. To avoid electrical shock, disconnect the High-Voltage Multiplier lead from the crt anode lead and ground both leads to the main instrument chassis.
4. Unplug the crt anode lead connector from the HighVoltage Multiplier lead located between the support chassis and the crt shield. Discharge both the anode lead connector and the High-Voltage Multiplier lead to chassis ground.
5. Remove two front-panel screws that retain the plastic crt frame and light filter to the front panel. Remove the crt frame and light filter from the instrument.
6. Remove the crt socket cap from the rear of the crt socket. Save the cap for reinstallation.
7. With the rear of the instrument facing you, place the fingers of both hands over the front edge of the front subpanel. Then, using both thumbs, press forward gently on the crt funnel near the front of the crt. When the crt base pins disengage from the socket, remove the crt and the crt shield through the instrument front panel. Place the crt in a safe place until it is reinstalled. If the plastic crt corner pads fall out, save them for reinstallation.

## NOTE

When installing the crt into the instrument, reinstall any loose plastic crt corner pads that are out of place. Ensure all crt pins are straight and that the indexing keys on the crt base, socket, and shield are aligned. Ensure that the ground clip makes contact only with the outside of the crt shield.

To reinstall the crt, perform the reverse of the preceding steps.

## Power-Supply Shield

The Power-Supply shield can be removed and reinstalled as follows:

1. Turn the instrument over (Main circuit board up) and remove the screw from the plastic power-supply cover (middle of the Main circuit board). Insert a small pointed tool into the hole in the left-rear corner of the rear chassis and gently push the power-supply cover tab in. Remove the power-supply cover by sliding it out from underneath the rear and side chassis.
2. Remove the screw securing the Power-Supply shield to the Main circuit board (located at the bottom of the Main circuit board near the middle of the side chassis frame). Turn the instrument over again (Storage circuit board on top) to continue with the Power-Supply Shield removal procedure.
3. Perform the "Storage Circuit Board in Servicing Position' removal procedure.
4. Perform the "Support Chassis" removal procedure.
5. Remove one pan-head and two recessed screws securing the Power-Supply shield to the rear chassis frame. See Figure 6-9 for the location of the three screws on the rear chassis frame.
6. Remove the screw from the front upper-right hand corner of the Power-Supply shield.
7. Lift the Power-Supply shield up and out of the chassis frame by removing the right rear corner first.

## NOTE

To reinstall the Power-Supply shield, ensure that the shield is placed in the frame guides on the rear chassis above the fuse holder and that the crt socket-wire assembly and crt anode lead are properly placed in their respective cutouts.

To reinstall the Power-Supply shield, perform the reverse of the preceding steps.

## Line Filter Circuit Board and Cover

To remove the Line Filter circuit board and cover, perform the following steps:

1. Perform the "Storage Circuit Board in Servicing Position" removal procedure.
2. Remove the Power-Supply shield (see the "PowerSupply Shield'' removal procedure).
3. Remove the two recessed screws that secures the Filter circuit board to the rear chassis and lift the Line Filter circuit board out and away from the the filter capacitor.
4. Remove the four wires to the Line Filter circuit board by unsoldering two wires from the Main circuit board, one wire from the line filter, and one wire from the fuse holder (pull the protective cap completely off the fuse holder before unsoldering).

To reinstall the Line Filter circuit board and cover, perform the reverse of the preceding steps.


Figure 6-9. Location of screws securing Power-Supply shield and the support bracket to the rear chassis frame.

## Fan

The fan can be removed and reinstalled as follows:

1. Perform the "Storage Circuit Board in Servicing Position" removal procedure.
2. Perform the "Power-Supply Shield" removal procedure.
3. Unsolder the two leads from the fan driver on the Main circuit board.
4. Remove two screws securing the fan to the rear chassis and two recessed screws securing the fan driver to the side chassis.

To reinstall the Fan, perform the reverse of the preceding steps.

## Thermal Shutdown Circuit Board

1. Perform the "Storage Circuit Board in Servicing Position' removal procedure.
2. Perform the "Power-Supply Shield" removal procedure.
3. Perform the "Fan" removal procedure.
4. Stand the instrument up on its rear chassis (front panel up) and use a vacuum-desoldering tool to unsolder three pins from the Thermal Shutdown circuit board to the Main circuit board (W9070).

To reinstall the Thermal Shutdown circuit board, perform the reverse of the preceding steps.

## Alternate Sweep Circuit Board

The Alternate Sweep circuit board can be removed and reinstalled as follows:

1. Perform the "Storage Circuit Board in Servicing Position' removal procedure.
2. Disconnect P4220, a two-wire connector located on the right side of the Alternate Sweep circuit board.
3. Remove the cable strap from the Alternate Sweep circuit board that secures the cable harness from the Storage circuit board.
4. Use a vacuum-desoldering tool to unsolder the 27 Alternate Sweep circuit board pins on the Main circuit board (W9400).
5. Unclip the plastic holder from the Power-Supply shield and remove the Alternate Sweep circuit board from the instrument.

To reinstall the Alternate Sweep circuit board, perform the reverse of the preceding steps.

## Position Interface Circuit Board

The Position Interface circuit board can be removed and reinstalled as follows:

1. Perform the "Storage Circuit Board in Servicing Position" removal procedure.
2. Perform the "Support Chassis" removal procedure.
3. Disconnect P6113, a four-wire connector from Input/Output and Vector Generator circuit boards assembly.
4. Turn the instrument on its side and with a vacuumdesoldering tool, unsolder the six Position Interface circuit board wire straps from the Main circuit board.
5. Remove the Position Interface circuit board from the instrument and clean the wire-strap holes on the Main circuit board of any remaining solder.

To reinstall the Position Interface circuit board, perform the reverse of the preceding steps.

## Channel 1 Logic and Channel 2 Logic Circuit Boards

The Channel 1 Logic and Channel 2 Logic Circuit Boards can be removed and reinstalled as follows:

1. Perform the "Storage Circuit Board in Servicing Position" removal procedure.
2. Perform the "Support Chassis" removal procedure.
3. Remove the remaining six screws that secure the top attenuator shield and ground strap (from the Front Panel circuit board) to the Attenuator circuit board and bottom shield.
4. Remove the top attenuator shield from the instrument.
5. Disconnect the following connectors from the Channel 1 Logic and Channel 2 Logic circuit boards, noting their locations for reinstallation reference:
a. P6111, a three-wire connector from Channel 1 Logic circuit board.
b. P6112, a three-wire connector from Channel 2 Logic circuit board.
6. Remove one screw each from the front of the Channel 1 Logic and Channel 2 Logic circuit boards.
7. Unsolder the two-wire strap from the rear of both the Channel 1 Logic and Channel 2 Logic circuit boards.
8. Remove the Channel 1 Logic and Channel 2 Logic circuit boards from the instrument.

To reinstall the Channel 1 Logic and Channel 2 Logic circuit boards, perform the reverse of the preceding steps.

## Attenuator, Channel 1 Logic and Channel 2 Logic Circuit Boards Assembly

The Attenuator, Channel 1 and Channel 2 Logic Circuit Boards Assembly can be removed and reinstalled as follows:

1. Turn the instrument over (Main circuit board up) and remove two screws securing the Attenuator circuit board to the BNC bracket (located underneath the CH 1 OR X and $\mathrm{CH} 2 \mathrm{OR} Y$ input connectors).
2. Unsolder the two resistors from the $\mathrm{CH} 1 \mathrm{OR} X$ and CH 2 OR Y input connectors. Turn the instrument over again (Storage circuit board on top) to continue with the Attenuator, Channel 1 and Channel 2 Logic circuit boards assembly procedure.
3. Perform the "Storage Circuit Board in Servicing Position" removal procedure.
4. Use a $1 / 16$-inch hex wrench to loosen the set screws on both the CH 1 and CH 2 VOLTS/DIV Variable knobs and remove the knobs.
5. Set the CH 1 and CH 2 VOLTS/DIV switches to the same position. Note switch positions for reinstallation reference; then remove the knobs by pulling them straight out from the front panel.
6. Perform the "Support Chassis" removal procedure.
7. Remove the remaining six screws that secure the top attenuator shield and ground strap (from the Front Panel circuit board) to the Attenuator circuit board and bottom shield.
8. Remove the top attenuator shield from the instrument.
9. Disconnect the following connectors from the Channel 1 Logic, Channel 2 Logic and Attenuator circuit boards, noting their locations for reinstallation reference:
a. P6111, a three-wire connector from Channel 1 Logic circuit board.
b. P6112, a three-wire connector from Channel 2 Logic circuit board.
c. P9103, a four-wire connector located behind the CH 1 VOLTS/DIV switch assembly and underneath the Channel 1 Logic circuit board.
d. P9108, a four-wire connector located behind the CH 2 VOLTS/DIV switch assembly and underneath the Channel 2 Logic circuit board.
e. P9991, a three-wire connector located between CH 1 and CH 2 VOLTS/DIV Variable controls and Channel 1 and Channel 2 Logic circuit boards.
10. Remove the screw from the left rear corner of the Attenuator circuit board.

NOTE
The insulator on the left rear corner of the Timing circuit board may be loose. If the insulator is loose, remove and save it for the reinstallment of the Attenuator circuit board.
11. Pull the Attenuator, Channel 1 Logic and Channel 2 Logic circuit boards Assembly straight back from the front of the instrument until the circuit boards interconnecting pins are disengaged and the switch shafts are clear of both the Front-Panel circuit board and the two Input Coupling switch shafts (located between the front panel and the subpanel). Then lift out the entire assembly through the top of the instrument.
12. If removal of Channel 1 Logic and Channel 2 Logic circuit boards from the assembly is desired, perform the "Channel 1 Logic and Channel 2 Logic Circuit Boards" removal procedure steps 6 through 8 .

## NOTE

When reinstalling the Attenuator, Channel 1 and Channel 2 Logic circuit boards Assembly, ensure that the interconnecting pins are aligned with the Front-Panel circuit board connectors and that the two resistors (soldered to the bottom of the Attenuator circuit board) are not touching the Front-Panel circuit board. Push the Attenuator circuit board forward and, at the same time, press the front end of the board down slightly. Align the two Input Coupling switch shafts with the front-panel holes by moving either the Channel 1 or the Channel 2 Input Coupling switch knob.

To reinstall the Attenuator, Channel 1 and Channel 2 Logic circuit boards assembly, perform the reverse of the preceding steps.

## Sweep Reference Circuit Board

The Sweep Reference circuit board can be removed and reinstalled as follows:

1. Perform the "Storage Circuit Board in Servicing Position" removal procedure.
2. Disconnect P9410, an seven-wire connector located behind the SEC/DIV Variable control on the Sweep Reference circuit board.
3. Disconnect P5201, a three-wire connector located on the right side of the Sweep Reference circuit board.
4. Unsolder the two resistors from the Timing Circuit board on the right side of the SEC/DIV Variable control.
5. Remove the shaft extension by loosening the setscrew with a 0.50-hex wrench.
6. Remove the SEC/DIV variable control nut with a 9/16 inch open-end wrench.
7. Remove the Sweep Reference circuit board.

To reinstall the Sweep Reference circuit board, perform the reverse of the preceding steps.

## Timing, Sweep Interface, and Sweep Reference Circuit Boards Assembly

The Timing, Sweep Interface, and Sweep Reference circuit boards assembly can be removed and reinstalled as follows:

1. Perform the "Storage Circuit Board in Servicing Position' removal procedure.
2. Use a $1 / 16$-inch hex wrench to loosen the set screw of the SEC/DIV Variable knob. Remove the SEC/DIV Variable knob.
3. Set both A and B SEC/DIV knobs to the EXT CLK position. Use a $1 / 16$-inch hex wrench to loosen the two set screws that secure the A and B SEC/DIV knob; pull off the knob from the shaft assembly.
4. Use a $1 / 16$-inch hex wrench to loosen two set screws securing the A SEC/DIV dial to the shaft assembly. Remove the dial from the shaft.
5. Disconnect the following connectors from the assembly, noting their locations for reinstallation reference:
a. P 9700 , a 10 -wire connector located on the right edge of the Timing circuit board.
b. P9705, an eight-wire connector located at the rear of the Timing circuit board.
c. P6421, an five-wire connector located on the Sweep Interface circuit board.
d. P9410, an seven-wire connector located behind the SEC/DIV Variable control on the Sweep Reference circuit board.
6. Remove the screw located at the right rear of the Attenuator circuit board (securing both the Attenuator and the Timing circuit boards to the Bottom shield).
7. Remove the three securing screws from the Timing circuit board (the screws are located at the right front corner, left front side by the SEC/DIV switch shaft, and at the right rear corner of the circuit board).

## NOTE

The insulator on the left rear corner of the Timing circuit board may be loose. If the insulator is loose, remove and save it for the reinstallment of the Timing circuit board.
8. Pull the Timing circuit board straight back from the front of the instrument until the circuit board interconnecting pins are disengaged and the switch shaft is clear of the Front-Panel circuit board.
9. If removal of Sweep Reference circuit board from the assembly is desired, perform the "Sweep Reference Circuit Board"' removal procedure steps 3 through 7.

## NOTE

Ensure that the Timing circuit board interconnecting pins are aligned to the Front-Panel circuit board connectors before reinstallation.

To reinstall the Timing, Sweep Interface, and Sweep Reference circuit boards assembly, perform the reverse of the preceding steps.

SWEEP INTERFACE CIRCUIT BOARD SEPARATION. To remove the Sweep Interface circuit board from the Timing circuit board perform the following steps.

1. Use a vacuum-desoldering tool to unsolder the 22wire strap W1304 from the Sweep Interface to the Timing circuit board.
2. Remove the Sweep Interface circuit board and clean the wire-strap holes in the Timing circuit board.

To reinstall the Sweep Interface circuit board, perform the reverse of the preceding steps.

## Bottom Shield, Attenuator and Timing Circuit Boards Assembly

The Bottom Shield, Attenuator, and Timing circuit boards assembly can be removed and reinstalled as follows:

1. Place the instrument upside down and remove the three screws and one spacer post securing the Bottom shield to the Main circuit board.
2. Perform steps 1 through 9 of the "Attenuator, Channel 1 Logic and Channel 2 Logic Circuit Board" removal procedure.
3. Perform steps 2 through 5 of the "Timing, Sweep Interface, and Sweep Reference Circuit Boards' removal procedure.
4. Pull the Bottom shield, along with the attached circuit boards straight back from the front of the instrument until the interconnecting pins on the circuit boards are disengaged and the switch shafts are clear of the holes in the Front-Panel circuit board; then lift out the entire assembly through the top of the instrument.
5. If accessibility to the bottom of either the Attenuator or the Timing circuit board is desired, refer to step 10 of the "Attenuator, and Channel 1 and Channel 2 Logic Circuit Boards Assembly" removal procedure and to step 7 of the "Timing, Sweep Interface, and Sweep Reference Circuit Boards Assembly" removal procedure.

To reinstall the Bottom Shield, Attenuator, and Timing circuit boards assembly, perform the reverse of the preceding steps.

## Front-Panel Circuit Board

The Front-Panel circuit board can be removed and reinstalled as follows:

1. Perform the "Storage Circuit Board in Servicing Position" removal procedure.
2. Perform the "Support Chassis" removal procedure.
3. Perform the "Cathode-Ray Tube" removal procedure.
4. Perform the "Bottom shield, Attenuator and Timing Circuit Boards Assembly" removal procedure.
5. Remove the knobs from the following control shafts by pulling them straight out from the front panel:
a. Channel 1 and Channel 2 POSITION.
b. A/B SWP SEP.
c. Horizontal POSITION.
d. B TRIGGER LEVEL.
6. Use a $1 / 16$-inch hex wrench to loosen the setscrew of the HF REJECT knob. Remove the HF REJECT knob.
7. Use a $1 / 16$-inch hex wrench to loosen the setscrew of the A TRIGGER LEVEL knob. Remove the A TRIGGER LEVEL knob.
8. Unsolder both the resistor to the EXT INPUT center connector and the wire strap to the EXT INPUT ground lug.
9. Unsolder the two wire straps from VAR HOLDOFF control
10. Unsolder the single wire from the PROBE ADJUST connector and the two wires from the VAR HOLDOFF control (leading to the Front-Panel circuit board).
11. Remove the following screws:
a. Three screws (and ground strap) securing the upper part of the Front-Panel circuit board to the front panel.
b. Two recessed frame-securing screws at the leftrear corner of the chassis frame.
c. Two bottom screws securing the Main circuit board to the left bottom side of the chassis frame.
d. One screw securing the delay line to the chassis frame on the left side of the instrument.
e. Two recessed frame-securing screws at the right-front corner.

## NOTE

At this point, any component on the Front-Panel circuit board may be accessed for removal and replacement. If circuit board replacement is intended, continue with the last two steps 10 and 11.
12. Pull the left-front frame assembly apart from the right-rear frame assembly.

## NOTE

If a vacuum-desoldering tool is not available, lift each strap out of the Main circuit board as the joint is heated.
13. Use a vacuum-desoldering tool to unsolder the 45 (W9001) wire straps from the Main circuit board (connecting to the Front-Panel circuit board).
14. Remove the Front-Panel circuit board from the instrument and clean the wire-strap holes on the Main circuit board of any remaining solder.

To reinstall the Front-Panel circuit board, perform the reverse of the preceding steps.

## Main Circuit Board

All components on the Main circuit board are accessible either directly or by removing either the Storage circuit board, the crt, the Bottom shield, Attenuator, Timing circuit-boards assembly, and the Power-Supply shield. Removal of the Main circuit board is required only when it is necessary to replace the circuit board with a new one.

The Main circuit board can be removed and reinstalled as follows:

1. Perform the "Storage Circuit Board in Servicing Position'" removal procedure.
2. Perform the "Support Chassis' removal procedure.
3. Perform the "Side-Chassis Assembly" removal procedure.
4. Perform step 3 under the "Input/Output and Vector Generator Boards Assembly" removal procedure.
5. Disconnect the three-wire B DELAY TIME POSITION potentiometer connector (P9644) from the Main circuit board (located on the right side of the Main circuit board).
6. Perform the "Alternate Sweep Circuit Board" removal procedure.
7. Disconnect the connectors from the Attenuator and Timing circuit boards assembly, noting their locations for reinstallation reference.
8. Remove three screws and one spacer securing the Bottom shield to the Main circuit board.
9. Perform the "Power-Supply Shield" removal procedure.
10. Unsolder two wires from the Main circuit board to the Filter circuit board.
11. Unsolder the rear-panel EXT Z AXIS connector wire from the Main circuit board.
12. Unsolder the two leads on the Main circuit board from the fan driver.
13. Unsolder the three leads on the chassis mounted CR970 from the Main circuit board.
14. Disconnect P9070, a three-wire connector from the Main circuit board to the heat-sink mounted Q9070.
15. Remove the FOCUS control shaft assembly by pulling it straight out from the front panel.
16. Remove the POWER switch extension-shaft assembly by first pressing in the POWER button to the ON position. Then insert a scribe (or similar tool) into the notch between the end of the switch shaft and the end of the extension shaft and gently pry the connection apart. Push the extension shaft forward, then sideways, to clear the switch shaft. Finally, pull the extension shaft back and out of the instrument.
17. Remove two recessed screws securing the powersupply transistor heat-sink assembly to the right side of the chassis frame.

## WARNING

The crt anode lead and the output terminal to the High-Voltage Multiplier will retain a high-voltage charge after the instrument is turned off. To avoid electrical shock, ground the crt side of the anode lead to the main instrument chassis.
18. Disconnect the crt anode lead from the HighVoltage Multiplier anode lead by carefully pulling the anode plug out of the jack. Discharge the plug tip to the chassis.
19. Unsolder two sets of crt socket wires from the Main circuit board, noting wire color and position for reinstallation reference.
20. Unsolder two sets of delay-line wires from the Main circuit board, noting wire color and position for reinstallation reference.
21. Remove three screws securing the Main circuit board to the instrument chassis frame (one under the EXT Z AXIS connector and two along the left side of the Main circuit board).
22. Use a vacuum-desoldering tool to unsolder the 45 wire straps (W9001) connecting the Main circuit board to the Front-Panel circuit board) from the Main circuit board.

## NOTE

If a vacuum-desoldering tool is not available, lift each wire strap out of the Main circuit board as the joint is heated. Use care to maintain, as nearly as possible, the original shape and spacing of the wire straps to facilitate replacing the circuit board.
23. Push the wire-strap connection end of the Main circuit board down until it is clear of all wire strap ends; then remove it through the bottom of the instrument frame. Ensure that the wire straps are not bent out of place.

## NOTE

When installing the Main circuit board, ensure that the circuit board is in the guides at the rear and right side of the frame and that the 45 wire straps of W9001 are inserted into their corresponding holes.

To reinstall the Main circuit board, perform the reverse of the preceding steps.

## OPTIONS

## INTRODUCTION

This part contains a general description of instrument options available at the time of publication of this manual. Additional information about instrument options and option availability can be obtained either by consulting the current Tektronix Product Catalog or by contacting your local Tektronix Field Office or representative.

## POWER CORD OPTIONS

Instruments are shipped with the detachable power-cord configuration ordered by the customer. Descriptive information about the international power-cord options is provided in "Preparation for Use" in Section 2. The following list identifies the Tektronix part numbers for the available power cords.

Standard (United States)	$161-0104-00$	Option A3 (Australian)	$161-0104-05$
Option A1 (Universal Euro)	$161-0104-06$	Option A4 (North American)	$161-0104-08$
Option A2 (United Kingdom)	$161-0104-07$	Option A5 (Switzerland)	$161-0167-00$

## OPTION 33

Option 33, the Travel Line option, provides impact protection needed for rough industrial and service environments. When the instrument is ordered with Option 33, the instrument comes equipped with the Accessory Pouch and the Front Panel Cover, front and rear mounted shock absorbing rubber guards, an easy-to-use power cord wrap, and a carrying strap.

## OPTION 10 AND OPTION 12

## INTRODUCTION

Option 10 provides a communications interface and additional memory for the instrument. The interface implemented conforms to the specifications contained in IEEE Standard Digital Interface for Programmable Instrumentation (ANSI/IEEE Std 488-1978), commonly referred to as the General Purpose Interface Bus (GPIB). It also complies
with a Tektronix Standard relating to GPIB Codes, Formats, Conventions and Features.

Option 12 provides a communications interface and additional memory for the instrument. The interface implemented conforms to RS-232-C specifications. It also complies with a subset of the Tektronix Codes, Formats, Conventions and Features standard.

Three indicators, displayed on the crt and labeled on the bezel tag, display the condition of the options. A battery backed-up CMOS memory and its battery are also included in the options. Option commands allow saving additional SAVE REF waveforms in the memory.

## WARNIMG

The battery used in this device contains lithium. Do not expose to heat. Do not short terminals. See service information for complete instructions.

The communication options allow remote control of oscilloscope functions. This remote control is accomplished by messages sent to the instrument via either the GPIB (IEEE-488 Standard Bus) or the RS-232-C interface. Messages used are defined either in ANSI/IEEE-488-1978 or in the Tektronix standard on Codes, Formats, Conventions, and Features. Messages to the option can have one of three purposes:

1. Query the state of the oscilloscope.
2. Query the results of measurements made.

Set the instrument operation mode.

The main purpose of the communication options is to allow digitized waveform data to be sent and received by the instrument.

## STANDARD FUNCTIONS, FORMATS, AND FEATURES

The interface-function repertoire of a GPIB instrument, in terms of interface-function subsets, is identified in ANSI/IEEE Std 488-1978. The status of subsets applicable to this instrument with Option 10 are listed in Table 7-1.

Both the GPIB interface and the RS-232-C interface conform to a Tektronix standard on Codes, Formats, Conventions, and Features of messages sent over the bus to communicate with other instruments equipped with a like interface. Specific features implemented in this instrument are listed in Table 7-2, and specific formats implemented are shown in Table 7-3.

Table 7-1
Function Subsets Implemented

Function Subset	Capability	States Omitted	Other Requirements	Other Subsets   Required
SH1 (Source Handshake)	Complete Capability	None	None	T6
AH1 (Acceptor   Handshake)	Complete Capability	None	None	None
T6 (Talker)	Basic Talker, Serial Poll,   Talker Only, Unaddress if   MLA	None	Include [MLA (ACDS)]	SH1 and L3
L3 (Listener)	Basic Listener, Listen   Only, Unaddress if MTA	None	Include [MTA (ACDS)]	AH1 and T6
SR1 (Service Request)	Complete Capability	None	None	T6
RL2 (Remote/Local)	No Local Lock Out	LWLS and   RWLS	None	L3
PP0 (Parallel Poll)	No Capability	All	None	None
DC1 (Device Clear)	Complete Capability   (Selective Device Clear)	None	None	L3
DT0 (Device Trigger)	No Capability	All	None	None
C0 (Controller)	No Capability	All	None	None
E2 (Drivers)	Three-state			

Table 7-2 Specific Format Choices

Format Parameter	Choice Made
Format Characters	Not transmitted; ignored on   reception.
Message Terminator	Either EOI or LF modes can   be selected for   implementation.
Measurement Terminator	Follows program message-unit   syntax.
Link Data (Arguments)	Used in Listen and Talk.
Multiple Event Reporting	Not implemented.
Instrument Identification	Descriptors added for all   options, including GPIB.
Query	Extended by using other   commands.
Set Query	Not implemented.
Device Trigger (DT)	Causes the instrument to   return to a power-on condition.   All operating modes will then   agree with front-panel   settings.
Init Command	Not implemented.
Time/Date Commands	Not implemented.   Stored Setting Commands
Waveform Transmission	Implemented.
IEEE 728 to Local (rtI)	Asserted when any front-panel   control attempts to change a   GPIB-controllable function.
	Compliance not intended.

## PERFORMANCE CONDITIONS

The specifications for the GPIB Option, RS-232-C Option, and the Memory Option are listed in Table 7-4. All other specifications for the instrument (including the performance conditions) are identical to those specified in "Specification" in Section 1 of this manual.

## OPTIONS SIDE PANEL

The instrument is supplied with one of three possible side panels. The standard side panel (Figure 3-8) includes one AUXILIARY connector. The Option 10 side panel (Figure 7-1A) includes one AUXILIARY connector, one GPIB (IEEE 488-1978) interface port, and one PARAMETERS switch. The side panel for Option 12 instruments (Figure 7-1B) includes one AUXILIARY connector, one RS-232-C interface port (includes one DTE and one DCE connector), and one PARAMETERS switch. The Controls, Connectors, and Indicators part of this manual contains information on the use of the AUXILIARY Connector. Refer to Figure 7-1 for location of items 46 through 51.
46) AUXILIARY Connector-Provides connections for an X-Y Plotter and an External Clock input (see Controls, Connectors, and Indicators).
(47) GPIB Connector-Provides the ANSI/IEEE Std 488-1978 compatible electrical and mechanical connection to the GPIB. The connector is only on instruments with Option 10. The function of each pin of the connector is shown in Table 7-5.

Table 7-3
Implementation of Specific Features

Feature	Choice Made	Comments
Secondary Addressing	Not implemented.	
Indicators	ADDR (addressed), SRQ (service request), and PLOT   (acquisisitions locked out) indicators are included.	
Parameter Selection	10 position switch. Instrument reinitializes to power-up state   with exception of issuing power-on service request.	To retain the instrument's   preinitialization setup, the   controller should store the   response to a SET query   before a change is made;   then return the settings   afterwards.

Table 7-4
Option Electrical Characteristics

Characteristics	Performance Requirements
EXTENDED MEMORY	
Power-Down Battery Voltage	Memory retained for battery voltages greater than 2.3 V . ${ }^{\text {a }}$
Data Retention	Memory maintained at least 6 months without instrument power.a
Battery Life	Power-down data retention specification shall be maintained for 3 years without battery change. ${ }^{\text {a }}$
Power-Down Detection Threshold	Fail asserted for supply drop to less than 4.75 V . ${ }^{\text {a }}$ Reset held until supply is greater than 5.0 V . ${ }^{\mathrm{a}}$
Reset Delay	Power-down interrupt to reset delay $\geqslant 1 \mathrm{~ms}$. ${ }^{\text {a }}$
GPIB OPTION	
GPIB Requirements	Complies with ANSI/IEEE Standard 488-1978. ${ }^{\text {a }}$
RS-232-C OPTION	
RS-232-C Requirements	Complies with EIA Standard RS-232-C. ${ }^{\text {a }}$
Baud Rates Available Rates	110,300, 600, 1200, 1800, and 2400 baud.
Accuracy	< 1\% error. ${ }^{\text {a }}$

${ }^{\text {a }}$ Performance Requirement not checked in manual.


Figure 7-1. Option side panels.

Table 7-5
GPIB Connector

Pin	Line Name	Description
1	DIO1	IEEE-488 Data I/O
2	DIO2	IEEE-488 Data I/O
3	DIO3	IEEE-488 Data I/O
4	DIO4	IEEE-488 Data I/O
5	EOI	IEEE-488 END or Identify
6	DAV	IEEE-488 Handshake
7	NRFD	IEEE-488 Handshake
8	NDAC	IEEE-488 Handshake
9	IFC	IEEE-488 Input
10	SRQ	IEEE-488 Output
11	ATN	IEEE-488 Input
12	SHIELD	System Ground (Chassis)
13	DIO5	IEEE-488 Data I/O
14	DIO6	IEEE-488 Data I/O
15	DIO7	IEEE-488 Data I/O
16	DIO8	IEEE-488 Data I/O
17	REN	IEEE-488 Input
18	GND	Digital Ground (DAV)
19	GND	Digital Ground (NRFD)
20	GND	Digital Ground (NDAC)
21	GND	Digital Ground (IFC)
22	GND	Digital Ground (SRQ)
23	GND	Digital Ground (ATN)
24	GND	Digital Ground (LOGIC)

48) GPIB PARAMETER Switch-Allows the selection of setup options for the GPIB interface. The switch is read at power-up and when interface clear messages are received. Five sections of the switch select the GPIB address, one selects the terminator, two select talk/listen modes, and two are used for printer/plotter selection. The function of each switch section is shown in Table 7-6.
(49) RS-232-C PARAMETER Switch—Allows the selection of setup options for the RS-232-C interface. The switches are read at power-up and when interface clear messages are received. Four sections of the switch select the baud rate, three select parity, one selects the terminator, and two are for printer/plotter selection. The function of each switch section is shown in Table 7-7.

Table 7-6
GPIB PARAMETERS Switch

Switch Section	Switch   Position	Function
1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Address selection 0 1
2	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Address selection 0 2
3	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	Address selection 0 4
4	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	Address selection 0 8
5	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Address selection   0   16
6	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Terminator selection EOI LF or EOI
7	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	No function LON
8	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	No function TON
9		Printer/plotter selection ${ }^{\text {a }}$
10		Printer/plotter selection ${ }^{\text {a }}$


#### Abstract

${ }^{4}$ Switches 9 and 10 select printer/plotter devices at power-up. The devices may be changed after power-up using Option commands, or by using the MENU. Two EPSON(tm) formats are selectable. EPS7 uses seven print wires per head pass, and is usually slower. It is the chrs(27) 'L' mode. EPS8 uses eight print wires per head pass, and is usually the faster print-head speed. It is the chrs(27) - Y- mode. In this mode most Epson and Epson-compatible printers will not strike any print wire more often than every second pixel. EPS8 is selected when parity is disabled. Devices are selected with the following switch positions:


Switch 9	Switch 10	Device Selected
0	0	HP-GL ${ }^{\top}$ plotter
1	0	[EPS7] or EPS8
0	1	ThinkJet ${ }^{\top}$ printer

© HP-GL and ThinkJet are trademarks of Hewlett - Packard Company. Epson is a trademark of Epson Corporation.

Table 7-7
RS-232-C PARAMETERS Swltch

Table 7-8 Baud Rate

Switch Section	Switch Position	Function
1	--	Baud rate ${ }^{\text {a }}$
2	--	Baud rate ${ }^{\text {a }}$
3	--	Baud rate ${ }^{\text {a }}$
4	--	Baud rate ${ }^{\text {a }}$
5		Parity enable
	0	Parity error will NOT cause SRQ (also selects 8-bit character length)
	1	Parity error WILL cause SRQ (also selects 7-bit character length)
6		Parity select ${ }^{\text {b }}$
7		Parity select ${ }^{\text {b }}$
8		Line terminator selection
	0	Lines are terminated with carriage return (CR)
	1	Lines are terminated with carriage return-line feed (CR-LF)
9		Printer/plotter selection ${ }^{\text {c }}$
10		Printer/plotter selection ${ }^{\text {c }}$

aSee Table 7-8
${ }^{6}$ See Table 7-9
cSwitches 9 and 10 select printer/plotter devices at power-up. The devices may be changed after power-up using Option commands, or by using the MENU. Two EPSON ${ }^{\text {© }}$ formats are selectable. EPS7 uses seven print wires per head pass, and is usually slower. It is the chrs(27) " L " mode. EPS8 uses eight print wires per head pass, and is usually the faster print-head speed. It is the chr $\$(27)$ " $Y$ - mode. In this mode most Epson and Epson-compatible printers will not strike any print wire more often than every second pixel. EPS8 is selected when parity is disabled. Devices are selected with the following switch positions:

Switch 9	Switch 10	Device Selected
0	0	HP-GL® plotter
1	0	[EPS7] or EPS8
0	1	ThinkJet ${ }^{\text {© }}$ printer

© HP-GL and ThinkJet are trademarks of Hewlett - Packard Company. Epson is a trademark of Epson Corporation.

Index	Switch Position	Baud Rate
	4321	
0	0000	50
1	0001	75
2	0010	110
3	0011	134.5
4	0100	150
5	0101	300
6	0110	600
7	0111	1200
8	1000	1800
9	1001	2000
10	1010	2400
11	1011	3600
12	1100	4800
13	1101	7200
14	1110	9600
15	1111	Off Line

(50) RS-232-C DTE Connector-Provides connection meeting the EIA RS-232-C standard for data terminal equipment. The connector is shown in Figure 7 1B. Table $7-10$ lists the function of each pin of the connector. The connector is only on Option 12 instruments.

## NOTE

Some controllers use nonstandard connectors and pin assignments. Consult your controller operators manual for specific interfacing information.

RS-232-C DCE Connector-Provides connection meeting the EIA RS-232-2 standard for data communications equipment. The connector is shown in Figure 7-1B. Table 7-11 lists the function of each pin of the connector. The connector is only on Option 12 instruments.

## NOTE

Some controllers use nonstandard connectors and pin assignments. Consult your controller operators manual for specific information.

Table 7-9
Parity Selectiona

Index	Switch   Position   67	Parity   Type	Comment
0	00	ODD	The most significant bit (MSB) is set or cleared so that the number of 1s per   byte is ODD.
1	01	EVEN	The MSB is set or cleared so that the number of 1s per byte is even.   2
10	MARK	The MSB is set.   3	SPACE

${ }^{\text {a }}$ Characters are always accepted if possible. An SRQ is sent if the received parity doesn't match the parity selected. Parity must be disabled (switch position 5 set to 0 ) for binary transfers to take place.

Table 7-10
RS-232-C DTE Connector

Pin	Signal Name		Function
	Internal	External	
1	CHAS   GND	CHAS   GND	Chassis ground
2	ITXD	TXD	Transmitted data
3	IRXD	RXD	Received data
4	IRTS	RTS	Request to send
5	ICTS	CTS	Clear to send
6	IDSR	DSR	Data set ready
7	SIG	SIG	Signal ground
8	GND	GND	
20	IRLSD2	RLSD	Received line signal detect

Table 7-11
RS-232-C DCE Connector

Pin	Signal Name		Function
	Internal	External	
1	CHAS   GND	CHAS   GND	Chassis ground
2	IRXD	TXD	Transmitted data
3	ITXD	RXD	Received data
4	ICTS	RTS	Request to send
5	IRTS	CTS	Clear to send
6	IDTR	DSR	Data set ready
7	SIG	SIG	Signal ground
8	GND	GND	
20	IRLSD1	RLSD	Received line signal detect

## INTERFACE STATUS INDICATORS

Three indicators appear in the crt readout to indicate the status of the communications options. The indicators are labeled SRQ, ADDR, and PLOT on the crt bezel, and appear as intensified lines in the crt under the labels. Refer to Figure 7-2 for the location of items 52 through 54.
(52) SRQ Indicator-Indicates the communications option requires service by the controller. Service requests are cleared when the instrument has been polled for its status and no further warning or error conditions are pending. The communication options assert Service Request (SRQ) when powered up.
(53) ADDR Indicator-Indicates the instrument is addressed to talk or listen on the GPIB option. Indicates carrier detect on the RS-232-C option.
(54) PLOT Indicator-Indicates the communication option is currently sending waveform data over its interface and acquisitions are inhibited.

## MENU SELECTED FUNCTIONS

The following functions are available as part of the ADVANCED FUNCTIONS Menu on instruments containing the GPIB or RS-232-C options.

REFERENCE—Allows a SAVE REF memory to be Erased or Copied.

ERASE-Selects and erases a nonvolatile SAVE REF memory.

COPY-Selects and copies one nonvolatile SAVE REF memory to another SAVE REF memory.

COMM—Allows the selection of parameters for optional communications options, when they are present.

DATA-Selects the data-coding format, source or destination of the data, and channel selection for data transmissions.

STOP BITS-Selects the number of stop bits for RS-232-C data transmissions.

FLOW-Sends the waveform data to a listen only device.


Figure 7-2. Interface status indicators.

Menus are displayed with as much of the selection path visible as possible. This method displays the current location in the menu as well as the available alternatives and messages on how to make a selection.

The COMM Menu:
The COMM menu resides under the ADVANCED FUNCTIONS menu:

```
ADVANCED FUNCTIONS
 REFERENCE
 COMM
 ACQ MODE SETUP TREE
 DIAGNOSTICS
```

Once COMM is selected, its submenus appear:
COMM
DATA
STOP BITS (Option 12 only) FLOW (Option 12 only)

If DATA is selected, its functions appear:
DATA
ENCDG
SOURCE
TARGET
CHANNEL

The ENCDG function selects waveform encoding for transmission and expected encoding for waveform reception. At power-up, the default encoding is binary. Make one of three choices from the menu:

```
ENCDG
 ASCII
 BINARY
 HEX
```

The SOURCE function selects whether one of the Reference Memories or the current acquisition is the source for waveform transfers. If REF is selected, use the Cursor knob to select the actual reference. REF4 is an explicit 4 K reference:

SOURCE
REF
ACQ

The TARGET function is nearly identical to the SOURCE function. The only difference is that ACQ is not a valid TARGET. The TARGET reference is the destination for all waveforms sent to the instrument:

## TARGET <br> REF

Like SOURCE, waveform TARGET references are selected with the Cursor knob.

The CHANNEL function selects the channel whose waveform is sent. With the exception of XY waveforms, only data from one channel is sent at a time, even if both channels were acquired in ALT or CHOP Vertical Mode:

```
CHANNEL
 CH1
 CH2
```

The STOP BITS function, available ONLY on Option 12 (RS-232-C), sets the number of stop bits. Use the Cursor knob to select.

The FLOW function, available ONLY on Option 12 (RS-232-C), enables or disables Control-S/Control-Q handshaking. FLOW must be OFF during binary waveform transfers.

FLOW
ON
OFF

## GPIB PARAMETER SELECTION

Selection of GPIB parameters (primary address, message terminator, and talk/listen mode) can be made at any time using the GPIB PARAMETERS switch and Table 7-6.

## Primary Address

The selected GPIB address establishes both the primary talk and listen addresses for the oscilloscope. It can be set to any value between 0 and 31, inclusive.

## NOTE

This instrument has no provisions for secondary addressing as defined by ANSI/IEEE Std 488-1978.

With an address of 31, the instrument still presents an active load but does not respond to nor interfere with any bus traffic. This is useful for changing the instrument's status without turning off the oscilloscope's power.

## Input End-of-Message Terminator

The end-of-message terminator can be selected to be either the End-or-ldentify (EOI) interface signal or the Line-Feed (LF) character.

When EOI (normal mode) is selected as the terminator, the instrument will:

- Accept only EOI as the end-of-message terminator.
- Assert EOI concurrently with the last byte of a message.

When LF is selected as the terminator, the instrument will:

- Accept either LF or EOI as the end-of-message terminator.
- Send Carriage Return (CR) followed by LF at the end of every message, with EOI asserted concurrently with the LF.


## Talk/Listen Mode

Three talk/listen modes are selectable:

- TALK ONLY mode allows the instrument to send data over the GPIB.
- LISTEN ONLY mode permits the instrument to receive data over the GPIB.
- TALK/LISTEN mode (both TON and LON modes selected) allows the instrument to both send and receive data over the GPIB.

The default mode is TALK/LISTEN.

To select or change the talk/listen mode, select TON and/or LON using the GPIB PARAMETERS switch and Table 7-6.

## RS-232-C PARAMETER SELECTION

Selection of RS-232-C parameters (baud rate, parity, and line terminator) can be made at any time using the RS-232-C PARAMETER switch and Table 7-7 through Table 7-9.

## Baud Rate

The selected RS-232-C baud rate establishes the baud rate used by the instrument for both sending and receiving data. Baud rates selectable are listed in Table 7-9.

When OFF LINE is selected as the baud rate, the instrument still presents an active load but does not
respond to nor interfere with any bus traffic. This is useful for changing the instrument's status without turning off the oscilloscope's power.

Use Table 7-7, Table 7-8 and the PARAMETERS switch to select the desired baud rate.

## Parity

The parity parameters selected determine the instrument response to received parity errors and the parity of data sent by the instrument.

Section 5 of the PARAMETERS switch determines whether or not received parity errors will cause an SRQ (see Table 7-7).

Sections 6 and 7 of the PARAMETERS switch determine the parity used when transmitting data over the bus. ODD, EVEN, MARK, or SPACE are selectable (see Table 7-9).

## Line Terminator

The line terminator can be selected to be either the carriage return (CR) or the CR and Line-Feed (LF) characters.

When CR (normal mode) is selected as the terminator, the instrument will:

- Accept only CR as the line terminator.
- Send CR as the last byte of a message.

When CR LF is selected as the terminator, the instrument will:

- Accept either CR or LF as the line terminator.
- Send Carriage Return (CR) followed by LF at the end of every message.

Section 8 of the PARAMETERS switch determines the line terminator. Select the desired line terminator using the PARAMETERS switch and Table 7-7.

## MESSAGES AND COMMUNICATION PROTOCOL

Option commands can set the instrument operating mode, query the results of measurements made, or query the state of the oscilloscope. The commands are specified
in mnemonics that are related to the functions implemented. For example, the command INIt initializes instrument settings to states that would exist if the instrument's power was cycled. To further facilitate programming, command mnemonics are similar to front-panel control names.

## NOTE

All measurement results returned by the options have the same accuracy as the main instrument.

## Commands

Commands for this instrument, like those for other Tektronix instruments, follow the conventions established in a Tektronix Codes and Formats Standard. The command words were chosen to be as understandable as possible, while still allowing a familiar user to shorten them as much as necessary, as long as the result is not ambiguous. Syntax is also standardized to make the commands easier to learn.

In the command lists (Tables 7-13 through 7-24), headers and arguments are listed in a combination of uppercase and lowercase characters. The instrument accepts any abbreviated header or argument containing at least the characters shown in uppercase. Any characters added to the abbreviated (uppercase) version must be those shown in lowercase. For a query, the question mark must immediately follow the header. For example, any of the following formats are acceptable:

VMO?
VMOd?
VMOde?

## Headers

A command consists of at least a header. Each command has a unique header, which may be all that is needed to invoke a command; e.g.,

INIt
OPC

## Arguments

Some commands require the addition of arguments to their headers to describe exactly what is to be done. If there is more to the command than just the header (including the question mark if it is a query), then the header must be followed by at least one space.

In some cases, the argument is a single word; e.g.,
REFF REF4
PLOt STArt

In other cases, the argument itself requires another argument. When a second argument is required, a colon must separate the two arguments; e.g.,

ACQuisition REPetitive:SAMple
WFMpre XINcr:1.0E-3

Where a header has multiple arguments, the arguments (or argument pairs, if the argument has its own argument) must be separated by commas; e.g.,

DATa ENCdg:BINary,CHAnnel:CH2 VMOde? CH1,CH2,ADD

## Default Arguments

Arguments shown within brackets ([argument]) are defaults. In any command that has a default, omitting the default argument selects the default. Do not confuse default arguments with power-up default conditions; the power-up defaults may differ from the argument default in the same function. The default argument may be sent in any command. Do not send the brackets as part of the default argument. All commands that do not have a default must always include a argument, where one or more exists.

## Command Separator

It is possible to put multiple commands into one message by separating the individual commands with a semicolon; e.g.,

DATa ENCdg:BINary,CHAnnel:CH2;WFMpre XINcr:1.0E-3

## Command Formatting

Commands sent to the oscilloscope must have the proper format (syntax) to be understood; however, this format is flexible in that many variations are acceptable. The following paragraphs describe this format and the acceptable variations.

The oscilloscope expects all commands to be encoded as either uppercase or lowercase ASCII characters. All data output is in uppercase.

Spaces, Carriage Returns, and Line-Feed characters are all formatting characters that can be used to enhance the readability of command sequences. As a general rule, these characters can be placed either after commas and semicolons or after the space that follows a header.

## Message Terminator

As previously explained, GPIB messages may be terminated with either EOI or LF. Some controllers assert EOI concurrently with the last data byte; others use only the LF character as a terminator. The GPIB interface can be set to accept either terminator. With EOI selected, the instrument interprets a data byte received with EOI asserted as the end of the input message; it also asserts EOI concurrently with the last byte of an output message. With the LF setting, the instrument interprets the LF character without EOI asserted (or any data byte received with EOI asserted) as the end of an input message; it transmits a Carriage Return character followed by Line Feed (LF with EOI asserted) to terminate output messages.

RS-232-C messages may be terminated with either carriage return (CR) or the CR and Line-Feed (LF) characters. The RS-232-C Option can be set to accept either terminator. With CR selected, the instrument interprets a line ending in CR as the end of the input message: it also sends CR as the last byte of an output message. With the CR and LF setting, the instrument interprets either the CR character or the LF character as the end of an input message; it transmits a Carriage return character followed by a Line Feed to terminate output messages.

## Numeric Arguments

Many commands have numeric arguments. The numeric arguments are shown in either <NR1>, $<$ NR2 $>$, or $<$ NR3 $>$ notation. These symbols refer to the format of the numeric argument. All values must be decimal (base 10).

Table 7-12 depicts the number formats for numeric arguments in the command set. As shown in the table, both signed and unsigned numbers are accepted; but unsigned numbers are interpreted to be positive. Any command or query that has an $<\mathrm{NR} 2>$ argument may have that argument sent to the the instrument in either $<$ NR2 $>$ or $<$ NR1 $>$ format. Likewise, an $<$ NR3 $>$ argument may be sent in <NR3>, <NR2> or <NR1> format.

## COMMAND LISTS

Tables 7-13 through 7-24 describe all commands available in the instrument equipped with either the GPIB or RS232 Option. Query and Response examples are shown in Table 7-25. The first column lists the name (or header) of the command. The capitalized letters must be present to identify the command, while those shown in lowercase are optional. The second column lists arguments that can

Table 7-12
Numeric Argument Format for Commands

Numeric   Argument   Symbol	Number   Format	Examples
$<$ NR1 $>$	Integers	$+1,2,-1,-10$
$<$ NR2 $>$	Explicit decimal   point (floating   point)	$-3.2,+5.1,1.2$
$<$ NR3 $>$	Floating point in   scientific notation	$+1 . E-2,1.0 \mathrm{E}+2$,   $1 . E-2,0.02 \mathrm{E}+3$

be associated with the command. The third column lists arguments associated with the first argument. Finally, descriptions of each command and its arguments are contained in the last column.

One or more arguments, separated by commas, may be given in a query to request only the information wanted. For example: CH1? VOLts,COUpling. However, some headers in the command tables are Query only, that is, they may only be sent as queries; never as commands. The queries are listed in the same general format as command/query headers. The arguments returned by the instrument are shown in smaller type. Do not send these arguments as part of the query; they are returnable only. For example, AC, DC, or GND are returned in response to a CH1? COU.

Instrument commands are presented in tables divided into the following functional groups:

Table	Command Group	Page
$7-13$	Vertical Commands	$7-13$
$7-14$	Horizontal Commands	$7-14$
$7-15$	Trigger Commands	$7-15$
$7-16$	Cursors Commands	$7-16$
$7-17$	Display Commands	$7-17$
$7-18$	Acquisition Commands	$7-18$
$7-19$	Save and Recall References Commands	$7-20$
$7-20$	Waveforms Commands	$7-22$
$7-21$	Waveform Preamble Fields	$7-23$
$7-22$	Service Request Group Commands	$7-25$
$7-23$	Miscellaneous Commands	$7-26$
$7-24$	RS-232-C Specific Commands	$7-26$

Table 7-13
Vertical Commands

Header	Argument	Link Argument	Description
CH1?	VOLts   COUpling	<NR3>   AC   DC   GND	Query only. Returns all current CH 1 settings:   CH1 VOL:<NR3>, COU:string;,   where < NR3> is the volts/div setting and string is either AC, DC, or GND.   Query only. Returns Channel 1 volts/div reading including probe attenuation. For example: 5.0E0 is returned when the CH1 VOLTS/DIV switch is set to 50 mV and a 100 X probe is attached. A warning SRQ is generated if the CH 1 Variable knob is not in the calibrated position.   Query only. Returns the current position of the CH1 INPUT COUPLING switch: CH1 COU:string;, where string is either $A C, D C$, or GND.
CH2?	INVert	ON OFF	Query only. Like CH1?, except includes an INVert query response.   Query only. Returns status of CH2 INVERT switch: CH2 INV: string;, where string is either ON or OFF.
VMOde?	CH1   CH2   ADD   CHOp   ALT   XY		Query only. Returns current state of the vertical display: VMO string;, where string is either CH1, CH2, ADD, CHOp, ALT, or $X Y$.
PROBe?	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	<NR1>	Query only. Returns the probe attenuation coding: CHn PROB: $<$ NR1 $>$;, where $n$ is either 1 or 2 and $<$ NR1 $>$ is either $1000,100,10,1,-1$, or -2 . PROBe returns -2 for unknown encoding, -1 for identify, and positive values for proper probe encoding.

Table 7-14
Horizontal Commands

Header	Argument	Link Argument	Description
HORizontal?	MODe	ASWeepAINtbBSWeep	Query only. Returns all current Horizontal settings in the form: HOR MOD:string, ASE:<NR3>, BSE:<NR3>, EXT:string; where the MODe string is either ASWeep, AINtb, or BSWeep. The EXTclk string is either ON or OFF.
			Query only. Returns the current Horizontal Mode setting in the form: HOR MOD:string; where string is either ASWeep, AINtb, or BSWeep.
	ASEcdiv	<NR3>	Query only. Returns the current A SEC/DIV setting. The $<$ NR3 $>$ value returned is zero when the knob is set to EXT CLK.
	BSEcdiv	<NR3>	Query only. Returns an <NR3> value representing the current B SEC/DIV setting.
	HMAg	ON OFF	Query only. Returns status of Horizontal Magnifier (X10 PULL) in the form: HOR HMA:string, where string is either ON or OFF.
	EXTclk	ON OFF	Query only. Returns status of EXTclk in the form: HOR EXT:string;, where string is either ON or OFF.
DELAy?	VALue	<NR3>	Query only. Returns current Horizontal delay settings in the form: DELA VAL:<NR3>, UNI:string;.
			Query only. Returns the current DELay VALue setting in the form DELA VAL: <NR3 $>$;, where $<$ NR3 $>$ is the delay value returned in units indicated by the UNIts query.
	UNIts	S DIVs	Query only. Returns the current DELAy UNIts in the form: DELA UNI:string; where string is either S (seconds) or DIVs.

Table 7-15
Trigger Commands

Header	Argument	Link Argument	Description
ATRigger?	MODe	NORmal PPAuto SGLswp	Query only. Returns current A Trigger status: ATR MOD:string, where the MODe string is either NORmal, PPAuto, or SGLswp.   Query only. Returns current A Trigger Mode setting in the form ATR MOD:string;, where string is either NORmal, PPAuto, or SGLswp. PPAuto is returned for both P-P AUTO and TV FIELD modes.
SGLswp	ARM DONe		As a query, SGLswp returns the status of the SGLswp trigger mode: SGL string;, where string is either ARM or DONe. ARM indicates that the sweep is armed or running. DONe indicates that a sweep is complete. An execution error SRQ is generated if SGL SWP is not ON.   As a command, only SGLswp ARM; is legal. ARM re-arms a completed sweep. An execution warning SRQ is generated if SGL SWP is not ON or if ARM is active.
TRIggered?	ON OFF		Query only. Returns the status of the TRIG'D indicator, either TRI ON; or TRI OFF;.

Table 7-16
Cursor Commands

Header	Argument	Link Argument	Description
CURSor	SELect   TARget   CHAnnel   POSition	CURS1 CURS2   ACQuisition REF1 REF2 REF3 REF4   CH 1   CH 2 $<\text { NR1 }>$	Selects the cursor to be positioned.   Selects the waveform on which cursors appear. Although the TARget waveform can be selected with either CURS1 or CURS2, both cursors will be on the last selected TARget. REF4 is the $4 k$ reference location.   Selects active cursor channel. CHAnnel determines which channel's DELTAV or DELTAT values are returned. Cursor positioning is independent of channel.   Selects the cursor screen position in the range of 0-1023 for 1024 point waveforms and 0-4095 for 4096 point waveforms. If the value is outside the defined range, the value is limited and a warning SRQ is generated.
DELTAV?	VALue   UNIts	<NR3>   V   PERcent	Query only. Returns the voltage difference between cursors: DELTAV VAL: <NR3>; An SRQ is sent if the voltage cannot be measured. VALue is returned in PERcent if the VAR knob is uncalibrated, otherwise Volts are returned.   Query only. Indicates whether DELTAV VALue is returned in Volts or PERcent.
DELTAT?	VALue   UNIts	$<$ NR3>   S   DIVs	Query only. Returns the time difference between cursors: DELTAT VAL: <NR3 $>$; An SRQ is sent if the time cannot be measured. VALue is returned in DIVs when in EXTCLK.   Query only. Indicates whether DELTAT value is returned in $S$ (seconds) or DIVs.

Table 7-17
Display Commands

Header	Argument	Link Argument	Description
REAdout	ON OFF		Turns CRT readout ON or OFF.
MESsage	<NR1>	"string"	Command only. Writes text strings on row $<$ NR1 $>$ of the screen. Legal values for $<$ NR1 $>$ are 0 through 16; 1 writes to the bottom row, 16 writes to the top row, and 0 clears all messages and restores the default displays. The "string" must always be within quote marks and is displayed left justified. Long strings are truncated to approximately 40 characters. (Characters have proportional spacing.) Displaying multiple simultaneous messages may cause display flicker and may exceed display memory capacity.
PLOt	STArt		Initiates a plot via the GPIB (Option 10) or RS-232-C (Option 12) interface port, or the XY Plotter Port. While the plot is in progress all commands or queries are ignored except for PLOt ABOrt, which terminates the plot. If enabled, an OPC SRQ is sent when the plot completes.
	ABOrt		Terminates a plot in progress and returns the instrument to its previous mode. PLOt ABOrt is the only command or query the instrument responds to during a plot.
	AUTo	$\begin{aligned} & {[\mathrm{ON}]} \\ & \mathrm{OFF} \end{aligned}$	Turns AUTo mode ON or OFF. If AUTo is ON, each waveform is plotted after it is acquired, however, the graticule will only be plotted once, if GRAt is ON.
	GRAt	$\begin{array}{\|l} {[\mathrm{ON}]} \\ \mathrm{OFF} \end{array}$	Determines if a plot will include a graticule image.
	FORmat	[XY]   HPGI   EPS7   EPS8   TJEt	Defines plot format and output port. FORmat reverts to XY if port is not configured for plotting. HPGl formats for HP-GLt compatible plotters. EPS7 and EPS8 format for 7 bit (low-speed, double density) and 8 bit (high-speed, double density) Epson" ${ }^{\text {" }}$ format printers, respectively. TJEt formats for the Hewlett-Packard ThinkJet" printer.
			A GPIB Controller in Charge may issue PLOt STArt to the oscilloscope, My Listen Address (MLA) to the printer or plotter, then My Talk Address (MTA) to the oscilloscope to produce a plot.
	SPEed	<NR1 $>$	SPEed changes the analog plotter pen speed. <NR1> must be an integer from 1 through 10. Units are roughly in divisions per second.

[^9]Table 7-18
Acquisition Commands

Header	Argument	Link Argument	Description
STORe?	ON OFF		Query only. Returns the operating mode of the instrument; either STOR ON; for digital storage mode, or STOR OFF; for analog mode.
ACQuisition	REPetitive	SAMple ACCpeak [AVErage]	Selects the acquisition algorithm for 0.05 us/div to $2 \mu \mathrm{~s} / \mathrm{div}$.
	HSRec	SAMple [ACCpeak] AVErage	Selects the acquisition algorithm for $5 \mu \mathrm{~s} / \mathrm{div}$ and $10 \mu \mathrm{~s} / \mathrm{div}$.
	LSRec	SAMple ACCpeak AVErage [PEAkdet]	Selects the acquisition algorithm for $0.02 \mathrm{~ms} / \mathrm{div}$ to $50 \mathrm{~ms} / \mathrm{div}$.
	SCAn	SAMple ACCpeak AVErage [PEAdet]	Selects the acquisition algorithm for $0.1 \mathrm{sec} / \mathrm{div}$ to $5 \mathrm{sec} / \mathrm{div}$, when in SCAN Display mode.
	ROLI	SAMple [PEAkdet]	Selects the acquisition algorithm for $0.1 \mathrm{sec} / \mathrm{div}$ to $5 \mathrm{sec} / \mathrm{div}$, when in ROLL Display mode.
	CURRent	SAMple AVErage PEAkdet ACCpeak DEFault	Without the second argument, this command selects the default algorithm for the acquisition parameters that are currently active. With an argument, the command selects the specified algorithm. An SRQ is generated if the argument is not legal for the acquisition parameters that are active.
	RESet		Sets sampling modes at all sweep speeds to their default conditions.
	SMOoth	ON OFF	Applies the smoothing algorithm, when ON.
	WElght	<NR1>	Sets the number of weighted acquisitions included in an AVErage display. The value of $<$ NR1 $>$ must be either 1, 2, 4, 8, 16, 32, 64, 128, or 256.
	NUMsweeps	<NR1>	Sets the number of sweeps done before halting. 0 implies continuous mode (don't halt).
	TRIGCount	<NR1>	Sets the number of points before the trigger point in an acquisition. For 1 k acquisitions, TRIGCount may range between 4 and 512 when in post-trigger, and 512 through 1020 when in pre-trigger. For 4 k acquisitions, TRIGCount may range between 16 and 2048 when in post-trigger, and 2048 through 4080 when in pre-trigger. Resolution of $<$ NR1 $>$ is 4 .
	VECtors	ON OFF	Turns Vector Mode ON or OFF.

Table 7-18 (cont)
Acquisition Commands (cont)

Header	Argument	Link Argument	Description
ACQuisition?	SWPcount	<NR1>	Query only. Returns the number of sweeps completed, in the form: ACQ SWP: <NR1> ;
	POInts	<NR1>	Query only. Returns the number of data points in the acquisition, either 1024 or 4096, in the form: ACQ POI: < NR1>;
	TRIGMode	$\begin{array}{\|l\|} \hline \text { PRE } \\ \text { POSt } \end{array}$	Query only. Returns the current trigger mode in the form: ACQ TRIGM:string;, where string is either PRE or POSt.
	SAVE	ON OFF	Query only. Returns the current state of the acquisition system in the form: ACQ SAVE:string;, where string is ON when the acquisition system has halted or is in the process of halting, or OFF.
	DISplay	$\begin{aligned} & \text { ROU } \\ & \text { SCAn } \end{aligned}$	Query only. Returns the current Acquisition Display mode in the form: ACQ DIS:string; where string is either ROLI or SCAn.

Table 7-19
Save and Recall Reference Commands

Header	Argument	Link Argument	Description
REFFrom	[ACQ] REF1   REF2   REF3   REF4   REFA   REFZ		Selects the waveform memory source for SAVeref commands.
SAVeref	REF1 REF2   REF3   REF4   REFA   REFZ		Saves the waveform selected by REFFrom in the named reference. REF1, REF2, and REF3 are used for 1024 point reference waveform storage and REF4 is for 4096 point references. 4096 point references from ACQ or REF4 may be saved as 1024 point references in REF1 through REF3. The portion of the 4096 points reference saved is determined by the position of the active cursor. 4096 point references from REFA through REFZ may NOT be saved as 1024 point references in REF1 through REF3. 1024 point references are saved as either 1024 bytes, or 2048 bytes for AVEraged waveforms.
REFDisp	REF1 REF2 REF3 REF4 REFA   REFZ	ON   OFF   EMPty   EMPty	Controls the display of the named reference. EMPty causes the contents of the reference to be deleted and its display turned OFF. REF1, REF2, and REF3, are 1024 point references, and REF4 is the 4096 point reference.   The non-volatile references may not be displayed, only EMPtied. To display the non-volatile references, first transfer them to a numbered reference.
REFProt	REFA   REFZ	LOCked PERM UNLocked	Controls the write protection of non-volatile reference memories, REFA through REFZ. LOCked and PERM disable further storage into the named reference; UNLocked enables storage. PERM cannot be overwritten via front panel controls.
REFStat?	FILI	<string>	Query only. Returns a 30 character string with each reference memory's fill status indicated by a single character. <string> is ordered REF1 through REF4 followed by REFA through REFZ. Each string character is either $0,1,2,4$, or 8 , which represents the waveform data in kilobytes.
	PROTect	<string>	Query only. Returns a 30 character string with each reference memory's protection status indicated by a single character. The order is identical to the FILI query. The characters which may make up the string are $\mathrm{U}, \mathrm{L}$, and P , which correspond to UNLocked, LOCked, and PERManently locked.
	FREe	<NR1>	Query only. Returns number of free kilobytes in the non-volatile reference memory.

Table 7-19 (cont)
Save and Recall Reterence Commands (cont)

Header	Argument	Link Argument	Description
REFOrmat	TARget	REF1   REF2   REF3   REF4	Selects the reference to REFOrmat.
	CHAnnel	$\begin{aligned} & {[\mathrm{CH} 1]} \\ & \mathrm{CH} 2 \end{aligned}$	Selects channel to REFOrmat. If there is no waveform for the channel (empty reference), an SRQ error is sent. If an XY waveform is selected, either channel may be selected.
	VGAin	<NR3>	Changes the vertical gain of the waveform pointed to by REFOrmat TARget. Maximum change is $\pm 3$ detents (in a $1,2,5$ sequence) from the vertical gain setting of the original waveform acquisition. Cannot be used on XY waveforms.
	BASegain	<NR3>	Query only. Returns acquired vertical gain setting.
	VPOsition	<NR3 ${ }^{\text {> }}$	Adjusts vertical position, relative to the original acquisition, in divisions. Valid range is $\pm 10$ divisions. Resolution is one displayed bit.
	HMAg	ON OFF	When ON, increases the horizontal gain of the waveform pointed to by REFOrmat TARget. Affects both vertical channels. Cannot be used on XY waveforms.   Query only. Returns originally acquired vertical mode.
	MODe	CH1   CH2   ADD   CHOP   ALT   XY	

Table 7-20
Waveform Commands

Header	Argument	Link Argument	Description
WAVfrm?	<string>		Query only. Response is a waveform from the oscilloscope, in the form: WFMpre <ascii string>; CURVe <string>;, which is a concatenation of the WFMpre and CURVe queries. The waveform pointed to by the DATa SOUrce and DATa CHAnnel pointers are sent in the current DATa ENCdg format.
CURVe	<Wfm Data>		The CURVe command or query is used to send or receive waveform data from the oscilloscope. The DATa SOUrce or DATa TARget pointers show where to get or put data, respectively. The DATa ENCdg pointer shows which format, HEX, BINary, or ASCii data is sent or expected. The DATa CHAnnel pointer selects either CH 1 or $\mathrm{CH} 2 .<\mathrm{Wfm}$ Data $>$ is in the form: CURVE <Data>; where <Data> is either $\%<$ Byte Count $><$ Binary Data><Checksum> for BINary, \#H < Byte Count $><$ Hexadecimal Data $><$ Checksum $>$ for HEX, or <ASCII Data> for ASCii ENCdg. For ASCii ENCdg, each data value is seperated by a comma.
DATa	SOUrce	REF1   REF2   REF3   REF4   [ACQ]	Sets data parameters for data transmission and reception.   Selects which reference memory is source for the next WFMpre? or CURVe? query sent to the instrument. The default at power-up is ACQuisition.
	TARget	REF1 REF2 REF3 REF4	Selects which reference memory receives the next WFMpre or CURVe command sent to the instrument. The default at power-up is REF1.
	CHAnnel	$\begin{aligned} & {[\mathrm{CH} 1]} \\ & \mathrm{CH} 2 \end{aligned}$	Points to the waveform that a CURVe? or WAVfrm? query will return. If there is no waveform for the CHAnnel and SOUrce selected (empty reference), an SRQ error is sent when the waveform is requested. Power-up default is CH1.
	ENCdg	ASCii [BINary] HEX	Sets the data encoding/decoding format. The default at powerup is BINary. All ENCdg formats represent an unsigned integer.

Table 7-21
Waveform Preamble Fields

Header	Argument	Link Argument	Description				
WFMpre	WFId	"ascii str"	The WFld field includes labeling information to help you remember key features about the waveform. The information includes Vertical Mode, Coupling, Volts/Div, Time/Div, and Acquisition Mode. The scaling information is the same as in the corresponding preamble fields, but is labeled in the appropriate units. There is no command form of this argument. If received as a command, it is ignored.   The fields and their possible values for the WFId section of the preamble are:				
			ACQ CH1   REF1 CH2   $\cdot$ XY   $\cdot$    •    REF4	DC   AC   GND   Unknown	$0.2 \mathrm{MV}$   5V DIVS	50ns   5s CLKS	SMPL   AVG   PKDET   PKDET-   SMOOTH   ACCPK   ACCPK-   SMOOTH
	NR.Pts	<NR1 $>$	Number of points in waveform. Each point can be a single $Y$ value ( $T$ implied), an X-Y pair, or an Max-Min pair. Although digitized record length is either 1024 or 4096 points, NR.Pts may be $256,512,1024,2048$, or 4096 , depending on number of acquired channels, acquisition mode, whether or not smoothing is enabled.				
			Num   Chn	Acquire Mode	SMOOTH   ON/OFF	NR   RE   Ra	pts to   LEN   0
			1	SMPL	N/A		LEN/1
			1	AVG	N/A		LEN/1
			1	PKDET	ON		LEN/1
			1	ACCPK	ON		LEN/1
			2	SMPL	N/A		LEN/2
			2	AVG	N/A		LEN/2
			2	PKDET	ON		LEN/2
			2	ACCPK	ON		LEN/2
			1	PKDET	OFF		LEN/2
			1	ACCPK	OFF		LEN/2
			2	PKDET	OFF		LEN/4
					OFF		LEN/4

Table 7-21 (cont)
Waveform Preamble Fields (cont)

Header	Argument	Link Argument	Description
WFMpre (cont)	PT.Off	<NR1>	Point offset identifies the trigger position relative to the first point of the waveform. For a 1024 point record PT. Off normally varies between 4 and 1024 in increments of 4. Normal range with 4096 point records is between 4 and 4096. NOTE: PT.Off returns a negative value if the trigger occurred before the first point of the waveform. Since a 1024 record portion of a 4096 point record can be transferred, legal values for PT.Off range from -3076 to +4096 . If the value is unknown, -10000 is returned.
	PT.Fmt		Point format defines how to interpret the curve data.
		XY   ENV	Y format means that X information is implicit and that data points are $Y$ values.
			$X Y$ format means that data points are XY pairs, with $X$ first.
			Format used for envelope waveforms. The data is sent in the form: ..., y1max, y1min, y2max, y2min,... ENV is valid for PEAkdet and ACCpeak when SMOoth is OFF.
	XINcr	s CLKs <NR3>	If the argument is S , the XINcr value is in seconds. If it is CLKs, the scaling is unknown (EXTCLK).
			Value gives the time interval between points (sampling rate). If <NR3> does not correspond to a legitimate time/div setting, the nearest legitimate setting is substituted and a warning SRQ is issued if EXW is ON. For a query response with an unknown time/div (i.e. EXTCLK), <NR3> is set to 1.
	YUNits	$\begin{aligned} & \mathrm{V} \\ & \text { DIV } \end{aligned}$	Indicates the units associated with YMUlt.
	YMUIt	<NR3>	This value gives the vertical "step" size of the digitizer (volts between points). If <NR3> does not correspond to a legitimate volts/div setting it is treated as a "variable" setting and a warning SRQ is sent. On a query response, an unknown vertical scaling (i.e. variable) sets $<$ NR3 $>$ to 0.04 ( $25 \mathrm{pts} / \mathrm{div}$ ).
	YOFf	<NR1>	YOFf is the $Y$ coordinate of ground. If ground is unknown, -10000 is returned.

Table 7-21 (cont)
Waveform Preamble Fields (cont)

Header	Argument	Link Argument	Description
WFMpre (cont)	XMUIt XOFf		XMUIt and XOFf are analogous to YMUlt and YOFf. They are used when an XY waveform is indicated. For all $X Y$ waveforms, the $Y$ UNits indicator is valid for both $X$ and $Y$ data. The XUNits value references sampling rate.
	BN.Fmt	RP	Binary format is always a right-justified, positive binary integer, also known as an unsigned binary integer.
	BYT/nr	<NR1>	Each data value is contained in 2 bytes for ACQuisition AVEerage or 1 byte otherwise. If 2 bytes are sent, the most sigificant byte is sent first. In HEX format, each data byte is represented by 2 ASCII encoded hex characters.
	BIT/nr	<NR1>	The data consists of 8 or 16 bits. NOTE: The least sigificant bits of a 16 bit waveform may not be valid, depending on the number of waveforms averaged.
	CRVchk	CHKsm0	CHKsmO indicates that the last byte of a binary curve is a checksum. It is the 2's complement of the modulo 256 sum of the binary count and curve data bytes. It does not include the "CURVE \%" that precedes the binary count.

Table 7-22
Service Request Group Commands

| Header | Argument | Link <br> Argument | Description |
| :--- | :--- | :--- | :--- | | RQS |  |  | When enabled, the instrument asserts SRQ when it has an <br> event to report. When disabled, the events are still <br> accumulated and can be retrieved with an EVEnt? query. <br> Default is ON with no argument and at power-up. |
| :--- | :--- | :--- | :--- |
| OFF | $[$ ON] |  | When enabled, the instrument asserts SRQ upon completion of <br> certain commands. Commands that assert OPC service <br> requests include REFTo, PLOt complete, and Self-test <br> complete. Power-up default is OFF. |
| EVF |  |  | Query only. Returns: EVE <NR1>; where <NR1> is the <br> oldest SRQ event held by the instrument, when multiple SRQs <br> exist. If no error is pending, 0 is returned. |

Table 7-23
Miscellaneous Commands

Header	Argument	Link Argument	Description
ID?	<string>		Query only. Returns: ID <string>; where <string> is TEK/2230, V81.1, VERS:xx. " xx " is the firmware revision number of the instrument.
HELp?	<string>		Query only. Returns a list of all valid command headers available in the instrument.
INIt			Command only. Causes the instrument to go to an initialized state equivalent to power-on.
LONg	$\begin{aligned} & {[\mathrm{ON}]} \\ & \text { OFF } \end{aligned}$		When LONg is ON , all queries respond with the full length versions of commands. When LONg is OFF, the shortest acceptable version of commands are used in query responses. Default argument is ON. At power-up, LONg is OFF.
SET?	<string>		Query only. Returns an ASCII string that reflects the current instrument state. The returned string can be sent to the instrument to recreate that state. In order to comply with Codes and Formats, SET? does not respond with its header.   NOTE:   This query has very limited capability because only settable values are returned in response to the SET? query. The status of LONg affects the length of the response to the SET? query.

Table 7-24
RS-232-C Specific Commands

Header	Argument	Link Argument	Description
REMote	$\begin{array}{\|l} {[\mathrm{ON}]} \\ \mathrm{OFF} \end{array}$		REMote must be $O N$ in order to change the state of the instrument. REMote is similar to the GPIB Remote Enable (REN) and Go To Local (GTL) messages.
STOp	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		Selects the number of stop bits.
FLOw	$[\mathrm{ON}]$ OFF		Enables and disables DC1/DC3 flow control. When FLOw is ON, BINary data transfers cannot be made. Omitting the argument turns FLOw ON. Power-on default is OFF.
STAtus?	<NR1>		Query only. Returns the current status byte in the same manner as a GPIB Serial Poll.

Table 7-25
Query and Response Examples

QUERY	RESPONSE
Vertical Query Examples	
CH1? VOL	CH1 VOL:0.5E0;
CH2?	CH2 VOL:10.0E-3,COU:AC,INV:OFF;
VMO?	VMO ADD;
CH1? VOL	CH1 VOL:5.0E-3;
PROB?	PROB CH1:10,CH2:1;
Horizontal Query Examples	
HOR?	HOR MOD:ASW,ASE:2.0E-6, BSE:5.0E-9,HMA:OFF,EXT:OFF;
DELA?	DELA VAL:2.45E-3,UNI:S;
Trigger Query Examples	
ATR?	ATR MOD:PPA;
ATR? MOD	ATR MOD:NOR;
SGL?	SGL DON;
TRI?	TRI ON;
Cursor Query Examples	
CURS? TAR	CURS TAR:REF2;
CURS?	CURS SEL:CURS1,TAR:REF2, CHA:CH1,POS:765;
DELTAT?	DELTAT VAL:11.5E-6,UNI:S;
Acquisition Query Examples	
ACQ? HSR	ACQ HSR:AVE;
ACQ?	ACQ REP:AVE,HSR:SAM,LSR:PEA, SCA:SAM,ROL:PEA,SMO:ON,WEI:8, SWP:6,NUM:0,POI:4096,TRIGM:PRE, TRIGC:320,SAVE:OFF,DIS:SCA,VEC:ON;
	Save and Recall Reference Query Examples
REFO? VGA	REFO VGA:10.0E-3;
REFO?	REFO TAR:REF1,CHA:CH2,VGA:10.0E-3, VPO:0.0,HMA:ON,MODE:CHOP;

Table 7-25 (cont)

## Query and Response Examples

QUERY	RESPONSE
WFM? WFI	Waveform Query Examples
	WFM WFI:"REF1,CH1,10.0MV,DC,
WFM? PT.F	W0.0MS,SAMPLE-SMOOTH,CRV\# 4";
WFM PT.F:ENV;	
WFM? ENC	WFM ENC:ASC;

## WAVEFORM TRANSFERS

The instrument can transmit and receive waveforms. It can transfer these waveforms in binary, hexadecimal, or ASCII format. When sending waveforms to the instrument, the target is a reference memory. Waveforms transferred from the oscilloscope to the controller are selected from the same reference memories or the current acquisition. The data source and data target are selected independently.

## Waveform Preamble

The waveform preamble indicates the waveform attributes, such as number of points per waveform, scale factors, offset, horizontal increment, scaling units, and data encoding. The preamble information is sent as an ASCII string. The length of the string depends on the characteristics of the waveform.

A typical response to the preamble query WFMpre? for a $Y$ (time implied) acquisition is:

Query Response
WFMpre? WFM WFI:'ACQ, CH1, 0.5V, DC, 0.2MS, SAMPLE - SMOOTH, CRV\# 2', NR.P:4096, PT.O:122, PT.F:Y, XMU:0.0E0, XOF:0, XUN:S, XIN:2.0E-6, YMU:20.0E-3, YOF:-20, YUN:V, ENC:HEX, BN.F:RP, BYT:1, BIT:8, CRV:CHK;

A typical response to the preamble query WFMpre? for an $X Y$ acquisition is:

Query	Response
WFMpre?	WFM WFI:'ACQ, XY, 0.2V, DC, 50.0 MV,
	DC, 1.0US, SAMPLE, CRV\# 19'",
	NR.P:2048, PT.O:216, PT.F:XY,
	XMU:8.0E-3, XOF:0, XUN:S, XIN:20.0E-9,
	YMU:2.0E-3, YOF:O, YUN:V, ENC:BIN,
	BN.F:RP, BIT:8, BYT:1, CRV:CHK;

In these examples, the instrument response is shown on multiple lines. WFMpre? responses, as well as all other query responses, are sent as a single line of data ending with a carriage return line feed. With the GPIB interface, $E O I$ is also sent if that message terminator mode is selected.

## Transferring Waveforms

The oscilloscope can respond with either the Preamble only, Curve only, or both Preamble and Curve together:

Query	Response
CURVe?	Curve Data Only
WFMpre?	Preamble Only
WAVfrm?	Preamble and Curve data

When responding to the WAVfrm? query, the preamble is separated from the curve data with a ";".

The instrument digitizes data internally as an 8-bit, unsigned integer. Before data is sent over the GPIB or RS-232-C Option, it is changed into one of three formats,

BINary, HEXADECIMAL, or ASCii. The resolution of data points sent over the bus may be either 8 or 16 bits. Waveform record length is 1024 or 4096, but the number of data points per record depends on several variables. See the description of NR.Pts in the Command Tables for more information.

## Binary Encoding

BINary data is transferred as an unsigned binary integer. Each record is 8 bits, or 16 bits when averaged.

In BINary format, the waveform curve data is in the form of: CURVE <space> \% <Binary Count MSB> <Binary Count LSB> <Data> <Checksum> <Terminator>

Where:
\% is used as a header character to show the start of a binary block.
<Binary Count MSB> is the most significant byte of the two-byte Binary Count. Binary Count is the length of the waveform, in bytes, plus the one byte Checksum.
<Binary Count LSB> is the least significant byte of the Binary Count.
$<$ Data $>\quad$ is made up of 256, 512, 1024, 2048 or 4096 data points. Each data point is either a 1 byte (8-bit) or 2 byte (16-bit) representation of each digitized value.
<Checksum> is the two's-complement of the modulo 256 sum of the precoding data bytes and the binary count. The Checksum is used by the controller to verify that all data values have been received correctly.

Table 7-26 shows an example of data sent over the interface during a 4096 point, 8-bit BINary waveform transfer. The actual waveform point (Pt.) values will vary depending upon the signal acquired.

Table 7-27 shows an example of data sent over the interface during a 4096 point, 16 -bit BINary waveform transfer.

Table 7-26
Typical 8-Bit Binary Waveform Data

Byte	Contents	Decimal	GPIB EOI (1 = Asserted)
1	C	67	0
2	U	85	0
3	R	82	0
4	V	86	0
5	E	69	0
6	<SP>	32	0
7	\%	37	0
8	$\begin{gathered} \text { <Bin Count } \\ \text { MSB> } \end{gathered}$	$16^{\text {a }}$	0
9	$\begin{gathered} <\text { Bin Count } \\ \text { LSB }> \end{gathered}$	$01^{\text {a }}$	0
10	1st Pt	$\mathrm{d}_{1}$	0
11	2nd Pt	$\mathrm{d}_{2}$	0
-		.	0
-		.	0
.	.	-	0
4105	4096th Pt	$d_{4096}$	0
4106	<Checksum>	chk	1 When TERM = EOI
$4107^{\text {b }}$	<CR>	13	0
$4108{ }^{\text {c }}$	<LF>	10	1

${ }^{2}\left(1001_{18}\right.$ or $\left.4097_{10}\right)$
${ }^{\text {ball }}$ RS-232-C or GPIB with TERM $=$ LF/EOI.
cRS-232-C with TERM $=$ CR-LF.

## Hexadecimal Encoding

In HEXadecimal waveform encoding, characters representing an 8 -bit or 16 -bit data point are sent in a fixed ASCII hexadecimal format. There are no delimiters between data points. Data format is very similar to BINary format, with the following exceptions:

1. The curve header is "CURVE \#H" instead of "CURVE \%".
2. Each data point is 2 ASCII hexadecimal characters for 8 -bit and 4 ASCII hexadecimal characters for 16-bit transfers.

Table 7-27
Typical 16-Bit Binary Waveform Data

Byte	Contents	Decimal	GPIB EOI (1 = Asserted)
1	C	67	0
2	U	85	0
3	R	82	0
4	V	86	0
5	E	69	0
6	<SP>	32	0
7	\%	37	0
8	$<$ Bin Count MSB>	32 ${ }^{\text {a }}$	0
9	$\begin{gathered} <\text { Bin Count } \\ \text { LSB }> \end{gathered}$	$01^{\text {a }}$	0
10	1st Pt MSB	$\mathrm{d}_{1 \mathrm{H}}$	0
11	1st Pt LSB	$\mathrm{d}_{1}$	0
12	2nd Pt MSB	$\mathrm{d}_{2 \mathrm{H}}$	0
13	2nd Pt LSB	$\mathrm{d}_{2 \mathrm{~L}}$	0
.		.	0
.		-	0
		-	0
8200	4096th Pt MSB	$\mathrm{d}_{4096 \mathrm{H}}$	0
8201	4096th Pt LSB	$\mathrm{d}_{4096 \mathrm{~L}}$	0
8202	<Checksum>	chk	1 When
			TERM = EOI
$8203{ }^{\text {b }}$	<CR $>$	13	0
$8204{ }^{\text {c }}$	<LF>	10	1

'( 1001 $_{18}$ or $4097_{10}$ )
bAll RS-232-C or GPIB with TERM $=$ LF/EOI.
cRS-232-C with TERM $=$ CR-LF.
3. The byte count is sent as four successive ASCII hexadecimal characters, but the value of the byte count is identical to a comparable BINary transfer.
4. The checksum is sent as two successive ASCII hexadecimal characters.

Table 7-28 and Table 7-29 show 8-bit and 16-bit HEXadecimal waveform CURVe structures.

Table 7-28
Typical 8-Bit Hexadecimal Waveform Data

Byte	Contents	Decimal	GPIB EOI (1 $=$ Asserted)
1	C	67	0
2	U	85	0
3	R	82	0
4	V	86	0
5	E	69	0
6	<SP>	32	0
7	\#	35	0
8	H	72	0
9	$<$ Bin Count MS 4 bits>	49	0
10		48	0
11		48	0
12	$<B i n$ Count LS 4 bits $>$	49	0
13	1st Pt MS 4 bits	$\mathrm{d}_{1 \mathrm{H}}$	0
14	1st Pt LS 4 bits	$\mathrm{d}_{1 L}$	0
15	2nd Pt MS 4 bits	$\mathrm{d}_{2 \mathrm{H}}$	0
16	2nd Pt LS 4 bits	$\mathrm{d}_{2}$	0
-		.	0
.	.		0
.			0
203	4096th Pt MS 4 bits	$\mathrm{d}_{4096 \mathrm{H}}$	0
204	4096th Pt LS 4 bits	$\mathrm{d}_{4096 \mathrm{~L}}$	0
205	<Checksum	$\operatorname{chk}_{\mathrm{H}}$	0
206	MS 4 bits> <Checksum LS 4 bits $>$	$\text { chk }_{L}$	1 When TERM=EOI
$207{ }^{\text {a }}$	$<\mathrm{CR}>$	13 (If term = LF/EOI)	0
$208{ }^{\text {b }}$	<LF>	10 (If term =CR-LF)	1

-All RS-232-C or GPIB with TERM $=$ LF/EOI.
bRS-232-C with TERM = CR-LF.

## ASCII Encoding

In ASCii encoding, ASCII characters representing the binary value of each data point are sent in variable length format, separated by commas.

Table 7-29
Typical 16-Bit Hexadecimal Waveform Data

Byte	Contents	Decimal	GPIB EOI (1 = Asserted)
1	C	67	0
2	U	85	0
3	R	82	0
4	V	86	0
5	E	69	0
6	$<\mathrm{SP}>$	32	0
7	\#	35	0
8	H	72	0
9	$<$ Bin Count MS 4 bits>	50	0
10		48	0
11		48	0
12	$<$ Bin Count LS 4 bits>	49	0
13	1st Pt MS 4 bits	$d_{1 H}$	0
14			0
15			0
16	1st Pt LS 4 bits	$d_{1 L}$	0
17	2nd Pt MS 4 bits	$\mathrm{d}_{2 \mathrm{H}}$	0
18		,	0
19	.	.	0
20	2nd Pt LS 4 bits		0
.		L	0
.		.	0
.		.	0
6393	4096th Pt   MS 4 bits	$\mathrm{d}_{4096 \mathrm{H}}$	0
6394		.	0
6395		-	0
6396	$\begin{aligned} & \text { 4096th Pt } \\ & \text { LS } 4 \text { bits } \end{aligned}$	$\mathrm{d}_{4096 \mathrm{~L}}$	0
6397	<Checksum MS 4 bits>	$\mathrm{chk}_{\mathrm{H}}$	$0$
6398	<Checksum LS 4 bits>	chk ${ }_{\text {L }}$	1 When TERM = EOI
$6399{ }^{\text {a }}$	<CR>	13 (If term = LF/EOI)	0
$6400^{\text {b }}$	<LF>	10 (If term = LF/EOI)	1

-All RS-232-C or GPIB with TERM $=$ LF/EOI.
bRS-232-C with TERM $=$ CR-LF.

In ASCII format, the curve data transfer is represented as:

CURVE<space>data,data,data,...,data<terminator>

Table 7-30 shows an example of an 8-bit ASCii waveform CURVe transfer. Transmission length depends on specific data values, record length, acquisition mode and smoothing, and whether the acquisition was 1 or 2 channels.

## REMOTE-LOCAL OPERATING STATES

The following paragraphs describe the two operating states of the instrument: Local and Remote.

Table 7-30 Typical ASCII Wavetorm Data

Byte	Contents	Decimal	GPIB EOI (1 = Asserted)
1	C	67	0
2	U	85	0
3	R	82	0
4	V	86	0
5	E	69	0
6	<SP>	32	0
7	$\mathrm{Pt}^{100}{ }_{1}{ }^{*}$	$\mathrm{d}^{100}{ }_{1}$	0
8	Pt ${ }^{10}{ }_{1}{ }^{*}$	$\mathrm{d}^{10} 1$	0
9	$\mathrm{Pt}^{1}{ }_{1}{ }^{\text {a }}$	$\mathrm{d}_{1}{ }_{1}$	0
10		44	0
-		-	0
.		-	0
-		.	0
XXX	$\mathrm{Pt}^{100}{ }_{4096}{ }^{*}$	$\mathrm{d}^{100}{ }_{4096}$	0
Xxx	$\mathrm{Pt}^{10}{ }_{4096}$	$\mathrm{d}^{10} 4096$	0
XXX	$\mathrm{Pt}^{1}{ }_{4096}{ }^{\text {\% }}$	$\mathrm{d}^{1} 4096$	0
$\underline{X X X}{ }^{\text {a }}$	<CR>	13	0
$\underline{X X X}$	<LF>	10	1

* Pt ${ }^{100}$ and $\mathbf{P t}^{10}$ values are NOT sent when $\mathbf{0}$, so each Pt may be 1,2 , or 3 digits.
-All RS-232-C or GPIB with TERM = LF/EOI.
bRS-232-C with TERM $=$ CR-LF.


## Local State (LOCS)

In LOCS, instrument parameters are both set and changed manually by operator manipulation of the frontand side-panel controls. Only option interface messages can be received and executed. Device-dependent commands (without REN asserted) will cause SRQ errors since their functions are under front-panel control while in LOCS.

## Remote State (REMS)

In this state, the oscilloscope executes all commands addressed to it over the communication options bus. Front-panel indicators and crt readouts are updated as applicable when commands are executed. Manually changing any option-controllable front-panel control causes the instrument to return to the Local State. If a waveform is being transmitted over the bus, the PLOT indicator is lit and acquisitions are prevented until the transmission is complete.

## INSTRUMENT RESPONSE TO INTERFACE MESSAGES

The following explains effects on the oscilloscope of standard interface messages received from a remote controller. Message abbreviations used are from ANSI/IEEE Std 488-1978.

## Local Lockout (LLO)

Local Lockout is not supported by the instrument. In response to a LLO message via the GPIB, the option generates an SRQ error.

## NOTE

The RS-232-C Option uses Option Interface Commands to implement the following GPIB (hardware) messages.

## Remote Enable (REN)

When Remote Enable is asserted and the instrument receives its listen address, the oscilloscope is placed in the Remote State (REMS). When in the Remote State, the oscilloscope's Addressed (ADDR) indicator is lit.

Disasserting REN causes a transition to LOCS; the instrument remains in LOCS as long as REN is false. The transition may occur after processing of a different message has begun. In this case, execution of the message being processed is not interrupted by the transition.

## Go To Local (GTL)

Instruments that are already listen-addressed respond to GTL by assuming a local state. Remote-to-local transitions caused by GTL do not affect the execution of any message being processed when GTL was received.

## My Listen and My Talk Addresses (MLA and MTA)

The primary Talk/Listen address is established as previously explained in this section.

## Unlisten (UNL) and Untalk (UNT)

When the UNL message is received, the oscilloscope's listen function is placed in an idle (unaddressed state). In the idle state, the instrument will not accept commands over the bus.

The talk function is placed in an idle state when the oscilloscope receives the UNT message. In this state, the instrument cannot transmit data via the interface bus.

## Interface Clear (IFC)

When IFC is asserted, both the Talk and Listen functions are placed in an idle state and the crt ADDR indicator is turned off. This produces the same effect as receiving both the UNL and the UNT messages.

## Device Clear (DCL)

The DCL message reinitializes communication between the instrument and the controller. In response to DCL, the instrument clears any input and output messages as well as any unexecuted control settings. Also cleared are any errors and events waiting to be reported (except the power-on event). If the SRQ line is asserted for any reason (other than power-on), it becomes unasserted when the DCL message is received.

## Selected Device Clear (SDC)

This message performs the same function as DCL; however, only instruments that have been listen-addressed respond to SDC.

## Serial Poll Enable and Disable (SPE and SPD)

The Serial Poll Enable (SPE) message causes the instrument to transmit its serial-poll status byte when it is talk-addressed. The Serial Poll Disable (SPD) message switches the instrument back to its normal operation.

## GPIB PROGRAMMING

Programming considerations are provided in this part to assist in developing programs for interfacing to the oscilloscope via the GPIB. For additional information see the "Instrument Interfacing Guide". Before a program can be used for controlling the oscilloscope, the GPIB parameters (primary address, message terminator, and talk/listen mode) must be set. These parameters are selected and set at the oscilloscope using the GPIB PARAMETERS switch.

Programs are usually composed of two main parts (or routines), which can be generally categorized as a command handler and a service-request handler.

## Command Handler

Basically, a command handler should establish communication between the controller and oscilloscope, send commands and queries to the oscilloscope, receive responses from the oscilloscope, and display responses as required. The following outline indicates the general sequence of functions that the command-handling routine should perform to accommodate communications between the controller and oscilloscope over the GPIB.

1. Initialize the controller.
2. Disable the service-request handler until the program is ready to handle them.
3. Get the GPIB address of the oscilloscope.
4. Enable the service-request handler.
5. Get the command to send to the oscilloscope.
6. Send the command to the oscilloscope.
7. Check for a response from the oscilloscope.
8. If there is a response, perform the desired function.
9. You are ready for a new command. Repeat the functions in statements 5 through 9 as many time as desired.

## Service-Request Handler

The typical service-request handler routine contains the necessary instructions to permit proper processing of interrupts. For example, whenever power-on occurs, the oscilloscope asserts an SRQ interrupt. If a GPIB program is operating on the controller when a power-on SRQ is received, the program should be able to determine that the oscilloscope's power was interrupted at some time during program operation. This event could cause improper program execution, unless the program was written to adequately handle the possibility of a power-on SRQ occurring.

Other interrupts (or events) for which the oscilloscope asserts SRQ are identified in Table 7-32.

While some controllers have the capability of ignoring service requests, others require that all SRQs be managed. The programmer should understand the controller being used. If service requests are to be handled in the program, the interrupts must first be enabled.

A service-request handler routine can be developed to service interrupts when they occur during program operation. It basically should consist of an interrupt-enabling statement (ON SRQ) near the beginning of the program and a serial-poll subroutine somewhere in the program. The ON SRQ statement directs program control to the serial-poll subroutine whenever an SRQ interrupt occurs. For each interrupt received by the controller, the program should perform a serial-poll subroutine.

The following general steps are required to handle service requests from the oscilloscope:

1. Perform a serial poll.
2. Send an EVENT? query to the oscilloscope requesting service.
3. If the EVENT? query response is not zero, then perform the desired response to the event.
4. Return to the main program.

## RS-232-C PROGRAMMING

Programming considerations are provided in this part to assist in developing programs for interfacing to the oscilloscope via the RS-232-C. For additional information see the
"Instrument Interfácing Guide". Before a program can be used for controlling the oscilloscope, the RS-232-C parameters (baud rate, line terminator, and parity) must be set. These parameters are selected and set at the oscilloscope using the RS-232-C PARAMETERS switch.

Programs are usually composed of two main parts (or routines), which can be generally categorized as a command handler and a service-request handler.

## Command Handler

Basically, a command handler should establish communication between the controller and oscilloscope, send commands and queries to the oscilloscope, receive responses from the oscilloscope, and display responses as required. The following outline indicates the general sequence of functions that the command-handling routine should perform to accommodate communications between the controller and oscilloscope.

1. Initialize the controller.
2. Check for a service request from the oscilloscope (by sending an EVEnt query); if not zero, service the request.
3. Get the command to send to the oscilloscope.
4. Send the command to the oscilloscope.
5. Check for a response from the oscilloscope.
6. If there is a response, perform the desired function. If there is also an error response, perform step 2.
7. You are ready for a new command. Repeat the functions in statements 2 through 7 as many time as desired.

## Service-Request Handler

The typical service-request handler routine contains the necessary instructions to permit proper processing of service requests. For example, whenever power-on occurs, the oscilloscope sends an SRQ. If a GPIB program is operating on the controller when a power-on SRQ is generated, the program should be able to determine that the oscilloscope's power was interrupted at some time during program operation. This event could cause improper program execution, unless the program was written to adequately handle the possibility of a power-on SRQ occurring. Other events for which the oscilloscope generates SRQ are identified in Table 7-32.

The following general steps are required to handie service requests from the oscilloscope:

1. Send an EVENT? query to the oscilloscope requesting service.
2. If the EVENT? query response is not zero, then perform the desired response to the event.
3. Return to the main program.

## RESET UNDER COMMUNICATION OPTIONS CONTROL

The oscilloscope may be set to its power-up state by sending the INIt command via the communication option. This command always initiates the power-up self tests. On completion of power-up tests, SRQ code 65 (operation complete) is generated, and the oscilloscope enters the normal operating state. If there is a self-test error, the option also generates SRQ code 65 and does not shift the instrument to the normal operating state. Invoking the INIt command can simplify a program. When using INIt, fewer commands will usually be needed to set the instrument state, since all front-panel settings may not need to be individually specified.

## STATUS AND ERROR REPORTING

The status and error reporting system used by the Communication Options interrupts the bus controller. On the GPIB Option, the bus controller is interrupted by asserting the Service Request (SRQ) line on the bus. This SRQ provides the means of indicating that an event (either a change in status or an error) has occurred. To service a request, the GPIB controller performs a Serial Poll; in response, the instrument returns a Status Byte (STB), which indicates the type of event that occurred. On the RS-232-C Option, as soon as a change of status or an error occurs, the instrument returns a Status Byte (STB), which indicates the type of event that occurred. Bit 4 of the Status Byte is used to indicate that the command processor is active. This bit is set when the command processor is executing a command, and reset when it is not. The Status Byte, therefore, provides a limited amount of information about the specific cause of the SRQ. The various status events and errors that can occur are divided into several categories as defined in Table 7-31.

Each time the GPIB controller performs a serial poll, it can cause a second SRQ if more than one error exists. The most serious error at the time of the serial poll is the error reported. An EVEnt? query returns a number indicating the specific type of error that occurred. Table 7-32 lists the EVEnt? codes generated by the communication options.

Table 7-31
Status Event and Error Categories

Category	Status Byte					Description
	Binary ${ }^{\text {a }}$	Decimal				
		$\begin{aligned} & \text { RQS } \\ & \text { Off } \end{aligned}$		$\begin{gathered} \text { RQS } \\ \text { On } \end{gathered}$		
		Not   Busy	Busy	Not Busy	Busy	
Command Error	OR1X 0001	33	49	97	113	The instrument received a command that it cannot understand.
Execution Error	OR1X 0010	34	50	98	114	The instrument received a command that it cannot execute. This is caused by either out-of-range arguments or settings that conflict.
Internal   Error	OR1X 0011	35	51	99	115	The instrument detected a hardware condition or a firmware problem that prevents operation.
Power On	010x 0001	1	17	65	81	Instrument power was turned on.
Operation Complete	OROX 0010	2	18	66	82	Operation complete.
Execution   Warning	OR1X 0101	37	53	101	117	The instrument received a command and is executing it, but a potential problem may exist. For example, the instrument is out of range, but sending a reading anyway.
No Status to report	000x 0000	0	16	0	16	There is no status to report.

aR is set to 1 if ROS is ON ; otherwise it is $\mathbf{0}$. X is the busy bit and is set if the oscilloscope is busy at the time the status byte is read. Anytime the instrument is actively processing a command or query, the bit is a 1 , otherwise it is a 0 .

If there is more than one event to be reported, the instrument reasserts SRQ until it reports all events. Each event is automatically cleared when it's Status Byte is reported. The Device Clear (DCL) interface message may be used to clear all events, except the power-on event.

With the RQS OFF command invoked, all service requests (except the power-on SRQ) are inhibited. In this mode, the EVEnt? query allows the controller to determine event status. The controller may then send the EVEnt? query at any time, and the instrument returns the code for an event waiting to be reported. The controller can clear all events by repeatedly sending the EVEnt? query until a zero Status Byte is returned. An alternative method for clearing all events (except Power-on) when using the GPIB is the use of the Device Clear (DCL) interface message.

## READOUT/MESSAGE COMMAND CHARACTER SET

Character translations performed by the MESsage command, when sending data to the crt readout, are indicated in Table 7-33.

## NOTE

Values in Table 7-33 that have no crt equivalent are translated into spaces when sent to the display.

ASCII CODE CHART

Table 7-32

## Event Codes

EVEnt? Code	Instrument Status
000	No status to report
Command Errors	
101	Command header error.
102	Header delimiter error.
103	Command argument error.
104	Argument delimiter error.
105	Non-numeric argument, numeric expected.
106	Missing argument.
107	Invalid message-unit delimiter.
108	Checksum error.
109	Byte-count error.
151	The argument is too large.
152	lilegal hex character.
153	Non-binary argument; binary or hex expected.
154	Invalid numeric input.
155	Unrecognized argument type.
Execution Errors	
201	Command cannot be executed when in LOCAL.
203	I/O buffers full, output dumped.
205	Argument out of range, command ignored.
206	Group execute trigger ignored.
251	Illegal command.
252	Integer overflow.
253	Input buffer overflow.
254	Invalid waveform preamble.
255	Invalid instrument state.
256	GPIB (Option 10) Command not allowed.
258	Command not allowed on a 2220.
259	Command not allowed on a 2230.
260	Cannot execute command with RQS OFF.
261	Reference memory busy with local (front-panel) command.
262	Reference memory non-existent or specified as different size than selected waveform.
263	Plot active; only PLOT ABORT allowed while plotting.
Internal Errors	
351	Firmware failure. Contact your nearest Tektronix Service Center for assistance.

Table 7-32 (cont)

## System Events

401	Power on.				
451	Parity error.				
452	Framing error.				
453	Carrier lost.				
454	End of acquisition OPC.				
455	End of plot OPC.				
456	Diagnostics test complete OPC.				
$\quad$ Execution Warnings					
551	Single sweep is already armed.				
552	No ground-dot measurement available.				
553	Invalid probe code or identify.				
554	Query not valid for current instrument state.				
555	Requested setting is out of detent (uncalibrated).				
556	MESsage display buffer is full.				
557	Waveform preamble incorrect, has been corrected.				
558	Waveform transfer ended abnormally.				

Table 7-33
Readout/MESage Command Character Set


Table 7-34
ASCII Code Chart


## OPTION 10 THEORY OF OPERATION

The General Purpose Interface Bus (GPIB) option (see Diagram 24) provides a general purpose interface for the exchange of waveform data and instrument-state information. It retains the XY Plotter function of the base instrument, and provides a means of adding non-volatile waveform memory.

The XY Plotter circuitry is unchanged from the standard instrument. The circuit descriptions covering the standard XY Plotter still apply, and are not repeated here. The following discussion refers only to the GPIB portion of the board.

The board contains 64 K bytes of ROM, 2 K bytes of RAM, and an interface to the GPIB port. Supporting the GPIB port are two 8 -bit input ports for status signals and parameter switches, and a 1-bit output port used for diagnostics. The remainder of the circuitry provides signal buffering and address decoding.

The microprocessor bus extends to this option through W8101. The address bus, the data bus, the bus control signals, and several address decode lines which are generated on the storage board are included. Power supplies are also brought in through this connector, and J9301 in the XY Plotter portion of the board is not used.

## Bus Buffers

The address lines are buffered by U1341 and U1333. The buffers are always enabled. Bidirectional data bus buffer U1331 isolates the circuitry from the storage board and provides improved signal drive capability. Also buffered are the $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, 6.7 \mathrm{MHZCLK}$, and RESET signals.

## Address Decoding

The GPIB occupies all of the addresses in the COMSEG range ( 80000 H to BFFFFH). Its I/O occupies several addresses in the I/O-SEG range ( 40000 H to 7FFFFH $)$. Table 3-1 lists the actual addresses used.

Primary address decoding is accomplished by U1345. It provides a one-of-eight, active-LO signal when BA12, BA13, $\bar{O}$ SEG, and $\overline{B L K O}$, are all LO. Three address lines, BA3, BA6, and BA7, are decoded to produce the eight strobes. Four of the strobes enable the GPIB controller U1351, Parameter buffer U1322, Status buffer U1323, and Diagnostic latch U1335. Also generated by U1345 is a signal that is LO whenever one of the strobes is enabled and

BA8 is LO. This signal is gated with COM SEG and $\overline{D E N}$ in U1332 to produce an enable for data buffer U1331 via U1344C.

Half of U1332 generates the ROM enable signal. The ROM is enabled whenever COM SEG is LO and either $\overline{B L K D}$ or $\overline{B L K 1}$ is LO. This enable drives the output enable (pin 22) of U1343 and not its chip enable (pin 20) which is driven by $\overline{\text { A18 }}$.

The other half of U1332 generates the DATEN enable for the data bus buffer. When DEN is LO and either I/O 2OPT or COM SEG is LO, pin 8 of U1332 goes HI. U1344 inverts this signal, producing DATEN. The data bus buffer is enabled only for references in COM SEG or to I/O ports used by this option.

The RAM enable signal $\overline{\text { RAMEN }}$ (U1334A pin 3) is produced by U1334A and U1334C. RAM enable RAMEN is LO only if RAM DIS, BLK3, and COM SEG are all LO. RAM DIS disables U1342 if the non-volatile RAM is present.

## RAM and ROM

Temporary storage for the option is provided by RAM U1342. Option operating system firmware is contained in ROM U1343.

## GPIB Controller

The GPIB controller, U1351, is a TMS9914A which handles much of the protocol required to interface to the IEEE STANDARD 488 bus. The controller has eight internal registers decoded by RS0, RS1, and RS2. Under certain conditions it generates an interrupt to the microprocessor which appears as a LO INT (U1351 pin 9). This pin is an open drain output connected to the microprocessor's maskable interrupt.

Data bus lines are reversed, BD0 for BD7, to accommodate the internal convention of the GPIB controller.

Trigger signal TR, U1351 pin 39, is used only for diagnostics and is read by the microprocessor via U1322 pin 2.

## Line Drivers

Bus buffers U1324 and U1325 provide the drive characteristics required by IEEE 488 bus standards. They also control characteristics of the drive circuitry during bus operation.

All of the signal lines that are at GPIB levels are protected by diode arrays CR1321, CR1322, and zener diode VR1321. These networks clip voltage transients greater than +6.8 volts or less than -0.6 volts.

Connector J1314 is a standard GPIB interface connector.

## Clock Divider and Diagnostic Latch

U1335 is a dual J-K flip-flop that performs two independent functions. U1335A divides the 6.7 MHz clock by two for GPIB controller U1351. U1335B provides a one-bit latch for diagnostic use. When its enable (clock), U1335B pin 12, is strobed LO, the data on BDO is latched.

## Parameter Buffer

Parameter buffer U1322 provides an eight-bit input port for selecting parameters associated with the GPIB option such as address and terminator. It consists of U1322, S1321, and part of resistor pack R1322. The switch is sensed by enabling buffer U1322 which gates its inputs onto the data bus. Bit 7 is used to sense TR, U1351 pin 39, for diagnostic use.

## Status Buffer

Status buffer U1323 is used to sense three of the GPIB PARAMETER switch positions as well as miscellaneous other signals. Buffer circuitry consists of U1323, S1321, R1321, and part of resistor pack R1322. Status buffer functions are shown in Table 7-35.

Table 7-35
GPIB Status Buffer Functions

BIT	Signal Name	Function
Bit 0	PWR INT	Power going down interrupt
Bit 1	$+5 V_{P}$	Logic HI
Bit 2	TRIG	GPIB chip diagnostic
Bit 3		PARAMETER SWITCH position 8
Bit 4		PARAMETER SWITCH position 10
Bit 5		PARAMETER SWITCH position 9
Bit 6	$+5 V_{P}$	Logic HI
Bit 7	DIAG	Diagnostic latch

## OPTION 12 THEORY OF OPERATION

The RS-232-C communication option (see Diagram 23) provides a general-purpose interface for the exchange of waveforms and instrument-state information. It replaces the XY Plotter board of the standard instrument but includes the XY Plotter circuitry. The following discussion refers only to the RS-232-C portion of the board.

The option includes 64 K bytes of ROM, 2 K bytes of RAM, and an RS-232-C interface. Supporting the RS232 port are two 8-bit input ports for status signals and parameter switches, and a 4-bit output port used mainly for interrupt masking. The remaining circuitry either decodes addresses or buffers signals.

Microprocessor bus signals are extended to this board through W8101. The address bus, data bus, bus control signals, several address decode lines, and power supplies all pass through this connector.

## Bus Buffers

The address lines are buffered by U1241 and U1233. These buffers are always enabled. Data bus buffer U1231 is bidirectional. It isolates the option from the storage board and improves signal driving capabilities. Also buffered are the $\overline{R D}$ (U1233), $\overline{W R}$ (U1234D), and RESET (U1244E) signals.

## Address Decoding

All addresses in the COM-SEG range $(80000 \mathrm{H}$ to BFFFFH) are used by the option. Several addresses in the I/O-SEG range ( 40000 H to 7FFFFH) are used by option I/O circuitry. Table 3-1 lists the actual addresses used.

Primary address decoding is accomplished by U1245. It provides a one-of-eight, low-asserting signal when BA12, BA13, $\overline{\mathrm{O}}$ SEG, and $\overline{\mathrm{BLKO}}$, are all LO. Address lines BA3, BA6, and BA7 are decoded to produce eight strobes. Three of the strobes are used to enable UART U1251, parameter buffer U1222, and Status buffer U1223. A fourth strobe is gated with $\overline{B W R}$ at U1234A to produce a write strobe for the interrupt mask latch (U1236). Also generated by U1245 is a signal that is LO whenever one of the strobes is enabled and BA8 is LO. This signal is gated with COM SEG and $\overline{\operatorname{DEN}}$ in U1232A to produce an enable for the data bus buffer (U1231).

The ROM and RAM enable signals are generated by U1235. One half of U1235 is enabled by COM SEG. It decodes $\overline{B L K O}$ and $\overline{B L K 1}$ into four strobes, two are wireANDed together to produce the ROMEN enable for the

ROM chip (U1243). The resultant function is to enable the ROM whenever COM SEG is LO and either BLKO or BLK1 is LO. This enable drives the output enable pin of U1243 and not its chip enable pin which is driven by $\overline{\mathrm{A} 18}$.

The other half of U1235 provides a similar function for U1242, the RAM chip. It generates a LO-going strobe when COM SEG, RAM DIS, and BLK3 are LO and BLKO and $\overline{\text { BLK1 }}$ are HI. RAM DIS disables U1242 if the nonvolatile RAM is present. Although the RAM has images throughout the 88000 to 8 FFFF address range, only the highest image is used.

Half of U1232 and inverter U1244C generate the DATEN signal for the bidirectional data bus buffer U1231. DATEN is LO for any reference in COM-SEG and for references to the option I/O ports. It is LO when $\overline{\mathrm{DEN}}$, the data enable from the processor, is LO and either COM SEG or I/O 2OPT (U1245 pin 3) is LO.

## RAM and ROM

Temporary storage for the option is provided by RAM U1242. Option operating system firmware is contained in ROM U1243.

## UART

The UART U1251 communicates with the Microprocessor, providing serial-to-parallel conversion and handling some of the RS232 protocol. Also included is an internal baud rate generator. Crystal Y1251 provides a time base which is divided by software selectable ratios to provide the required bit transfer speeds. Three interrupt lines, INTR, TBRE, and DR, inform the Microprocessor that intervention is required.

## Line Drivers

Driver U1225 translates from TTL logic levels to the levels required by the EIA RS-232-C standard. It requires positive and negative supplies which are derived by jiodes isolation (CR1224 and CR1223) on the +P.6 V and -8.6 V supplies. Diode isolation protects thie instrument from transients or faults coupled througit the RS-232-C connectors. The RLSD signal is ger.erated by Interrupt Mask Latch U1236.

The RS-232-C receiver is U1224. It translates from RS-232-C levels to TTL rgic levels and also has a protected supply. Its +5 V supply is generated by dropping the +8.6 V supply through zener diode VR1232. The IRSLD2 signal goes to Status Buffer U1223.

All of the RS-232-C signals are protected by diode arrays CR1221 and CR1222, and zener diodes VR1221 through VR1224. Any transients that exceed a $\pm 25 \mathrm{~V}$ range are clipped by the networks.

Two connectors, J1212 and J1214, are provided to make interfacing easier. The male DB- 25 connector conforms to the DTE (data terminal equipment) specifications of RS-232-C, and the female DB-25 connector conforms to the DCE (data communications equipment) specification. Only one of the connectors may be used at one time.

## Interrupt Circuitry

Two interrupt lines from the UART, INTR and DR, are combined via OR gate U1234B, generating the DR + INTR interrupt line. That signal is then routed to U1232A, an AND-OR-INVERT gate, where it is gated with DR + INTR MASK, which comes from the Interrupt Mask Latch (U1236). When DR+INTR MASK is LO, DR+INTR can not propagate through to the output. TBRE is similarly masked by TBRE MASK, then they are ORed together and inverted within the AND-OR-INVERT gate. Inverter U1244D inverts the signal and applies it to the base of Q1221. Transistor Q1221 inverts the signal to INTR, driving the Microprocessor maskable interrupt.

## Interrupt Mask Latch

Interrupt Mask Latch U1236 provides four signals that are directly controlled by the Microprocessor. It is enabled when the Microprocessor writes to the addresses decoded as LATCH. This latch uses BAO and BA1 to select either 0D, 1D, 2D, or 3D, and latches the data present on U1236 pin 13 into the selected output when enabled. Two of the outputs are used for interrupt masking, one for the RS-232-C port, and one for diagnostics. The outputs are forced LO by the BRST line to insure that interrupts are masked when the Microprocessor powers up.

## Parameter Buffer

This circuit is an eight-bit input port for selecting parameters associated with the option such as baud rate and parity. It consists of buffer U1222, switch S1221, and resistor pack R1222. The switch is sensed by enabling the buffer which gates the buffer inputs onto the data bus. Bit 7 is used to sense serial data out (SDO) from U1251 for diagnostic use.

## Status Buffer

Status buffer U1223 is used to sense three positions of Parameter switch S 1221 as well as miscellaneous other signats. Functions of the Status buffer are shown in Table 7-36.

Table 7-36
RS-232-C Status Buffer Functions

Bit	Signal Name	Function
Bit 0	$\overline{\text { PWR INT }}$	Power-going-down interrupt
Bit 1	$\overline{\text { DR +INTR }}$	UART interrupt request
Bit 2	TBRE	UART interrupt request
Bit 3		Parameter switch position 8
Bit 4		Parameter switch position 10
Bit 5		Parameter switch position 9
Bit 6	DIAG	Interrupt mask latch D3
Bit 7	$\overline{\text { DCD2 }}$	Data carrier detect

## OPTION MEMORY

Option Memory (see Diagram 25) contains 32K-bytes of non-volatile memory, a lithium battery, and power failure sensing and control circuitry. When the board is installed, the option RAM is disabled.

## Address Decoding

Addresses are decoded by U1162. All addresses in the COM-SEG range ( $88000-8 F F F F$ ) are used. Four active LO strobes, one for each RAM, are generated, DECODE 0 (U1162 pin 4), DECODE 1 (U1162 pin 5), DECODE 2 (U1162 pin 12), and DECODE 3 (U1162 pin 11).

## RAM

Four 8 K -byte RAMs make up the 32 K -byte non-volatile memory. When instrument power is turned off, STANDBY goes LO, placing the memories in a low current standby state. In the standby state the lithium battery ( $B T 1101$ ) supplies the memories standby current needs.

Each RAM is selected by its Decode signal (pin 20) when the memories are not in standby. Data is read onto the data bus, BD1-BD7, from the memory location selected by BAO-BA12 when BRD goes LO. Data on the data bus, BD0-BD7, is written to the memory location selected by BAO-BA12 when BWR goes LO.

## Power Sense

Power to the RAM array is supplied by the Power Sense circuitry. The Power Sense circuit supplies power to the RAM either from the instrument power supply or from the lithium battery.

## WARNING

The battery used in this device may present a fire or chemical burn hazard if mistreated. Do not recharge, rapidly discharge, disassemble, heat, or short terminals. See service information for complete instructions.

## Lithium Battery

If instrument power is available, 5 V from the instrument forward biases CR1102 and reverse biases CR1104, disconnecting lithium battery BT1101 from the circuit. Because CR1102 is forward biased, the instrument suplies power $\left(+V_{S}\right)$ to the RAM through CR1102.

If instrument power is not available, the lithium battery forward biases CR1104 and reverse biases CR1102, supplying power ( $+V_{S}$ ) to the RAM through CR1104. If there is a circuit failure, lithium battery current is limited to safe levels by ceramic current limiter RT1102.

## Voltage Comparator

U1122 compares the instrument voltage to an internal reference to determine if the power is going down. If power is going down, an interrupt is generated to tell the Microprocessor that the power is failing. Also, the RAM is put in standby.

Comparator U1122 compares its internal reference to the voltage on pin 3. The voltage at U1122 pin 3 is set by the instrument power supply and the voltage divider made up of R1112, R1114, and R1116.

If power is up, the voltage at pin 3 is about 1.2 V , and FAIL at U1122 pin 4 is LO. FAIL is inverted and delayed by U1132B, C, D, and associated circuitry, making STANDBY normal operating mode. Also, FAIL is inverted and delayed by U1132B and associated circuitry, generating FAIL HI. Comparators U1142A and U1142B look at both the instrument supply voltage and FAIL. If FAIL goes HI (power is coming up), interrupts are not generated, but U1132D puises the IRST signal HI to reset the microprocessor systems.

If power is going down or is down, the voltage at U1122 pin 3 drops below the internal reference voltage, causing FAIL, U1122 pin 4 to go HI. FAIL is inverted and delayed by U1132B and associated circuitry, generating FAIL LO. Comparators U1142A and U1142B look at both the instrument supply voltage and FAIL. Since FAIL is LO
(power failing), interrupts are generated to tell the Microprocessor that instrument power is going down. A LO FAIL is also delayed by U1132C, D, and associated circuitry, making STANDBY LO. This places the RAM in the low current standby operating mode.

## PERFORMANCE CHECK PROCEDURE

## Introduction

This part of Section 7 contains the GPIB Option and RS-232-C portion of the instrument's performance check procedures. The "Performance Check Procedure" is used to check the GPIB Option performance against the requirements listed in Table 7-4. It is not necessary to remove the instrument cover to accomplish any of the performance checks.

The Option performance check intervals are identical to the basic instrument as indicated in "Performance Check Interval" in the "Performance Check Procedure" Section 4 of this manual.

## Limits and Tolerances

The limits and tolerances stated in this procedure are GPIB and RS-232-C specifications only if they are listed in the "Performance Requirements" column of Table 7-4. The tolerances given in this procedure are valid for an instrument that is operating in and has been previously calibrated in an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$. The instrument also must have had at least a $20-$ minute warm-up period. Refer to Table 7-4 for tolerances applicable to an instrument that is operating outside this temperature range. All tolerances specified are for the instrument only and do not include test-equipment error. When performing either the GPIB or the RS-232 checks, it is assumed that the standard instrument meets all of its "Performance Requirements" as stated in the "Specification" (Section 1) of the Service manual.

## Test Equipment Required

Test equipment listed in Table 7-37 is required to perform this procedure. Test equipment specifications described in Table 7-37 are the minimum necessary to provide accurate results. Therefore, equipment used must meet or exceed the listed specifications. Detail operating instructions for test equipment are not given in this procedure.

When equipment other than that recommended is used, control settings of the test setup may need to be altered. If the exact item of equipment given as an example in Table 7-37 is not available, check the "Minimum Specification' column to determine if any other available test equipment might suffice for the performance check procedure.

## 1. GPIB Performance Check

a. Set the RS-232-C Parameter switch to match the requirements of your controller, GPIB Address 1.
b. Set the oscilloscope's front panel controls to obtain a baseline trace.
c. Set the oscilloscope's POWER button to OFF and then to ON.
d. CHECK-The SRQ indicator is on when the powerup sequence is finished.
e. Connect the Controller via GPIB cable to the IEEE STD 488 PORT connector.

Table 7-37
Test Equipment Required

Item and   Description	Minimum   Specification	Purpose	Example of Suitable   Test Equipment
1. Controller	IEEE-488-1978 compatible.	Signal source.	TEKTRONIX 4041   System Controller.
2. GPIB Cable	IEEE-488-1978 compatible.	Signal interconnection.	Tektronix Part Nmber   $012-0630-00$.
3. RS-232 Cable	Connectors, Male-to-female, 2 meter,   25 wires, general purpose.	Signal interconnection.	Tektronix Part Number   $012-0815-00$.

```
f. Enter the following program to the Controller.
100 Init
110! Initialize gpib
120 Gpib_addr = 1
130 Open #1:''gpib0(pri=''&str$(gpib_addr)&''):'
140! Poll the instrument
150 Poll srq_stat, srq_addr; gpib_adr
160!Get its EVENT code
170 Print #1: ''EVENT?''
180 Input #1: eve_code
190!Print responses
200 Print ''SRQ: '';srq-stat
210 Print " EVENT : ';eve_code
220 Close all
230 end
```

g. Run the program entered in Part $f$.
h. CHECK—The SRQ indicator is turned off.
i. CHECK—The controller for SRQ: 65.0 and EVEN: 401.0.
$j$. Disconnect the test equipment from the instrument.

## 2. RS-232-C Performance Check

a. Set the RS-232-C Parameter switch to match the requirements of your controller.
b. Set the oscilloscope's front panel controls to obtain a baseline trace.
c. Set the oscilloscope's POWER button to OFF and then to ON.
d. CHECK-The SRQ indicator is on when the powerup sequence is finished.
e. Connect the Controller via RS-232 cable to the RS232 DCE connector.
f. Enter the message "ID?;" from the controller to the RS-232.
g. CHECK-The response to the controller from the RS-232 is "TEK/2230,V81.1.VERS: XX ", where " XX " is the ROM's firmware version number in the instrument.
h. CHECK—The SRQ indicator is turned off.
i. Disconnect the test equipment from the instrument.

## ADJUSTMENT PROCEDURE

There are no adjustment procedures for the GPIB and RS-232-C Options.

## OPTION MAINTENANCE INFORMATION

## WARMING

The battery used in this device may present a fire or chemical burn hazard if mistreated. Do not recharge, rapidly discharge, disassemble, heat above $100^{\circ} \mathrm{C}$ ( $212^{\circ} \mathrm{F}$ ), or incinerate.

Replace battery with part number listed in replaceable parts section only. Use of another battery may present a risk of fire or explosion.

Dispose of used battery promptly. Small quantities of used batteries may be disposed of in normal refuse. Keep away from children. Do not disassemble and do not dispose of in fire.

Maintenance information contained in the Maintenance Section of the manual also applies to these options. Additional information for the Options is contained in this part of the manual.

## Diagnostics

Additional diagnostics are added to the instrument when Option 10 or Option 12 are added to the instrument. This discussion describes each diagnostic separately.

COMM_RAM. This test checks the Option RAM and its microprocessor interface. This test is performed during Power-Up. The RAM is filled with a checkerboard pattern of AA55 and 55AA and checked to see if the values are correct.

## NOTE

The displayed address is offset from 0x80000 and is a 4 digit hexadecimal number between $\mathrm{F800}$ and FFFF.

If an error is found, the address of the error, the actual data found at the address, and the data expected at the address are displayed on the crt:

COMM_RAM : @ <address> <actual data> <> <expected data>

CMOS_RAM. This test checks the nonvolatile CMOS memory. It is performed during Power-Up. Each stored waveform is analyzed to determine if they contain errors. If errors are found, the diagnostic either repairs or removes the waveform. If seven or more errors are found, the entire CMOS memory is reformated, erasing all stored waveforms. If errors are found, the result of the recovery attempt displayed on the crt:

CMOS : reformated or
CMOS : recovered

If errors are reported, the instrument should be turned off and then powered up again. An error should be ignored unless it is repeatable.

ROM_MATCH. This test checks to see that all ROMs are the correct version number ROMs. Each ROM is checked during Power-Up. If an error is found, the version numbers found are displayed on the crt:

ROMS:mismatch,nn,mm,oo
where $\mathrm{nn}, \mathrm{mm}$, and 00 are the version numbers of the ROMs in the instrument.

COMM_READBACK. Bit paths within the Option are checked by COMM_READBACK. GPIB circuitry checked includes U1335B and U1323. RS-232-C circuitry checked includes U1236 and U1223. Data is first written to the Option. Registers are then read and checked for the correct data. If the data read back is in error, the actual data read back is displayed on the crt:

COMM_RB: $\mathrm{rb}(1)=\mathrm{x}_{2} \mathrm{x}_{1} \& \mathrm{rb}(0)=\mathrm{y}_{2} \mathrm{y}_{1}$
where:
rb is the data written to the Option (U1236 pin 7 or U1335 pin 10).
$x_{1}=y_{1}=$ data read back from the Option (U1223 pin 3 or U1323 pin 3).
$x_{2}=y_{2}=$ data read back from the Option (U1223 pin 2 or U1323 pin 2).

COMM_LOOPBACK. This test checks the GPIB controller U1321 and associated circuitry by commanding the controller to change its TR output and then checking the TR output. If an error is found it is displayed on the crt:


INPUT_PORTS. Two additional ports are added to the INPUT_PORTS diagnostic. Option 10 adds U1322 and U1323. Option 12 adds U1222 and U1223. They are labeled on the crt display as COMM_STAT U1×23 and COMM_PARAM U1x22.

OUT_PORTS. Two output ports are added the the OUT_PORTS diagnostic by the Options. OUT_PORTS is run at power-up only. Option 10 adds U1335B. The pattern seen on U1315B pin 10 is about an eight second square wave. Option 12 adds U1236. The pattern seen on U1236 is the same type of shift pattern as for the PRC test.

## Removal and Replacement Instructions

The exploded view drawings in the "Replaceable Mechanical Parts' list (Section 9) may be helpful during the removal and reinstallation of the GPIB and RS-232-C assembly and its circuit boards from the instrument. Circuit board and component locations are shown in the "Diagrams" section.

CABINET. To remove either the GPIB or the RS-232-C Assembly from the instrument, perform the "Cabinet" removal procedure in the "Removal and Replacement Instructions" of Section 6. In step 4 of the procedure, remove two screws and two post spacers and washers from the GPIB side panel or two screws and four post spacers and washers from the RS-232-C side panel.

MEMORY CIRCUIT BOARD. The Memory circuit board can be removed and reinstalled as follows:

1. Remove the four flat-head screws that secures the insulation and the Memory circuit board to the Option Assembly. Remove the insulation from the Memory circuit board.
2. Remove the Memory circuit board from GPIB Assembly by carefully pulling the connectors P1251 and P1222 on the Memory circuit board from the pins of J 1251 and J1222 on either the GPIB or the RS-232-C circuit board. The connectors are located on the inside and at each end of the Memory circuit board. Disconnect P1152 from the rear of the Memory circuit board as it being removed from the GPIB Assembly.

To reinstall the Memory circuit board, perform the reverse of the preceding steps.

GPIB AND RS-232-C ASSEMBLIES. The Option assembly can be removed and reinstalled as follows:

## NOTE

The field-installed GPIB Option and RS-232-C Option have one more connector to be removed than the factory installed Options.

1. Disconnect the following connectors from the Option Assembly and the instrument.
a. P4110, a two-wire connector located at the rear of the Option Assembly.
b. P6423, a four-wire connector located at the rear of the Option Assembly.
c. P9301, a five-wire connector located at the rear of the Option Assembly.
d. P8100, a ribbon cable from the Storage circuit board.

## NOTE

Instruments with factory-installed GPIB and RS-232-C, proceed to step 3. For field-installed GPIB and RS-232-C, proceed with step 2.
2. Disconnect either P1316 (GPIB) or P1216 (RS-232C) from the front of the Option assembly circuit board.
3. Stand the instrument on its side (Option Assembly up) and remove two screws from the extreme edge of the bottom chassis frame underneath the delay line cable.
4. Lay the instrument down and remove the two screws from the top of the chassis frame (located inside the two cutouts on the Storage circuit board). Note the position of the ground clip when removing the screw from the chassis frame.
5. Remove the Option Assembly out from between the top and bottom chassis frames.
6. Slide the Option Assembly forward until the ribbon cable clears the Storage circuit board.
7. Remove the Option Assembly from the instrument by tilting the bottom of the assembly out first.

To reinstall the Option Assembly, perform the reverse of the preceding steps.

# REPLACEABLE <br> ELECTRICAL PARTS 

PARTS ORDERING INFORMATION


#### Abstract

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.


Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

## LIST OF ASSEMBLIES

A list of assemblies can be found at the beginning of the Electrical Parts List. The assemblies are listed in numerical order. When the complete component number of a part is known, this list will identify the assembly in which the part is located.

## CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER

The Mfr. Code Number to Manufacturer index for the Electrical Parts List is located immediately after this page. The Cross Index provides codes, names and addresses of manufacturers of components listed in the Electrical Parts List.

## ABBREVIATIONS

Abbreviations conform to American National Standard Y1.1.

## COMPONENT NUMBER (column one of the Electrical Parts List)

A numbering method has been used to identify assemblies, subassemblies and parts. Examples of this numbering method and typical expansions are illustrated by the following:


Read: Reslstor 1334 of Assembly 23


Read: Resistor 1234 of Subassembly 2 of Assembly 23

Only the circuit number will appear on the diagrams and circuit board illustrations. Each diagram and circuit board illustration is clearly marked with the assembly number. Assembly numbers are also marked on the mechanical exploded views located in the Mechanical Parts List. The component number is obtained by adding the assembly number prefix to the circuit number.

The Electrical Parts List is divided and arranged by assemblies in numerical sequence (e.g., assembly A1 with its subassemblies and parts, precedes assembly A2 with its subassemblies and parts).

Chassis-mounted parts have no assembly number prefix and are located at the end of the Electrical Parts List.

## TEKTRONIX PART NO. (column two of the Electrical Parts List)

Indicates part number to be used when ordering replacement part from Tektronix.

## SERIAL/MODEL NO. (columns three and four of the Electrical Parts List)

Column three (3) indicates the serial number at which the part was first used. Column four (4) indicates the serial number at which the part was removed. No serial number entered indicates part is good for all serial numbers.

## NAME \& DESCRIPTION (column five of the Electrical Parts List)

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

## MFR. CODE (column six of the Electrical Parts List)

Indicates the code number of the actual manufacturer of the part. (Code to name and address cross reference can be found immediately after this page.)

## MFR. PART NUMBER (column seven of the Electrical Parts List)

Indicates actual manufacturers part number.

Mfr. Code	CROSS INDEX - M   Manufacturer	FR. CODE NUMBER Address	NUFACTURER   City, State, Zip Code
00213	NTTRONICS COMPONENTS GROUP IMC SUBSIDIARY OF NYTRONICS INC	orange st	DARLINGTON SC 29532
00779	AMP INC	P 0 B0X 3608	HARRISBURG PA 17105
00853	SANGAMO MESTON INC SANGAMO CAPACITOR OIV	SAMGMO RO   P O BDX 128	PICKENS SC 29671
01921	allen-bradley Co	1201 SOUTH 2NO ST	Milmauxee wi 53204
01281	TRM IMC   TRM SEIICONOUCTOR DIV	14520 AVIATION BLVD	LANDOALE CA 90260
01295	texas instruments inc SEIICONOUCTOR GROUP	13500 N CENTRAL EXPRESSMAY   P 0 B0X 225012 M/S 49	DaLLas TX 75265
01537	mOTOROLA COMANICATIONS AMD ELECTRONICS INC	2553 N EDGINGTON ST	FRaNKLIN PARK IL 60131
01807	petersen radio co inc	2800 NEST BROADMAY	COUNCIL BLUFFS IA 51501
02113	COILCRAFT INC	1102 SILVER LAKE RO	CARY IL 60013
02114	amperex electronic corp ferroxcube div	5083 KINGS HMY	SAUGERTIES NY 12477
02735	RCA CORP SOLID STATE OIVISION	ROUTE 202	SOMERVILLE NJ 08876
03508	general electric co SEII-CONDUCTOR PROOUCTS OEPT	n Genesee st	Quburn MY 13021
04099	CAPCO INC	FORESIGHT IMOUSTRIAL PARK P 0 B0X 2164	GRAMD JLNCTION CO 81501
04222	AVX CERAMICS OIV OF AVX CORP	19TH AVE SOUTH P O B0X 867	WYRTLE BEACH SC 29577
04713	MOTOROLA INC SEIICONOUCTOR GROUP	5005 E MCDOMELL RO	PHOENIX AL 85008
05397	union carbioe corp materials systeas OIV	11901 MADISON AVE	CLEVELAND OH 44101
06665	PRECISION MONOLITHICS INC SUE OF BOURNS IMC	1500 SPACE PARK DR	SANTA CLARA CA 95050
07263	fairchil camera ma instriment corp SEMICONOUCTOR OIV	464 ELLIS ST	mOUNTAIN VIEA CA 94042
07716	TRH IMC   TRM ELECTRONICS COMPOMENTS   TRM IRC FIXED RESISTORS/BURLINGTON	2850 mt pleasant ave	BURLINGTON IA 52601
11236	CTS Of 日ERNE INC	406 PARR ROAD	BERNE IN 46711
12697	CLAROSTAT MFG CO INC	LONER MASHINGTON ST	DOVER PH 03820
12954	MICROSEAI CORP	8700 E THOMAS RD P O BOX 1380	SCOTTSDALE AZ 85252
12969	UNITROOE CORP	580 PLEasant ST	Matertonn ma 02172
13511	AMPHENOL CAORE DIV BUWKER RAMO CORP		LOS GATOS CA
13556	TRM CINCH CONNECTORS NULINE FACILITY	8821 SCIDCE CENTER ORIVE	MEHHPPE WN 55428
14193	CAL-R INC	1601 OLMPIC BLVO	SANTA MONICA CA 90404
14552	MICRO/SEAICONOUCTOR CORP ELECTRO CUBE IMC	2830 S FAIRVIEN ST   1710 S OEL MAR AVE	SANTA ANA CA 92704 SAN GABRIEL CA 91776
15238	ITT SEIICONOUCTORS   a DIVISION OF INTERMational   telephone amo telegraph corp	$\begin{aligned} & 500 \text { вROADMAY } \\ & \rho 0 \text { B0X } 168 \end{aligned}$	LOWREACE MA 01841
15454	ametek IMC RODON OIV	2905 日LUE STAR ST	AMAHEIM CA 92806
45636	ELEC-TROL INC	26477 N GOLDEN VALLEY RO	Salugus CA 91350
17856	SILICONIX INC	2201 LAURELINOOD RD	SANTA CLARA CA 95054
18324	SIGMEIICS CORP	811 E ARPUES	SUWHVALE CA 94086
19396	ILLINOIS TOOL MORKS INC PAKTRON OIVISION	900 FOLLIN LONE 5 E	VIENA VA 22180
19701	mepcolelectra Imc   A MORTH AMERICOM PHILIPS CO	P 0 b0X 760	MINERAL MELLS TX 76067
20932	KYOCERA INC	11620 SORRENTO VALLEY RO	SAN DIEEO CD 92121 COMP HILL PA 17011
22526	DU PONT E I OE MEHOURS WO CO IMC DU PONT CONNECTOR SYSTENS	30 HWNTER LOME	COMP HILL PA 17011
24546	CORNING GLASS MORKS	550 HIGH ST	GRADPORD PG 16701
24931	SPECIALTY CONEETOR CO IMC	2620 ENORESS PLACE P 0 80X 0	GREEM000 IN 46142
25403	amperex electronic corp SEICONOUCTOR AMO WICROCIRCUITS DIV	PROVIOEICE PIKE	SLOTEPSVILLE RI 02878
27014	MATIOMAL SEIICOMNCTOR CORP	2900 SEAICONDUCTOR OR	SANTA CLARA CA 95051

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER

Code	Manufacturer	Address	City, State, Zip Codo
31433	UNION CAREIOE CORP ELECTRONICS OIV	P0 80X 5928	GREENUILLE SC 29606
31918	ITT SCHAOON IMC	8081 Hallace RO	EDEN PRAIRIE 55343
32293	INTERSIL IMC	10900 n tantan ave	CUPERTINO CA 95014
32997	BOURNS IMC TRIMPOT OIV	1200 COLUMEIA AVE	RIVERSIOE CA 92507
34371	HARRIS SEHICONOUCTOR OIV OF HARRIS CORP	P 0 80X 883	MELBOUPNE FL 32901
34649	INTEL CORP	3065 boners ave	SANTA Clara ca 95051
34899	FAIR-RITE PROOUCTS CORP	1 COMMERCIAL ROW	HALLKILL NY 12599
50157	MIONEST COMPONENTS IMC	1981 PORT CITY BLVD P 0 B0X 787	MUSKEGON MI 49443
50434	hemlett-packaro co optoelectronics OIV	640 Page mill Ro	PGLO ALTO CA 94304
51406	murata erie morth mmerica inc georgia operations	1148 FRANXLIN ROSE	MARIETTA GA 30067
51642	CEMTRE ENGINEERING INC	2820 E COLLEGE AVE	STATE COLLEGE PA 16801
51984	nec america inc	2741 PROSPERITY AVE	FAIRFAX VA 22031
52763	STETTMER ELECTRONICS INC	6135 AIRNAYS BLVD PO BOX 21947	CHATTANOOGA TN 37421
52769	SPRague-goodman electronics inc	134 fulton ave	garoen city park ny 11040
54473	MATSUSHITA ELECTRIC CORP Of AMERICA	ONE PaNasonic may	SECAUCUS NU 07094
54583	TOK ELECTRONICS CORP	755 EASTGATE BLVD	GAROEN CITY NY 11530
54937	OEYOUNG MFG INC	1517 130TH AVE NE PO BOX 1806	BELLEVUE 98009
55112	mestlake capacitors inc	5334 STERLING CENTER ORIVE	WESTLAKE VILLAGE CA 91361
55680	NICHICON /AMERICA/ CORP	927 E STATE PKY	SCHAUMBURG IL 60135
56299	SPRAGUE ELECTRIC CO	87 MARSHALL ST	NORTH ADOMS MA 01247
56866	QUALITY THERHISTDR INC	2096 SOUTH COLE RD SUITE 7	BOISE 1083705
57668	ROIM CORP	16931 MILLIXEN AVE	IRVINE CA 92713
58361	geveral instrument corp OPTOELECTRONICS OIV	3400 HILLVIEN AVE	PALO ALTO CA 94304
59640	SUPERTEX INC	1225 BORDEAUX OR	SUMNYVALE CA 94086
59660	TUSONIX JNC	$2155 \sim$ FORBES BLVD	TUCSON, ARIZONA 85705
59821	CEATRALCAB IMC   SUB MORTH AMERICAN PHILIPS CORP	7158 MERCHANT AVE	EL PaSO TX 79915
71400	MCORPM-EDISOH CO BUSSMAWN MFG OIV	502 EARTH CITY PLAZA PO BOX 14460	ST LOUIS MO 63178
71468	ITT COMNON ELECTRIC OIV intermational telephone ma telegrapy co	666 E OYER RO	SANTA ANA CA 92702
71590	GLOAE-INION INC CEMTRALAB ELECTRONICS OIV	her 20 n   PO BOX 858	FORT OODGE IA 50501
74868	buneer ramo corp ampheiol morth mmerica rf operations	33 E FRaWKLIN ST	OANBURY CT 06810
75042	TRH IMC   TRH ELECTRONIC COMPONENTS   IRC FIXED RESISTORS PHILAOELPHIA OIV	401 N BROAO ST	PHILAOELPHIA PA 19108
$\begin{aligned} & 75915 \\ & 76493 \end{aligned}$	LITTELIUSE INC beLL inoustries imc miller j m Oiv	800 E MORTHMEST HAY 19070 REYES AVE	OES PLAINES IL 60016 COMPTON CA 90224
80009	TEXTRONIX IMC	P O BOX 5825 4900 S M GRIFFITH OR P 0 00X 500	aeaverton or 9707?
B2389	SWITCHCRATT INC   SUG DF RAYTHEON CO	5555 N ELSTRON AVE	CHICAGO IL 60630
84411	TRN IMC   TRH ELECTRONICS COMPOMENTS DIV   TRA CAPACITORS	301 MEST 0 ST	OGALLALA NE 63153
$91637$ $98341$	DALE ELECTRONICS IMC W/A-COM SEIICONJCTOR PRODUCTS IMC	P 0 b0x 609 MORTMEST IMDUSTRIAL PARK	COLLABUS NE 68501 BURLINGTOW Ha 01803
	W/a-con seniconauctor prooucts IMC	SOUTH AVE	BURLINGTON MA 01803
98733	SAN FERMMDO ELECTRIC MFG CO	1501 FIRST ST	SAN FERMOMDO CA 91341
97525	ELECTRONIC EMINEERING COMPANY OF CALIFORNIA/EECO	1441 e Chestaut avenue	SANTA ANA, CA 92702
05243	romenstein e spelialfabrik fuer konomsatoren cime	U0WILLASTRASSE 23-25	8300 LOMOSHUT GERMANY
TK0188	ALMAC-STROUM ELECTRONICS	1885 NW 169TH PLACE	BEAVERTON DR 97006


Mfr. Code	Manufacturer	Address	City, State, Zip Code
TK0213	TOPTRON CORP	TOKYO	JAPPM
TK0510	Panasonic Company	ONE Panasonic may	SECAUCUS NJ 07094
	DIV OF MATSUSHITA ELECTRIC CORP		
TK0515	RIFA MORLD PRODUCTS INC	19678 8TH STREET EAST P 0 B0X 517	SONOMA CA 95476
TK0946	SAN-O INDUSTRIAL CORP	170 HILPUR PL	BAHEMIA, LONG ISLAND NY 11716
TK0961	NEC ELECTRONICS USA INC	401 ELLIS ST	MOUNTAIN VIEN CA 94043
TK1016	tOSHIBA AMERICA INC ELECTRONIC COMPONENTS DIV BUSINESS SECTOR	2692 DON AVE	TUSTIN CA 92680
TK1339	PREH MAGNETICS INC	3521 N CHAPEL SPaCE HILL RO	MCHENRY IL 60050
TK1395	ROEDERSTEIN ELECTRONICS INC	2100 MEST FRONT ST P 0 BOX 5588	STATESVILLE NC 28677
TK1450	TOKYO COSWOS ELECTRIC CO LTD	2-268 sobudai lama	KANAGAMA 228 JAPAN
TK1483	TEKA PRODUCTS INC	45 SALEM ST	PROVIDENCE RI 02907
TK1884	ROGERS CORPORATION 0 PAC DIVISION	5750 EAST MCKELLIPS RD	MESA ARIZONA 85205


Component No,	Tektronix Part No.	Serial/Ass Effective	embly No. Oscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1	670-8708-00			CIRCUIT BD ASSY:MAIN	80009	670-8708-00
A2	670-8599-00			CIRCUIT BD ASSY:ATTENUATOR	80009	670-8699-00
A3	670-8710-00	8010100	8012599	CIRCUIT BD ASSY:FR PNL	80009	670-8710-00
A3	670-8710-01	8012600		CIRCUIT BD ASSY:FRONT PNL	80009	670-8710-01
A4	670-8709-00			CIRCUIT BD ASSY:TIMING	80009	670-8709-00
A5	670-8711-00			CIRCUIT BD ASSY:ALT SH	80009	670-8711-00
A6	670-7615-00			CIRCUIT BD ASSy: mi filter	80009	670-7615-00
A7	-----			CIRCUIT BO ASSY:INTENS POT (SEE R9B02 REPL)		
A10	670-8702-00	8010100	8012599	CIRCUIT BD ASSY:STORAGE	80009	670-8702-00
A10	670-8702-01	8012600		CIRCUIT BD ASSY:STORAGE	80009	670-8702-01
A11a1	672-1193-00			CIRCUIT BD ASSY:INPUT/OUTPUT \& VECT GEN	80009	672-1193-00
A11a1	----- ----			CKT BOARD ASSY:INPUT/OUTPUT (NOT AVAILAGLE, USE A11)		
A11a2	672-1193-00			CIRCUIT BO ASSY:INPUT/OUTPUT \& VECT GEN	80009	672-1193-00
A1102				CKT BOARO ASSY:VECTOR GENERATOR   (NOT AYAILO日LE USE A11)		
A13	670-8705-00			CIRCUIT BD ASSY:SMEEP INTFC	80009	670-8705-00
A14	670-8698-00			CIRCUIT BD ASSY:LOGIC CH1 \& CH2 (CH 1 LOGIC BOARO)	80009	670-8698-00
A15	670-8698-00			CIRCUIT BD ASSY:LOGIC CH9 \& CH2 (CH 2 LOGIC BOARD)	80009	670-8698-00
A16	670-8706-00			CIRCUIT BD ASSY:SNEEP REF	80009	670-8706-00
A17	670-8780-00			CIRCUIT BD ASSY:POSITION INTERFACE	80009	670-8780-00
A18	670-8998-00			CIRCUIT BD ASSY:THERUAL SHUTDONW	80009	670-8998-00
A20	670-8898-00			CIRCUIT BD ASSY:X-Y PLOTTER	80009	670-8898-00
A21	670-8899-00			CIRCUIT BD ASSY:RS232 (OPTION 12 ONLY)	80009	670-8899-00
422	670-8800-00			CIRCUIT BD ASSY:GPIB (OPTION 10 ONLY)	80009	670-8900-00
A23	670-8952-00			CIRCUIT BD ASSY:OPT MEMORY   (OPTION 12,10 ONLY)	80009	670-8952-00
A24	670-9701-00	8012600		CIRCUIT BD ASSY:CURSOR CONTROL	80009	670-9701-00
A1	670-8708-00			CIRCUIT BD ASSY:MAIN	80009	670-8708-00
A1C114	281-0767-00			CAP, FXO,CER 01:330PF,20\%, 100V	04222	MA106C3314AA
A1C115	281-0767-00			CAP, FXO, CER D1:330PF,20\%, 100V	04222	MA106C3314AA
A1C116	281-0862-00			CAP, FXO, CER 01:0.001UF, +80-20\%, 100V	04222	MA101C102mAA
A1C125	281-0772-00			CAP, FXD, CER 01:4700PF, 10\%, 100V	04222	MA201C472KAA
A1C126	285-1346-00			CAP, FXD, PLASTIC: 1500PF, 100V ,5\%	55112	185(1500PF)
A1C130	283-0159-00			CAP, FXO, CER DI: $18 P \mathrm{PF}$, 57, 50V	04222	SR155A180JAA
A1C433	281-0814-00			CAP, FXD, CER DI:100 PF, 10\%, 100V	04222	MA101A101KAA
A1C164	281-0767-00			CAP, FXO, CER 01:330PF,20\%, 100V	04222	MA106C331MAA
A1C165	281-0767-00			CAP, FXO, CER DI:330PF,20\%, 100V	04222	MR106C331man
A1C175	281-0772-00			CAP, FXD, CER 0I:4700PF, 10\%, 100V	04222	MA201C472KAA
A1C176	285-1346-00			CAP, FXO, PLASTIC: 1500PF, 100V ,5\%	55112	185 (1500PF)
A1C180	283-0159-00			CAP, FXD, CER DI: 18PF, 57, 50V	04222	SR155A180JAA
A1C200	290-0136-00			CAP, FXO, ELCTLT:2.2UF, 20\% , 2OV	05397	T3228225w020as
A1C201	290-0136-00			CAP, FXO, ELCTLT:2.2UF, 20\%, 20V	05397	T3228225M020as
A1C210	281-0500-00			CAP, FXO, CER 01:2.2PF, +/-0.5PF,500V	52763	2ROPL2007 2P200C
A1C215	281-0862-00			CAP, FXD, CER DI:0.001UF, $+60-20 \%, 100 \mathrm{~V}$	04222	MA101C107MAA
A1C220	281-0772-00			CAP, FXD, CER 01:4700PF, 10\%, 100V	04222	MAZ01C472KAA
A1C225	281-0757-00			CAP, FXO, CER DI: 10PF , 20\%, 100V	04222	MA1010100MAR
A1C226	281-0862-00			CAP, FXD, CER DI:0.001UF, 880 -20\%, 100V	04222	ma101C102man
A1C228	283-0685-00			CAP, FXD,MICA DI: 190PF, 17, 100V	00853	0155F191FO
A1C229	283-0665-00			CAP, FXD, MICA DI: 190PF, 17, 100V	00853	0155F191F0
A1C237	281-0440-00			CAP, VAR, CER DI:5-25PF, 100 V	59660	518-023A 5-25
A16239	281-0776-00			CAP, FXO,CER OI:120PF, $5 \%, 100 \mathrm{~V}$	20932	401E0100A0129J


Component No．	Tektronix Part No．	Serial／Assembly No． Effective Dscont	Name \＆Description	Mifr． Code	Mfr，Part No．
A1C240	281－0511－00		CAP，FXD，CER 01：22PF，＋／－2．2PF，500V	52763	2ROPLZ007 22P0KC
A1C241	281－0777－00		CAP，FXD，CER 01：51PF，5\％，100V	04222	MA1014510JaA
A1C242	281－0812－00		CAP，FXD，CER 01：1000PF，10\％，100V	04222	MA101C102kAA
A1C250	281－0768－00		CAP，FXD，CER DI：470PF，20\％，100V	04222	MA1019471MAA
01C251	281－0768－00		CAP，FXD，CER DI：470PF，20\％，100V	04222	MA1D19471MAA
A1C255	281－0862－00		CAP，FXD，CER DI：0．001UF，＋80－20X，100V	04222	MA101C102MAA
A1C262	281－0862－00		CAP，FXD，CER 01：0．001UF，＋80－20\％，100V	04222	ma101C102ma
A1C274	281－0773－00		CAP，FXD，CER 01：0．01UF，10\％，100V	04222	Maz01C103×aA
A1C281	281－0775－00		CAP，FXD，CER DI：0．1UF，207，50V	04222	MA205E104MAA
A1C282	281－0767－00		CAP，FXD，CER 01：330PF，20\％，100V	04222	MA106C331MAA
A1C292	290－0776－00		CAP，FXO，ELCTLT：22UF，$+50-10 \%, 10 \mathrm{~V}$	55680	ULA1A220TEA
A1C312	281－0893－00		CAP，FXD，CER DI：4．7PF，＋／－0．5PF， 100 V	04222	ma101a4R70AA
A1C337	281－0893－00		CAP，FXD，CER DI：4．7PF，＋／－0．5PF，100V	04222	MA101a4R7DAA
A1C350	281－0898－00		CAP，FXD，CER 01：7．5PF，＋／－0．5PF，500V	96733	X 23446
A1C351	281－0756－00	8010270	CAP，FXO，CER DI：2．2PF，＋／－0．5PF，200V	04222	MA106A2R20AA
A1C363	281－0862－00		CAP，FXD，CER DI：0．001UF ， $880-20 \%, 100 \mathrm{Y}$	04222	MA101C10INAA
A1C369	281－0862－00		CAP，FXD，CER 01：0．001UF，＋80－20X，100Y	04222	MA101C102MAA
A1C381	283－0663－00		CAP，FXD，HICA DI：16．BPF，＋／0．5PF，500V	00853	0155C16R800
A1C389	281－0773－00		CAP，FXD，CER 01：0．01UF，10\％，100V	04222	MAZ01C103kaA
91C390	281－0862－00		CAP，FXD，CER 01：0．001UF，$+80-207,100 \mathrm{~V}$	04222	MA101C102ma
A1C392	281－0862－00		CAP，FXD，CER 01：0．001UF， $\mathbf{+ 8 0 - 2 0 7 , 1 0 0 V}$	04222	MA101C102man
A1C396	283－0203－00		CAP，FXD，CER DI：0．47JF，20\％，50V	04222	SR305SC474MAA
A1C397	281－0773－00		CAP，FXD，CER 01：0．01UF，10\％，100Y	04222	MAZ01C103KAA
A1C400	283－0094－00		CAP，FXD，CER 01：27PF，10\％，200V	59821	200173K270K
A1C414	290－0246－00		CAP，FXD，ELCTLT：3．3UF，10\％，15V	12954	03R3EA15K1
A1C415	290－0246－00		CAP，FXD，ELCTLT：3．3UF，10\％，15V	12954	03R3EA15K1
A1C418	281－0862－00		CAP，FXD，CER DI：0．001UF，$+80-20 \%, 100 \mathrm{~V}$	04222	Ma101C10 Man
A1C419	281－0851－00		CAP，FXD，CER 01：180PF，5\％，100VDC	04222	Ma101a181JaA
A1C420	281－0773－00		CAP，FXD，CER 01：0．01UF，10\％，100V	04222	MAZ01C103KAA
A1C421	281－0773－00		CAP，FXD，CER DI：0．01UF，10\％，100V	04222	MAZ01C103KAA
A1C440	283－0665－00		CAP，FXD，MICA DI：190PF，12，100V	00853	0155F191F0
A1C453	281－0862－00		CAP，FXD，CER DI：0．001UF，+80 －20\％，100V	04222	MA101C102ma
A1C454	281－0775－00		CAP，FXD，CER 01：0．1UF，20\％，50V	04222	MAZ05E104ma
A1C459	281－0862－00		CAP，EXD，CER 01：0．001UF，+80 －20\％，100V	04222	MA101C102MAA
A1C460	281－0826－00		CAP，FXD，CER 01：2200PF，5\％，100V	20932	401EM10090222x
A1C467	281－0772－00		CAP，FXD，CER 01：4700PF，10\％，100V	04222	MAZ01C472KA日
A1C469	281－0772－00		CAP，FXD，CER DI：4700PF，10\％，100V	04222	MA201C472kaA
A1C473	281－0862－00		CAP，FXD，CER 01：0．001UF， 880 －20\％，100V	04222	MA101C102MAA
A1C480	281－0772－00		CAP，FXD，CER DI：4700PF，10\％，100Y	04222	mazo1C472Kan
A1C494	281－0773－00		CAP，FXD，CER D1：0．01UF，10\％，100V	04222	maz01C103Kaの
A1C499	281－0773－00		CAP，FXD，CER D1：0．01UF，10\％，100V	04222	maz21C103Kan
A1C500	281－0903－00		CAP，FXD，CER 01：3．9PF， 100 Y	04222	ma101a3R909a
A1C501	290－0246－00		CAP，FXD，ELCTLT：3．3UF，10\％，15V	12954	03R3EA15K1
A1C502	281－0773－00		CAP，FXD，CER DI：0．01UF，10\％，100Y	04222	MAZO1C103KAA
A1C503	281－0775－00		CAP，FXD，CER 01：0．1UF，20\％，50V	04222	MA205E104MAA
A1C504	290－0246－00		CAP，FXD，ELCTLT：3．3UF，10\％，15V	12954	03R3EA15K1
A1C505	290－0183－00		CAP，FXD，ELCTLT：1UF，10\％，35V	05397	T3228105K035AS
A1C506	281－0772－00		CAP，FXD，CER DI：4700PF，10\％，100V	04222	MA201C472K日a
A1C507	290－0776－00		CAP，FXD，ELCTLT：22UF，＋50－10 \％，10V	55680	ULA1A220TEA
91C518	281－0852－00		CAP，FXD，CER 01：1800PF，10\％，100VOC	04222	MA101C182KAA
A1C519	290－0814－00		CAP，FXD，ELCTLT：0．33MF，10\％，20V	05397	T110A334K020AS
A1C520	290－0301－00		CAP，FXD，ELCTLT： $100 \mathrm{~F}, 10 \%, 20 \mathrm{~V}$	05397	T1109106K020AS
A1C521	281－0775－00		CAP，FXD，CER 01：0．1UF，202，50V	04222	MA205E104MAA
A1C525	281－0895－00		CAP，FXD，CER 01：6．8PF，100NVOC	04222	MA101a6Rgoan
A1C527	281－0797－00		CAP，FXD，CER DI：15PF，10\％，100V	04222	MA106A150KAA
A1C528	281－0759－00		CAP，FXD，CER DI：27PF，10\％，100V	04222	Mค101a220K¢A
A1C531	281－0773－00		CAP，FXD，CER 01：0．01UF，10\％，100V	04222	Maz01C103kad
A1C537	281－0775－00		CAP，FXD，CER 01：0．1UF，20\％，50V	04222	Mazose1otman
A1C538	281－0862－00		CAP，FXD，CER 01：0．001UF，$+60-20 \%, 100 \mathrm{~V}$	04222	MA101C102mad


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1C539	281-0862-00		CAP, FXD, CER DI:0.001UF, $+80-20 \%$, 100V	04222	ma101c107man
A1C540	290-0776-00		CAP , FXD, ELCTLT: $220 \mathrm{~F},+50-10 \%$, 10 V	55680	ULA1A2z2TEA
A1C544	281-0775-00		CAP, FXD, CER DI:0.1UF , 20\% , 50V	04222	MAZ05E104MAA
A1C545	285-1345-00		CAP, FXD, PLASTIC: 2200PF, 100V ,5\%	55112	185(2200PF)
A1C547	281-0767-00		CAP, FXD, CER DI:330PF, 20\%, 100V	04222	M ${ }^{\text {a }}$ (268C331MAA
A1C553	281-0775-00		CAP, FXD, CER DI:0.1UF,202,50V	04222	MA205E104MAA
A1C561	281-0862-00		CAP, FXD, CER DI:0.001UF, +800 -20\%, 100V	04222	MA101C102ma
A1C562	281-0775-01		CAP, FXD, PLASTIC:0.1UF,20\%,50V	04222	MAZ05E104MAA
A1C562	281-0775-01	8010552	CAP, FXD, PLASTIC:0.10F, 20\% ,50V	04222	MA205E104MAA
A1C563	281-0775-01		CAP, FXD, PLASTIC:0.1UF,20\%,50V	04222	MA205E104MAA
A1C563	281-0775-01	8010552	CAP, FXD, PLASTIC:0.10F,20\%,50V	04222	MA205E104MAA
A1C565	281-0768-00		CAP, FXD, CER DI:470PF, 20\%, 100V	04222	MA101a471MAA
A1C590	290-0136-00		CAP , FXD , ELCTLT: $2.2 \mathrm{UF}, 20 \%$, 20V	05397	T3228225M020as
A1C803	291-0862-00		CAP, FXD, CER D1:0.001UF, $+80-20 \%$, 100V	04222	Ma101C102MAA
A1C635	281-0826-00		CAP, FXD, CER DI:2200PF,5\%,100V	20932	401EM100AD222K
A1C646	290-0776-00		CAP, FXD, ELCTLT:22UF, +50-10 $x$, 10V	55680	ULA1A220TEA
A1c647	281-0862-00		CAP, FXD, CER DI: 0.001 UF , +80-20\%, 100V	04222	MA101C102MAA
A1C648	281-0862-00		CAP, FXD, CER DI: $0.001 \mathrm{VF},+80-20 \%, 100 \mathrm{~V}$	04222	ma101C102man
A1c849	281-0862-00		CAP, FXD, CER DI: 0. DO1UF , +80-20\%, 100V	04222	MA101C102mAA
A1c764	281-0773-00		CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	Ma201C103KAA
A1c770	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50Y	04222	MA205E104MAA
A1C775	281-0214-00		CAP, VAR, CER DI:0.6-3PF,400V	52763	313613-140
A1C77	281-0771-00		CAP, FXD, CER DI:2200PF, 220\%, 200V	04222	MA106E222MAA
A1C779	285-1101-00		CAP, FXD, PLASTIC:0.022UF, 10\%,200V	19396	223K02PT485
91C780	281-0775-00		CAP, FXD, CER DI:D. 1 UF, 20\% , 50Y	04222	MA205E104MAA
A1C782	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50Y	04222	MA205E104MAA
A1C785	281-0661-00	B010100 B010245	CAP, FXD, CER DI:0.8PF, $+/-0.1 \mathrm{PF}$,500V	52763	2RDPL2007 OP80BC
A1C785	281-0214-00	B010246	CAP, VAR, CER D1:0.6-3PF, 400V	52763	313613-140
A1C78 7	281-0771-00		CAP, FXD, CER DI:2200PF, 220\%, 200V	04222	MA106E22zMAA
A1C789	285-1101-00		CAP, FXD, PLASTIC:0.022UF, 10\%,200V	19396	223K02PT485
A1C796	291-0775-00		CAP, FXD, CER DI:0.1UF, 20\% ,50Y	04222	MA205E104MAA
A1C797	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\%, 50Y	04222	MA205E104MAA
A1C799	283-0057-00		CAP, FXD, CER DI:0.1UF, +80-20\%,200V	04222	SR306E1042AA
A1C824	281-0785-00		CAP, FXD, CER DI: 68PF, 10\%, 100V	04222	MА101а6вокаА
A1c825	281-0767-00		CAP, FXD, CER DI:330PF, 20\%, 100V	04222	MA108C331MAA
A1caz8	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A1c832	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%, 50Y	04222	MA205E104MAA
A1c835	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\%, 50V	04222	MA205E104MAA
A1C845	281-0771-00		CAP, FXD, CER DI:2200PF,2202,200V	04222	MA106E222MAA
A1c84?	283-0057-00		CAP, FXD, CER DI:0.1UF, $+80-202,200 \mathrm{~V}$	04222	SR306E1042AA
A1c849	283-0057-00		CAP, FXD, CER D1:0.1UF, +60-20\%, 200V	04222	SR306E1042AA
A1C851	283-0057-00		CAP, FXD, CER D1:0.1UF, +80-20\%, 200 V	04222	SR308E1042AA
A10853	281-0791-00		CAP, FXD, CER 01:270PF, 10\%, 100V	04222	Ma101C271KaA
A1C854	283-0279-00		CAP, FXD, CER DI:0.001UF,20\%,3000V	51406	DHR12Y55102M3KV
A1C855	285-1255-00		CAP, FXD, PLASTIC:0.01UF,20\%,3KV	56289	430P582
A1C871	283-0057-00		CAP, FXD, CER DI:0.11F, +80-20\%, 200V	04222	SR306E104ZAA
A10873	289-0775-00		CAP, FXD, CER DI:0.1UF, 207,50V	04222	MA205E104MAA
A1c875	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\%, 50V	04222	MA205E104mAA
A1c877	281-0775-00		CAP, FXD, CER DI:D. $14 F, 207,50 Y$	04222	MA205E109MAA
A1C893	283-0279-00		CAP, FXD, CER DI:0.001UF,20\%,3000V	51406	OHR12Y55102M3KV
A1C904	285-1222-00		CAP, FXD, PLASTIC:D.068UF, 20\% ,250V	55112	158/.068/M/250/H
A1C808	290-0978-00		CAP , FXD, ELCTLT: 750 F , $+50-10 \%, 450 \mathrm{~V}$	56289	1701449
A1C907	285-0932-00		CAP, FXD, PLASTIC: 1UF, 10\%, 400V	04099	C7050105K
A1C908	283-0481-00		CAP, FXD, CER DI:220PF, 10\% , 250VAC	TK1395	RK0619
A1C917	281-0812-00		CAP, FXD, CER DI: 1000PF, 10\%, 100V	04222	MA101C102KAA
A1C919	281-0852-00		CAP, FXD, CER DI: 1800PF, 10\%, 100VDC	04222	MA109C182KAA
A1C922	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\%,50V	04222	MA205E104MAA
A 16925	290-0973-00		CAP, FXD, ELCTLT: 100UF, 20\%, 25VDC	55680	ULBIET01MEA
А1С940	290-0922-00		CAP, FXD, ELCTLT: 1000 UF, $+50-10 \%, 50 \mathrm{~V}$	55680	ULPIE102T FAANA



Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1CR527	152-0141-02		SEIICOND DVC, DI:SM, SI, 30V, 150MA,30V	03508	DA2527 (1N4152)
A1CR531	152-0141-02		SEIICOND DVC, $01: 5 \mathrm{SM}, 51,30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	DA2527 (1N4152)
A1CR532	152-0141-02		SEAICOND DVC, DI:SM, SI, 30V, 150MA, 30V	03508	D22527 (1N4152)
A1CR541	152-0141-02		SEMICOND DVC, DI:SK, SI, 30V, 150MA, 30V	03508	DA2527 (1N4152)
A1CR551	152-0141-02		SEMICOND DVC, $\mathrm{OI}: 5 \mathrm{SK}, \mathrm{SI}, 30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	DA2527 (1N4152)
A1CR556	152-0141-02		SEMICOND DVC, $01: 5 \mathrm{SK}, \mathrm{SI}, 30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	DA2527 (1N4152)
A1CR590	152-0141-02		SEMICOND DVC, OL:SN, SI, 30V , 150MA, 30V	03508	DA2527 (1N4152)
A1CR712	152-0141-02		SEMICOND DVC, $01: 5 \mathrm{SN}, \mathrm{SI}, 30 \mathrm{~V}, 150 \mathrm{MA}$, 30V	03508	OA2527 (1 1 4152)
A1CR764	152-0141-02		SEMICOND DVC, $01: 5 \mathrm{SN}, 51,30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	DA2527 (1 1 4 152)
A1CR765	152-0141-02		SEMICOND DVC, $01: 5 \mathrm{SM}, \mathrm{SI}, 30 \mathrm{~V}, 150 \mathrm{MA}$,30V	03508	DA2527 (1N4 152)
A1CR768	152-0141-02		SEMICOND DVC, 1 I:SM, SI, 30V, 150MA, 30V	03508	Da2527 (1 1 4 152)
A1CR770	152-0141-02		SEMICOND DVC, $121: S N, S 1,30 \mathrm{~V}, 150 \mathrm{Ma}$,30V	03508	DA2527 (1N4152)
A1CR780	152-0141-02		SEMICOND OVC, $01: S N, S I, 30 V, 150 \mathrm{MA}$, 30V	03508	Da2527 (1N4152)
A1CR805	152-0141-02		SEMICOND OVC, 01 :SN, $51,30 \mathrm{~V}, 150 \mathrm{MA}$,30V	03508	DA2527 (1 1 4 152)
A1cresp	152-0141-02			03508	DA2527 (1 1 4 152)
А1сR820	152-0141-02		SEHICOND DVC, DI:SM, SI, 30V, 150MA, 30V	03508	DA2527 (1N4 152)
A1CR823	152-0141-02		SEMICOND DVC, DI:SN, SI, 30V, 150MA, 30V	03508	DA2527 (1N4 952)
A1CR824	152-0141-02		SEMICOND DVC, DI:SH, SI, 30V, 150MA,30V	03508	DA2527 (1N4152)
A1CR825	152-0141-02		SEMICOND OVC, 01 : SH, SI, 30V , 150MA, 30V	03508	DA2527 (1N4152)
A1CR829	152-0141-02		SEMICOND OVC, OL :SM, SI, 30V, 150MA, 30V	03508	Da2527 (1N4152)
A1CR840	152-0141-02		SEMICOND OVC, $121: S N, S 1,30 V, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	Da2527 (1 1 4 452 )
A1CR845	152-0141-02		SEMICOND DVC, DI:SN, SI, 30V, 150MA,30V	03508	OA2527 (1N4152)
A1CR851	152-0413-00		SEMICOND DVC, OI: RECT, SI , 400V , 1.0A, A59	04713	SR2046KRL
A1CR853	152-0413-00		SEMICOND DVC, DI:RECT, SI, 400V, 1.0A, A59	04713	SR2046KRL
A1CR854	152-0413-00		SEMICOND DVC, 01 :RECT, $51,400 \mathrm{~V}, 1.00$, A59	04713	SR2046KRL
A1CR855	152-0413-00		SEMICONO OVC, 01 :RECT, $51,400 \mathrm{~V}, 1.00$, , 59	04713	SR2046KRL
A1CR901	152-0040-00		SEXICOND OVC, $01:$ RECT, $51,600 \mathrm{~V}, 14, \mathrm{DO-41}$	80009	152-0040-00
A1CR902	152-0040-00		SEMICOND DVC, $01:$ RECT, $51,600 \mathrm{~V}, 14,00-41$	80009	152-0040-00
A1CR903	152-0040-00		SEMICOND DVC, $01:$ RECT, $51,800 \mathrm{C}, 19,00-41$	80009	152-0040-00
A1cr904	152-0040-00		SESICOND DVC, 1 : RECT, SI, $600 \mathrm{~V}, 1 \mathrm{~A}, \mathrm{DO-41}$	80009	152-0040-00
A1CR907	152-0808-00		SEAICOND DVC, OI:RECTIFIER,SI,400V, 1.5 AMP, 5 ONS	01281	DSR3400X
A1CR908	152-0141-02		SEAICOND OVC, DI:SN, SI, 30V, 150MA, 30V	03508	DA2527 (1N4152)
A1CR920	152-0061-00			07263	F0H2161
A1CR946	152-04 14-00		SEMICONO DVC, DI:RECT, SI , 200V , 1.OA, A59	04713	SR2069RL
Alcrest	152-0444-00		SEMICOND DVC, DI :RECT, $51,200 \mathrm{~V}, 1.0 \mathrm{~A}, \mathrm{A59}$	04713	SR2069RL
A1CR948	152-0141-02		SEMICOND DVC, DI:SK, SI , 30V , 150MA, 30V	03508	DA2527 (1N4152)
A1CR954	152-0413-00		SEMICONO DVC, DI:RECT, SI , 400V , 1.0A, A59	04713	SR2046KRL
A1CR955	152-0413-00		SEMICOND OVC, DI: RECT, SI, 400V, 1.OA, A59	04713	SR2046KRL
A148956	152-0414-00		SEAICOND DVC, DI:RECT, SI, 200V, 1.00, 155	04713	SR2069RL
A1CR957	152-0414-00		SEMICOND DVC, DI:RECT, SI, 200V,1.04, A59	04713	SR2069RL
A1CR960	152-0414-00		SEMICONO DVC, DI:RECT, SI, 200V,1.OA,A59	04713	SR2069RL
A1CR961	152-04 14-00		SEMICOND DVC, $01:$ RECT, SI , 200V , 1.00, A59	04713	SR2069RL
A1CR962	152-0414-00		SEMICOND DVC, $01:$ :RECT, SI , 200V,1.0A, A59	04713	SR2069RL
A1CR963	152-0414-00		SEMICOND DVC, DI:RECT, SI, 200V,1.00,A59	04713	SR2069RL
A1cr965	152-0414-00		SEMICOND DVC, DI:RECT, SI, 200V,1.0A, A59	04713	SR2069RL
A1CR967	152-0414-00		SESICOND DVC, DI:RECT, SI, 200V, 1.00, A59	04713	SR2069RL
A1CR980	152-0601-00		SEAICOND DVC, DI:RECTIFIER,PLSTC, 150V,25NS	04713	MUR115
A1CR981	152-0601-00		SEMICOND DVC, DI:RECTIFIER,PLSTC, 150V,25NS	04713	MUR115
A1CR7201	152-0141-92		SEAICONO DVC, $01:$ SK, SI, 30V, $150 \mathrm{MA}, 30 \mathrm{~V}$	03508	OA2527 (1N4152)
A1CR7202	152-0141-02		SEMICOND OVC, $01: 5 \mathrm{SK}, 51,30 \mathrm{~V}, 150 \mathrm{~mA}, 30 \mathrm{~V}$	03508	DA2527 (1N4152)
A1CR7203	152-0141-02		SEMICOND DVC, $01: 5 \mathrm{SH}, \mathrm{SI}, 30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	DA2527 (1N4152)
A1CR7301.	152-0141-02		SEIICONO DVC, DI:SN, SI, 30V, 150MA, 30V	03508	DA2527 (1N4 152)
A1CR7302	152-0141-02		SEMICOND DVC, DI:SN, SI, 30V, 150MA, 30V	03508	DA2527 (1N4152)
A1CR7303	152-0141-02		SEMICOND DVC, DI:SN, $51,30 \mathrm{~V}$, 150MA, 30V	03508	002527 (1N4152)
A1CR7304	152-0141-02		SEMICOND DVC, DI:SH, $51,30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	0A2527 (1N4152)
A1CR7305	152-0141-02		SEMICOND DVC, DI:SM, $51,30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	DA2527 (1N4152)
A1CR7306	152-0141-02		SEMICONO DVC, $01.5 \mathrm{SH}, 51,30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	DA2527 (1N4152)
A1CR7307	152-0141-02		SEAICOND DVC, DI:SN, $51,30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	DA2527 (1N4152)


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr, Part No.
alcrisiob	152-0141-02		SEHICOND OVC, DI: SK, $51,30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	0A2527 (1N4152)
A105856	150-0035-00		LAMP, GLOM:90V MAX, 0.3 IMA, AID-T, MIRE 10	TK0213	JH005/3011JA
A105858	150-0035-00		LAMP, GLON:90V MAX, O.3MA,AID-T, MIRE LO	TK0213	JH005/3011JA
a10s870	150-0035-00		LAMP, GLON:90V MAX, O.3MA, AID-T, MIRE LO	TK0213	JHOO5/3011JA
A1E200	276-0752-00		CORE, EI: FERRITE	34899	2743001111
Q1E201	276-0752-00		CORE, EM: FERRITE	34899	2743001111
A1E272	276-0752-00		CORE, EM: FERRITE	34899	2743001111
A1E590	276-0752-00		CORE, EM: FERRITE	34899	2743001111
A1E907	276-0635-00		CORE, EM: TOROIO, FERRITE	02114	768 T188/3E2a
A1J4210	131-0589-00		TERNINAL, PIN: $0.46 \mathrm{~L} \times 0.025$ SO PH BRZ (QUANTITY OF 4)	22526	48283-029
A199010	131-0608-00		TERHINAL, PIN: $0.365 \mathrm{~L} \times 0.025$ BRZ GLD PL (QUANTITY OF 9)	22526	48283-036
A1J9050	131-2427-00		TERH,OIK DISC.:CKT B0, BRASS	00779	62409-1
A1J9060	131-2427-00		TERH,OIK OISC.:CKT 80, BRASS	00779	62409-1
A1J9210	131-0608-00		TERNIMAL, PIN: $0.365 \mathrm{~L} \times 0.025 \mathrm{BRZ} \mathrm{GLO} \mathrm{PL}$ (QUPNTITY OF 7)	22526	48283-036
A1J9300	131-0608-00		TERMINAL, PIN: $0.365 \mathrm{~L} \times 0.025$ 8R2 GLD PL (QUANTIITY OF 5)	22526	48283-036
A1J9320	131-0608-00		TERNINAL, PIN:O. 365 L X 0.025 BRZ GLD PL (Quantiry of 4)	22526	48283-036
Q1,19644	131-0608-00		TERNIMAL, PIN:0.365 L X 0.025 ERZ GLD PL (quantity of 3)	22526	48283-036
A1J9802	131-0589-00		TERNINAL, PIN: $0.46 \mathrm{~L} \times 0.025$ SO PH BRZ (OUANTITY OF 5)	22526	48283-029
A1L142	108-0420-00		COIL, RF: FIXED, 35NH, 15\%	80009	108-0420-00
A1L143	108-0420-00		COIL, RF: FIXED, 35NH, 9\%	80009	108-0420-00
A1L192	108-0420-00		COIL, RF: FIXED, 35NH, 15Z	80009	108-0420-00
A1L193	108-0420-00		COIL, RF: FIXED, 35NH, $15 \%$	80009	108-0420-00
A1L960	100-1058-00		COIL, RF: FIXED, 10UH	02113	88724
A1L961	108-1058-00		COIL,RF: FIXED, 10UH	02113	88724
A1L962	108-1058-00		COIL,RF: FIXED, 10UH	02113	88724
91 L968	108-0554-00		COIL, RF: FIXED, 50H, +/-20\%	80009	109-0554-00
A197390	131-0608-00		TERMINAL, PIN: $0.365 \mathrm{~L} \times 0.025$ BRZ GLO PL	22526	48283-036
A197391	131-0608-00		TERUINAL, PIN: $0.365 \mathrm{~L} \times 0.025 \mathrm{BR2} \mathrm{GLO} \mathrm{PL}$	22526	48283-036
A197392	131-0608-00		TERMINAL, PIN: $0.365 \mathrm{~L} \times 0.025 \mathrm{BR2} \mathrm{GLD} \mathrm{PL}$	22526	48283-036
0197393	131-0608-00		TERNINAL,PIN: $0.365 \mathrm{~L} \times 0.025 \mathrm{BR2} \mathrm{GLD} \mathrm{PL}$	22526	48283-036
A10102	151-0712-00		TRANSISTOR:PNP, 51, T0-92	04713	SPS8223
A10103	151-0712-00		TRANSISTOR:PNP, S1, T0-92	04713	SPS8223
A10114	151-0190-00		TRANSISTOR:MPN, SI, T0-92	80009	151-0190-00
010115	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
010152	151-0712-00		TRONSISTOR:PNP, SI , T0-92	04713	SPS8223
A10153	151-0712-00		TRANSISTOR:PNP, SI, T0-92	04713	SPS8223
910164	151-0190-00		TRANSISTOR:NPN , SI , TO-92	80009	151-0190-00
A10165	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A10202	151-0212-00		TRANSISTOR:NPN, SI, T0-72	04713	SRF 518
A10203	151-0212-00		TRANSISTOR:NPN, SI, T0-72	04713	SRF 518
910206	151-0369-00		TRANSISTOR:PNP, SI , X-55	04713	SPS8273
A10207	151-0369-00		TRONSISTOR:PNP, SI , X-55	04713	SPS8273
010230	151-0271-00		TRANSISTOR:PNP, S1, T0-92	04713	SPS8236
010231	151-0271-00		TRANSISTOR:PNP, SI, T0-92	04713	SPS8236
A10254	151-0752-00		TRANSISTOR:NPN, SI, MARCO T	25403	日FR96
A10255	151-0752-00		TRAWSISTOR:NPN, SI , MARCD T	25403	- 7 R96
A10256	151-0752-00		TRANSISTOR:MPN, SI MARCO I	25403	8FR96
A10257	151-0752-00		TRANSISTOR:NPN, SI , MARCO T	25403	8FR96
410282	151-0190-00		TRANSISTOR:NPN, SI, TO-92	80009	151-0190-00
910283	151-0736-00		TRANS ISTOR:NPN, 51, T0-92	80009	151-0736-00
010284	151-0712-00		TRANSISTOR:PNP, SI, T0-92	04713	SPS8223
010285	151-0712-00		TRONSISTOR:PNP, SI, T0-92	04713	SPS8223
A10302	151-0714-01		TRANSISTOR:NPN, 5I, T0-92	04713	SPS8608M


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mir. Part No.
A10303	151-0711-01		TRANSISTOR:NPN, S1, T0-92	04713	SP586089
A10327	151-0711-01		TRANSISTOR:NPN, S1, T0-92	04713	SP58608M
A10328	151-0711-01		TRANSISTOR:NPN, S1, T0-92	04713	SP58608M
A10382	151-1042-00		SEMICOND DVC SE:FET, SI, T0-92	04713	SPF627M2
A10384	151-0711-00		TRANSISTOR:NPN, SI, T0-92	27014	WPSH11
A10397	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
Q10413	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
Q10419	151-0711-00		TRANSISTOR:NPW, S1, T0-92	27014	MPSH11
A10420	151-0711-00		TRANSISTOR:NPN, S1, T0-92	27014	MPSH11
A10421	151-0712-00		TRANSISTOR:PNP, SI, T0-92	04713	SPS8223
Q10422	151-0199-00		TRANSISTOR:PNP, SI, T0-92	27014	ST65057
Q10423	151-0424-00		TRONSISTOR:NPN, SI, T0-92F	04713	SPS8246
010428	151-0711-00		TRANSISTOR:NPW, SI, T0-92	27014	MPSH11
010429	151-0712-00		TRANSISTOR:PNP, SI, T0-92	04713	SPS8223
010473	151-0276-00		TRANSISTOR:PNP, SI, T0-92	04713	SP58025
A10474	151-0276-00		TRANSISTOR:PNP, SI, T0-92	04713	SPS8025
A10487	151-0424-00		TRANSISTOR:NPN,SI, T0-92F	04713	SPS8246
D10509	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
010511	151-0188-00		TRANSISTOR:PNP, SI , T0-92	80009	151-0188-00
A10521	151-0190-00		TRANSISTOR:NPN, S1, T0-92	80009	151-0190-00
010522	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	154-0188-00
A10523	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A10524	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A10525	151-0190-00		TRANSISTOR:NPN,SI, TO-92	60009	151-0190-00
A10527	151-0424-00		TRANSISTOR:NPN, SI , T0-92F	04713	SPS8246
A10541	151-0188-00		TRANSISTOR: PNP, SI, T0-92	80009	151-0188-00
A10542	151-0190-00		TRANSISTOR:NPN,SI, T0-92	80009	151-0190-00
A10543	151-0190-00		TRANSISTOR:NPN, S1, T0-92	80009	151-0150-00
A10544	151-0190-00		TRANSISTOR:NPW, SI, T0-92	80009	151-0190-00
A10576	151-0199-00		TRANSISTOR:PNP, SI, T0-92	27014	ST6505?
A10578	151-0199-00		TRANSISTOR:PNP, SI, T0-92	27014	ST65057
A10583	151-0198-00		TRANSISTOR:SELECTED	04713	SPS8802-1
A10586	151-0198-00		TRANSISTOR:SELECTED	04713	SP58802-1
- 10756	151-0432-00		TRANSISTOR:NPN, SI , T0-106	04743	SP58512
Q10770	151-0188-00		TRANSISTOR:PNP, SI, TO-92	60009	151-0188-00
010775	151-0347-00		TRANSISTOR:NPN, SI , T0-92	04713	SP57951
A10779	151-0350-00		TRANSISTOR:PNP, SI , T0-92	04743	SP56700
A10780	151-0190-00		TRANSISTOR:NP4,SI, T0-92	80009	151-0190-00
A10785	451-0347-00		TRANSISTOR:NPW, SI, T0-92	04713	SP57951
A10789	151-0350-00		TRANSISTOR: PMP, SI , T0-92	04713	SPS6700
A10804	151-0188-00		TRANSISTOR: PNP, 51. , T0-92	80009	151-0188-00
A10814	151-0188-00		TRANSISTOR: PNP, SI, T0-92	80009	151-0188-00
A10825	151-0424-00		TRANSISTOR:NPN, SI, T0-92F	04713	SPS8246
A10829	151-0199-00		TRANSISTOR: P4P , SI , T0-92	27014	ST65057
A10835	151-0199-00		TRANSISTOR: PWP, SI , T0-92	27014	ST65057
A10840	151-0347-00		TRANSISTOR:NPW, SI , T0-92	04713	SPS7951
A10845	151-0350-00		TRANSISTOR:PWP, SI , T0-92	04713	SP56700
A10908	151-0164-00		TRANSISTOR:PNP, SI, T0-92	04713	2N2907a
A10928	151-0432-00		TRANSISTOR:NPW, SI , T0-106	04713	SP58512
A10930	151-0164-60		TRANSISTOR:PNP, SI, T0-92	04713	2N2907a
A10935	151-0506-00		SCR:SI,RD-44	03508	C10682X283
A10938	151-0276-00		TRANSISTOR: PNP, SI , T0-92	04713	SPS8025
A10939	151-0276-00		TRANSISTOR:PNP, SI, T0-92	04713	SPS8025
A10944	151-0432-00	8010100 B010269	TRANSISTOR:NPN, SI, T0-106	04713	SP58512
A10944	151-0311-01	8010270	TRANSISTOR:NPW, SI, T0-126	04743	SJE908
A107201	151-0188-00		TRANSISTOR: PNP, SI, T0-92	80009	151-0188-00
A107202	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A107203	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A107204	151-0188-00		TRANSISTOR:PNP, SI, $00-92$	80009	151-0188-00


Component No．	Tektronix Part No．	Serial／Assembly No．   Effective Dscont	Name \＆Description	Mir． Code	Mfr．Part No．
0107362	151－0711－00		TRANSISTOR：NPN，SI，TO－92	27014	MPSH11
0107420	151－0190－00		TRAASISTOR：NPN，SI，T0－92	80009	151－0190－00
A107440	151－0190－00		TRANSISTOR：NPN，SI ，T0－92	80009	151－0190－00
A107470	151－0190－00		TRANSISTOR：MPN，SI，TO－92	80009	151－0190－00
0107471	151－0190－00		TRANSISTOR：NPN，SI，T0－92	80009	151－0190－00
0107472	151－0190－00		TRANSISTOR：NPN，SI，TO－92	80009	151－0190－00
A1R100	315－0430－00		RES ，FXO，FILM：43 OfM，5\％， 0.25 N	19701	5043CX43R00J
Q1R101	315－0430－00		RES，FXO，FILM：43 OHM，5\％， 0.25 N	19701	$5043 C \times 43 R 00 J$
A1R102	321－0155－00		RES，FXD，FILM：402 OHM，1\％， $0.125 \mathrm{M}, \mathrm{TC}=$ T0	07716	CEA0402ROF
A1R103	321－0155－00		RES ，FXD，FILM：402 0HM，1\％， $0.125 \mathrm{M}, \mathrm{TC}=$ T0	07716	CEAD402R0F
A1R104	321－0101－00		RES，FXD，FILM：110 OHM，1\％， $0.125 \mathrm{~m}, \mathrm{TC}=$ TO	07716	CEAO110ROF
A1R105	321－0101－00		RES，FXD，FILM： 110 OHM，1\％， $0.125 \mathrm{n}, \mathrm{TC}=$ TO	07716	CEAD110ROF
A1R106	321－0161－00		RES，FXD，FILM 464 OHA ，12，0．125M，TC $=$ TO	07716	CEAD464ROF
A1R108	321－0223－00		RES，FXD，FIUM：2．05K OHM，1\％，0．125\％，TC＝TO	80009	321－0223－00
A1R109	321－0221－00		RES，FXO，FILM：1．96K OHM，1\％，0．125M，TC＝T0	19701	5043ED1K960F
Q1R114	321－0225－00		RES，FXO，FILM：2．15K OHM，1\％，0．125M，TC＝TO	19701	5033ED2K15F
A1R115	321－0225－00		RES，FXD，FI LM： 2.15 K OHM，1\％， $0.125 \mathrm{M}, \mathrm{TC}=$ T0	19701	5033E02K15F
91R122	321－0085－00		RES，FXD，FILM：75 0Hm，1\％， $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	57668	CRB14FXE 75 OHM
A1R125	315－0242－00		RES，FXO，FIUM： 2.4 K OHM ，5\％， 0.25 M	57668	NTR25J－E02K4
A1R126	315－0182－00		RES，FXO，FIUM：1．8K OHM，5\％，0．25\％	57668	NTR25」－E1K8
A1R130	315－0510－00		RES，FXD，FI LM：51 OHM，5\％， 0.25 M	19701	5043CX51R00，
A1R131	315－0510－00		RES ，FXD，FI LM：51 OHM，5\％，0．25N	19701	5043CX51R00J
A1R132	315－0511－00		RES，FXD，FILM：510 OHM，5\％， 0.25 N	19701	5043CX510R0J
A1R133	315－0111－00		RES，FXD，FILM： 110 OHM，5\％， 0.254	57668	NTR25J－E110E
A1R135	315－0101－00		RES，FXD，FILM： 100 OHM，5\％，0．25\％	57668	NTR25J－E 100E
A1R136	315－0201－00		RES，FXD，FI LM：200 OHM，5\％， $0.25 \%$	57668	NTR25」－E200E
Q1R138	315－0182－00		RES，FXD，FILM： 1.8 K OHM， $5 \%, 0.25 \mathrm{M}$	57668	NTR25」－E1K8
A1R139	315－0302－00		RES，FXD，FILM：3K OHM ，5\％，0．25M	57668	MTR25 $\sqrt{\text {－E03K0 }}$
A1R142	315－0101－00		RES，FXD，FILM： 100 O＋${ }_{\text {M }}, 5 \%, 0.25 \mathrm{H}$	57668	NTR25－E 100E
A1R143	315－0101－00		RES，FXD，FILM： 100 OHM， $5 \%, 0.25 \mathrm{M}$	57668	NTR25J－E 100E
A1R144	315－0471－00		RES，FXD，FILM： 470 OHA ， $5 \%, 0.25 \mathrm{H}$	57668	NTR25，－E470E
A1R145	311－1238－00		RES，VAR，MDNW\％：TRMR，5K OHM， 0.5 M	32997	3386X－0Y6－502
A1R150	315－0430－00		RES，FXD，FILM： 43 OHM，5\％，0．25N	19701	5043CX43R00J
Q1R151	315－0430－00		RES，FXO，FI LM： 43 OHM， $5 \%, 0.25 \mathrm{~N}$	19701	$5043 C \times 43 \mathrm{ROOJ}$
Q1R152	321－0155－00		RES，FXD，FILM： 402 OHM，1\％， $0.125 \mathrm{~m}, \mathrm{TC}=$ T0	07716	CEAD402ROF
A1R153	321－0155－00		RES，FXD，FI LM：402 OHM，1\％，0．125M，TC＝TO	07716	CEAD402ROF
A1R154	321－0101－00		RES ，FXD ，FILM： 110 OHM，17，0．125n，TC＝T0	07716	CEAD110ROF
A1R155	321－0101－00			07716	CEAD110ROF
A1R156	321－0161－00		RES ，FXD，FILM： 464 OH，${ }_{\text {，}}$ ， $12,0.125 \mathrm{M}, \mathrm{TC}=$ TO	07716	CEAD464ROF
A1R158	321－0223－00		RES，FXD，FILM：2．05K OHM，12， $0.125 \mathrm{~N}, \mathrm{TC}=10$	00009	321－0223－00
A1R159	321－0221－00		RES，FXD，FILM：1．96K OHM，1\％，0．125M，TC＝TO	19701	5043ED1K960F
A1R164	321－0225－00		RES，FXD，FILM：2．15K OHM，1\％，0．125M，TC＝TO	19701	5033ED2K15F
A1R165	321－0225－00		RES ，FXD ，FIUM：2．15K OHM，17，0．125M，TC＝TO	19701	5033ED2K15F
A1R172	321－0085－00		RES，FXD，FILH： 75 OHM，1\％，0．125M，TC＝ 50	57668	CRB14FXE 75 OHM
A1R175	315－0242－00		RES，FXD，FILH：2．4K OHM，5X，0．25M	57668	NTR25J－E02K4
A1R176	315－0182－00		RES，FXD，FILH：1．8K OHM，5\％， 0.25 M	57668	MTR25J－E1K8
A1R180	315－0510－00		RES，FXD，FI LM： 51 OHM，5\％， 0.25 H	19701	5043CX51R00」
A1R181	315－0510－00		RES，FXD，FILM：51 OHM，5\％， $0.25 \%$	19701	5043CX51R00J
A1R182	315－0511－00		RES ，FXD ，FI M 510 OHM，5\％， 0.25 N	19701	5043CX510．80J
A1R183	315－0111－00		RES，FXD，FILM：110 OHW，5\％， 0.25 N	57668	NTR25J－E110E
A1R185	315－0101－00		RES，FXD，FILH： 100 OHM，5\％， 0.25 M	57668	NTR25J－E 100E
A1R186	315－0201－00		RES，FXD，FILH：200 OHN，5\％，0．25N	57668	NTR25J－E200E
A1R188	315－0182－00		RES，FXD，FILH：1．BK OHM，5K， 0.251	57668	NTR25J－E1K8
A1R189	315－0302－00		RES，FXD，FILM：3K OHN，5K， 0.25 N	57668	NTR25J－E03K0
A1R192	315－0101－00		RES，FXD，FILM： 100 OHM ，5\％， 0.25 M	57668	NTR25J－E 100E
A1R193	315－0101－00			57668	NTR25J－E 100E
A1R194	315－0471－00		RES，FXD，FILM：470 OHM，5\％，0．25N	57668	NTR25J－E470E
A1R195	311－1238－00		RES，VAR，MONWH：TRUR，5K OHM，O．5N	32997	3365X－0Y6－502
A1R200	315－0391－00	8010100 B010245	RES，FXD，FILM： 390 OHW， $5 \%, 0.25 \%$	57668	NTR25－E3S0E


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mir. Part No.
a1R200	315-0331-00	8010246	RES, FXD, FILM:330 014n , 57,0.25N	57668	NTR25N-E330E
A1R202	321-0178-00		RES, FXD, FIU : 698 OHM, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAD698R0F
A1R203	321-0178-00		RES, FXD, FILM:698 0HM, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAD698R0F
A1R204	321-0089-00		RES, FXD, FILM:82.5 0 Hm, 17, $0.1254, \mathrm{TC}=$ TO	91637	CMF55116682R50F
A1R206	321-0139-00		RES, FXD, FILM:274 OHM, 12, 0.125N, TC=TO	07716	CEAD274ROF
A1R207	321-0139-00		RES, FXD, FILS:274 OHM, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAD274ROF
A1R210	315-0221-00		RES , FXD, FILM:220 OHM , 5\% , 0.25N	57668	NTR25.1-E220E
A1R212	321-0086-00		RES , FXD, FILM $76.80 \mathrm{HM}, 17,0.125 \mathrm{M}, \mathrm{TC}=$ TO	91637	CMF55116G76R80F
A1R213	321-0085-00		RES , FXD, FILM: 76.8 OHM, 17, 0.125 N , TC=T0	91637	CMF55116G76R80F
A1R215	321-0135-00		RES, FXD, FIL : 249 OHM, 12, 0.125w, TC=T0	07716	CEAD249R0F
A1R216	321-0163-00		RES, FXD, FIL $: 487$ OHm, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAD487ROF
A1R217	321-0163-00		RES, FXD, FILN:487 Of4n, 1\%, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEA0487ROF
A1R218	329-0102-00		RES , FXD, FILM: 113 OHM, 17, 0.125\% , TC=TO	07716	CEAD113ROF
A1R219	329-0102-00		RES, FXI, FILS:113 OHA1, 12, $0.125 \mathrm{w}, \mathrm{TC}=$ TO	07716	CEA0113ROF
Q1R220	307-0104-00		RES, FXD, CNPSN: 3.3 OHM, 52, 0.25M	01121	CB3365
A1R222	321-0289-00		RES, FXO, FILM: $10.0 \mathrm{~K} 0 \mathrm{HM}, 17,0.125 \mathrm{~K}, \mathrm{TC}=$ T0	19701	5033ED10K0F
A1R223	321-0289-00		RES, FXD, FILH: $10.0 \mathrm{~K} 0 \mathrm{HM}, 17,0.125 \mathrm{~N}, \mathrm{TC}=$ T0	19701	5033ED10K0F
A1R225	315-0512-00		RES, FXD, FILM:5.1K OHM, $5 \mathrm{5}, 0.25 \mathrm{~N}$	57668	NTR25J-E05K1
91R226	315-0221-00		RES, FXD, FILS:220 OHM , 57, 0.25N	57668	NTR25J-E220E
A1R227	315-0221-00		RES, FXO, FILM:220 OHM , 5K, 0.25M	57668	NTR25J-E220E
A1R230	321-0086-00		RES, FXD, FIL 3 : 76.8 OHM, 17, $0.125 \mathrm{~m}, \mathrm{TC}=$ T0	91637	CuF55116676R80F
A1R231	321-0086-00		RES , FXD , FIL $: 76.8$ OHM , 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	91637	CuF55116876R80F
A1R233	321-0086-00		RES, FXO, FILM: 76.8 OHW, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	91637	CAF55116G76R80F
A1R234	315-0360-00		RES, FXD, FILM: 36 OHM, $5 \chi$, 0.25 H	19701	5043 CX36R00J
A1R235	315-0360-00		RES, FXD, FILM: 36 OHM , 57, 0.25 H	19701	5043CX36R00J
A1R236	315-0821-00		RES, FXD, FILS:820 OHM, 5K, 0.25 N	19701	$5043 \mathrm{CX820ROJ}$
A1R239	315-0242-00		RES, FXD, FILM: 2.4 K OHM, $5 \%, 0.25 \mathrm{~N}$	57668	NTR25」-E02K4
A1R240	311-1248-00		RES, VAR, NOM Wm: TRMR, 500 OHM , 0.5 W	32397	3386X-T07-501
A1R241	311-1237-00		RES, VAR, NOMm: 1 K DHM, 102, 0.50 M	32997	3386X-0Y6-102
Q1R242	315-0273-00		RES, FXD, FIL	57668	NTR25J-E27K0
91R244	321-0172-00		RES, FXD, FIL $: 604$ OHW , $17,0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED604ROF
A1R245	321-0172-00		RES, FXD, FILS: 604 OHM, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED604ROF
A1R250	315-0221-00		RES, FXD, FILM: 220 OHM , 5\% , 0.25M	57668	NTR25J-E220E
A1R251	315-0221-00		RES, FXD, FIL $: 2200$ OHM, 5\% , 0.25 M	57668	NTR25J-E220E
A1R254	321-0110-00		RES, FXD, FILS: 137 OHM, 17, 0.125N, TC=TO	07716	CEAO137ROF
A1R255	321-0110-00		RES, FXD, FILH: 137 OHM, 17, 0.125N, TC=TO	07716	CEAO137ROF
A1R256	322-0175-00		RES, FXD, FIL 6.649 OHM, 17, $0.25 \mathrm{~N}, \mathrm{TC}=$ TO	75042	CEBTO-6490F
A1R257	322-0175-00		RES, FXD, FIL $: 649$ OHM, 17, 0.25N, TC=TO	75042	CEBTO-6490F
A1R258	322-0180-00		RES, FXD, FILM:732 OHM, 17, 0.25N, TC=T0	75042	CEBT0-7320F
A1R259	322-0180-00		RES, FXD, FIL H : 732 OHM, 17, $0.25 \mathrm{~N}, \mathrm{TC}=$ TO	75042	CEBT0-7320F
A1R261	323-0058-00		RES, FXD, FILM: 39.2 OHM, 12, $0.5 \mathrm{Na}, \mathrm{TC}=$ TO	57868	CR811FX39R2E
01 R 262	315-0151-00		RES, FXD, FIL $: 150$ OHM, 5\% , 0.25N	57668	NTR25J-E150E
A1R266	323-0114-00		RES, FXD, FILM: 150 OHM, 17, 0.5M, TC=T0	75042	CECTO-1500F
A1R267	323-0114-00		RES, FXD, FILM: 150 OHM, 12, $0.5 \mathrm{~K}, \mathrm{TC}=$ T0	75042	CECTO-1500F
A1R268	323-0114-00		RES, FXD, FILH: 150 OHM, 12,0.5N, TC=T0	75042	CECTO-1500F
A1R269	323-0114-00		RES, FXD, FILM: 150 OHM, 12, 0.5M, TC=T0	75042	CECTO-1500F
A1R270	323-0114-00		RES, FXD, FILM: 150 OHM, 12, 0.5M, TC $=$ T0	75042	CECTO-1500F
A1R271	323-0114-00		RES , FXD, FILA: 150 OHW, 17, $0.5 \mathrm{~F}, \mathrm{TC}=$ T0	75042	CECTO-1500F
A1R278	315-0562-00		RES , FXD, FILM: 5.6 K OHM, $5 \mathrm{5} \mathrm{\%}, 0.25 \mathrm{M}$	57668	NTR25J-E05K6
A1R279	315-0223-00		RES, FXD, FILM: 22 K OHW , $5 \%, 0.25 \mathrm{M}$	19701	$5043 \mathrm{CX22K00J92U}$
A1R281	315-0821-00		RES, FXD, FIL $: 820$ OHM , 5\% , 0.25 M	19701	$5043 \mathrm{CX820ROJ}$
A1R282	315-0752-00		RES, FXD, FILM: 7.5 K OHM, 5\%, 0.25 M	57668	NTR25J-E07K5
A12283	315-0471-00		RES, FXD, FILM:470 OHM, 5\% , 0.25 m	57668	NTR25J-E470E
A1R284	315-0621-00		RES, FXD, FILM: 620 OHM, $5 \%, 0.25 \mathrm{~N}$	57668	NTR25J-E620E
A1R285	315-0561-00		RES , FXD , FIL	19701	$5043 \mathrm{CX560ROJ}$
A1R286	321-0068-00		RES , FXD, FIL : 49.9 OHm, $0.5 \%, 0.125 \mathrm{~N}, \mathrm{TC}=$ T0	91637	CMF55116G49R90F
A1R287	321-0068-00		RES , FXD , FIL $: 49.9$ OHM, $0.5 \%, 0.125 \mathrm{~N}, \mathrm{TC}=$ TO	91637	CMF55116G49R90F
01R288	315-0431-00		RES , FXD , FILS:430 OHN, 5K, 0.25 N	19701	$5043 \mathrm{CX430ROJ}$
A1R289	315-0431-00		RES , FXD, FILM: 430 OHM , 5K, 0.25 W	19701	5043 CX430ROJ


Component No．	Tektronix Part No．	Serial／Assembly No． Effective Dscont	Name \＆Description	MFr． Code	Mir．Part No．
A1R292	321－0179－00		RES，FXD，FILM：715 OHM，1\％，0．125m，TC＝TO	07716	CEAD715ROF
A1R293	315－0620－00		RES，FXO，FIUM：62 OHM，5\％， 0.25 N	19701	5043CX63R00J
A1R301	315－0221－00		RES ，FXD，FILM：220 OHM，5\％， 0.25 N	57668	NTR25，－E220E
Q1R302	315－0221－00		RES，FXD，FILM：220 Ofm，5\％， $0.25 \%$	57668	NTR25J－E220E
A1R303	315－0221－00		RES，FXD，FILM：220 OHM， $5 \%, 0.25 \mathrm{n}$	57668	NTR25，－E220E
A1R304	315－0152－00		RES，FXD，FILM： 1.5 K OHM，5\％， 0.25 M	57668	NTR25J－E01K5
A1R305	315－0152－00		RES ，FXD，FIUM：1．5K OHM ，5\％，0．25	57668	NTR25J－E01K5
A1R306	315－0470－00		RES，FXD，FILM：47 OHM，5\％， 0.25 N	57668	NTR25J－E47ED
A1R307	315－0470－00		RES，FXD，FILM：47 OHM，5\％，0．25	57668	NTR25J－E47E0
A1R309	311－2230－00		RES，VAR，NONM，TRMR， 500 OHM，20\％， 0.50 LINEAR	TK1450	GF06UT 500
A1R310	321－0194－00		RES，FXD，FI M $=1.02 \mathrm{~K}$ OHM ，1\％， $0.125 \mathrm{H}, \mathrm{TC}=$ T0	07716	CEAD10200F
A1R311	321－0194－00		RES，FXD，FILM：1．02K OHM，1\％， $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAD10200F
A1R312	321－0098－00		RES ，FXD ，FILM： 102 OHM，1\％，0．125M，TC＝TO	07716	CEADI02ROF
A1R314	321－0170－00		RES，FXD，FILM： 576 OHM，1\％，0．125N，TC＝TO	07716	CEAD576ROF
018315	321－0170－00		RES，FXD，FILM：576 OHM，1\％， $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEADS76ROF
A1R317	321－0209－00		RES，FXD，FILM： 1.47 K OHM，1\％， $0.125 \mathrm{H}, \mathrm{TC}=$ TO	19701	5033E1K47F
A1R318	321－0198－00		RES，FXD，FIUM：1．13K OHM，1\％， $0.125 \mathrm{M}, \mathrm{TC}=$ TO	07716	CEAD11300F
A1R319	321－0213－00		RES，FXD，FILM：1．62K OHM，1\％， $0.125 \mathrm{~K}, \mathrm{TC}=$ TO	07716	CEAD16200F
A1R321	321－0208－00		RES ，FXD ，FILM： 1.43 K OH， ，1\％， $0.125 \mathrm{~K}, \mathrm{TC}=$ TO	19701	5033ED1K43F
A1R322	321－0238－00		RES，FXD，FILM：2．94K OHW，1\％， $0.125 \mathrm{~K}, \mathrm{TC}=$ TO	07716	CEAD29400F
A18324	315－0101－00		RES，FXD，FIUM： 100 OHM，5\％， 0.25 m	57668	NTR25J－E 100E
A1R326	315－0221－00		RES，FXD，FILH：220 OHM ，5\％，0．25m	57668	NTR25J－E220E
A1R327	315－0221－00		RES，FXD，FILM：220 OHM，5\％， 0.25 M	57668	NTR25J－E220E
A1R328	345－0221－00		RES ，FXD，FILM：220 OHM，5\％，0．25n	57668	NTR25J－E220E
A1R329	315－0152－00		RES，FXD，FILM：1．5K OHM，5\％，0．25M	57668	NTR25」－E01K5
A1R330	315－0152－00		RES，FXD，FILM：1．5K OHM， $5 \%, 0.25 \mathrm{~N}$	57668	NTR25,-E01K5
A1R331	315－0470－00		RES，FXD，FILM：47 OHM，5\％， 0.25 \％	57668	NTR25，－ 47 ED
A1R332	315－0470－00		RES，FXD，FILM： 47 OHM，5\％，0，25M	57668	NTR25，－ 47 E0
A1R335	321－0203－00		RES，FXD，FILM：1．27K OHM，1\％， $0.125 \mathrm{~K}, \mathrm{TC}=$ TO	07716	CEAD12700F
A1R336	321－0203－00		RES，FXD，FILM：1．27K OHM，12，0．125\％，TC $=$ TO	07716	CEAD12700F．
01R337	321－0098－00		RES，FXD，FILM：102 OHM，1\％， $0.125 \mathrm{~N}, \mathrm{TC}=$ T0	07716	CEAD102ROF
A1R339	321－0470－00		RES，FXD，FIUM：576 OHM，1\％， $0.125 \mathrm{~N}, \mathrm{TC}=50$	07716	CEAD576ROF
A1R340	321－0170－00		RES，FXD，FIU： 576 OHM，1\％，0．125N，TC $=$ TO	07716	CEAD576ROF
A1R342	321－0209－00		RES，FXD，FIUM：1．47K OHM，1\％，0．125m，TC＝T0	19701	5033ED1K47F
A1R343	321-0198-00		RES，FXD，FILM：1．13K OHM，1\％， $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAD11300F
A1R344	321－0213－00		RES，FXD，FILM：1．62K OHM ，12， $0.125 \mathrm{~K}, \mathrm{TC}=$ T0	07716	CEAD16200F
A1R346	321－0208－00		RES，FXD，FILM： 1.43 K OHM，1\％， $0.125 \mathrm{~K}, \mathrm{TC}=$ TO	19701	5033EDK43F
A1R347	321－0238－00		RES，FXD，FILH：2．94K OHM，12， $0.125 \%, T C=T 0$	07716	CEADZ9400F
A1R349	315－0101－00		RES，FXD，FILM 100 OHM ，5\％， 0.25 M	57668	NTR25J－E 100E
A1R350	315－0470－00		RES，FXD，FI LM： 47 OHM，5\％，0．25\％	57668	NTR25J－E47E0
A18351	315－0470－00		RES，FXD，FILM：47 OHM ，5\％， 0.25 M	57668	NTR25J－E47E0
A1R352	321－0275－00			07716	CEAD71500F
A1R353	321－0275－00		RES，FXD，FILM：7．15K OHM，12，0．125N，TC＝TO	07716	
A1R354	315－0470－00		RES，FXD，FILM： 47 OHM，5K，0．25\％	$57668$	NTR25J－E47ED
A1R355	315－0470－00		RES，FXD，FI LM： 47 OHM $, 5 \%, 0.25 \mathrm{M}$	57668	NTR25J－E47E0
A1R356	315－0622－00		RES，FXD，FILM：6．2K OHM，5\％， 0.25 N	19701	5043CX6K200」
A1R357	321－0149－00		RES，FXD，FILM： 348 OHM，1\％， $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAD348R0F
A1R358	315－0101－00		RES，FXD，FILM：100 OHM，5\％， $0.25 \%$	57668	NTR25J－E 100E
A1R359	321－0148－00		RES，FXD，FILH：340 OHM，1\％，0．125n，TC＝TO	07716	CEAD340ROF
A1R360	321－0156－00			07716	CEADA12ROF
A1R361	315－0101－00		RES，FXD，FILM：100 01m，5\％，0．25N	57668	NTR25J－E 100E
A1R363	315－0331－00		RES，FXO，FILM：330 01m，5\％，0．25\％	57668	NTR25，－E330E
A1R365	315－0620－00		RES，FXD，FILM：62 OHM，5\％， 0.25 M	19701	5043CX63R00J
A1R366	315－0202－00		RES ，FXD，FILM：2K OHN，5\％， $0.25 \%$	57668	NTR25，－E 2K
A1R367	315－0911－00		RES，FXD，FILM：910 OHM，5\％， $0.25 \%$	57668	NTR25」－E910E
A1R369	315-0751-00		RES, FXD, FIUM:750 01M1,5X,0.25M	$57668$	NTR25」－E750E
A1R372	315－0220－00		RES，FXD，FI M： 22 OHM，5\％， 0.25 M	19701	5043CX22R00J
A1R374	315－0202－00		RES，FXD，FILM： 2 K OHM，5X，0．25\％	57668	NTR25J－E 2K
A1R381	321－0444－00		RES，FXD，FILM：412K OHM，1\％， $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEA041202F


Component No,	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr, Part No.
A1R382	315-0470-00		RES, FXD, FILM:47 OHM , 5\% , 0.25 N	57668	NTR25J-E47E0
A18384	315-0121-00		RES, FXD, FILM: 120 OHM , $5 \mathbf{L}, 0.25 \mathrm{~N}$	19701	$5043 \mathrm{CX120ROJ}$
A1R385	315-0130-00		RES, FXD, FILM:13 OHM, 5\%,0.25M	01121	C81305
A1R386	315-0919-00		RES, FXD, FILM: 910 OHM, 5\% , 0.25M	57668	NTR25J-E910E
A1R389	315-0100-00		RES, FXD, FILH: 10 OHM , 5\%, $0.25 \%$	19701	5043CX10RR00J
A1R390	315-0101-00		RES, FXD, FILM: 100 OHM, 5X, 0.25 W	57668	NTR25J-E 100E
A1R392	315-0751-00		RES, FXO, FILM:750 OHM , 52,0.25M	57668	NTR25J-ET50E
A1R393	315-0240-00		RES, FXO, FILM: 24 OHM, $52,0.25 \mathrm{~N}$	57668	NTR25J-E24E0
A1R395	315-0911-00		RES, FXD, FILM: 910 OHM , 5\% , 0.25 M	57668	NTR25J-E910E
A1R397	315-0200-00		RES, FXD, FIUM: $200 \mathrm{OHM}, 5 \mathbf{5}, 0.25 \mathrm{~W}$	19701	5043CX20R00J
A1R398	315-0201-00		RES, FXO, FILM: $2000 \mathrm{OHM}, 5 \chi$, 0.25 N	57668	NTR25J-E200E
A1R399	315-0751-00		RES, FXD, FILM:750 OHM , $5 \mathrm{~K}, 0.25 \mathrm{H}$	57668	NTR25J-E750E
A1R411	315-0103-00		RES, FXI, FILM 10 K OHM , 5Z,0.25N	19701	5043CX10K00J
A1R412	315-0102-00		RES, FXD, FILM: 1K OHM, $5 \mathbf{5}, 0.25 \mathrm{~N}$	57668	NTR25.5E01K0
A1R4 13	315-0113-00		RES, FXD, FILM:11K OHM , $5 \mathbf{\chi}, 0.25 \mathrm{H}$	19701	5043C×11K00J
A1R414	315-0244-00		RES, FXD, FILM: 240 K OHM , 5\%, 0.25 K	19701	5043 Cx 240 KOJ
A1R415	315-0244-00		RES, FXD, FILM: 240 K OHM, $5 \mathrm{5K}, 0.25 \mathrm{~W}$	19701	$5043 \mathrm{C} \times 240 \mathrm{KOJ}$
A1R416	315-0473-00		RES, FXO, FILM:47K OHM , $5 \%, 0.25 \mathrm{~N}$	57668	NTR25J-E47K0
A18417	315-0473-00		RES, FXD, FILM 47 K OHM , $52,0.25 \mathrm{H}$	57668	NTR25J-E47K0
A1R4 19	315-0182-00		RES, FXD, FILM: 1.8 K OHM, $5 \mathrm{5K}, 0.25 \mathrm{~N}$	57668	NTR25J-E1K8
A1R420	315-0101-00		RES, FXD, FILM: 100 OHM , $5 \%, 0.25 \mathrm{~N}$	57668	NTR25J-E 100E
A1R421	315-0203-00		RES, FXO, FILM: 20 K OHM , $5 \%, 0.25 \mathrm{~K}$	57668	NTR25J-E 20K
A1R422	315-0100-00		RES, FXO, FILI: 10 OHM , 5\% , 0.25 N	19701	5043CX10RR00J
A1R423	315-0100-00		RES, FXD, FILS: 10 OHM, 5\%, 0. 25 M	19701	5043CX10RROOJ
A18424	315-0203-00		RES , FXD, FIUM: 20 K OHH , 5\% , 0.25 N	57668	NTR25J-E 20K
A1R426	315-0434-00		RES, FXD, FILM: 430 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E430K
A18427	315-0434-00		RES, FXD, FILM: 430 K OHA, $5 \mathrm{5K}, 0.25 \mathrm{H}$	57668	NTR25J-E430K
A1R428	315-0102-00		RES, FXO, FILM: $1 \mathrm{1K}$ OHM , $5 \mathbf{\chi}, 0.25 \mathrm{~N}$	57668	NTR25JE01K0
A1R429	315-0102-00		RES, FXD, FIL : 1 K OHM $, 5 \%, 0.25 \mathrm{M}$	57668	NTR25JE01K0
A1R432	315-0823-00		RES, FXD, FIL	57668	NTR25J-E82K
A1R433	315-0823-00		RES, FXD, FILM: 82 K OHM, $5 \%, 0.25 \mathrm{~N}$	$57668$	NTR25J-E82K
A1R434	311-1646-00		RES , VAR, MONW: TRMR, 2M OHM, 0.5 W	$32997$	$3386 \times-707-205$
A1R435	311-1646-00		RES, VAR, NONW: TRMR, 2M OHM, 0.5 W	32997	3386X-T07-205
A1R446	315-0104-00		RES, FXO, FILM: 100K OHM, 5\%, 0.25 M	57668	NTR25J-E100K
A1R448	315-0270-00		RES, FXO, FILH:27 OHM , 5\%, 0.25 M	19701	5043CX27R00J
A1R449	315-0270-00		RES, FXD, FILH:27 OKM, 5\%, 0.25 N	19704	5043CX27R00J
A1R452	321-0130-00			19701	5043ED221ROF
A1R453	$315-0470=00$		RES, FXD, FILI:47 OHW, $57,0.25 \mathrm{M}$	57668	NTR25J-E47E0
A1R454	315-0470-00		RES, FXD, FILM: 47 OHM , 5\% 0 , 0.25 N	57668	NTR25J-E47E0
A1R455	315-0101-00		RES, FXD, FILM: 100 OHM, $5 \%, 0.25 \mathrm{~N}$	57668	NTR25J-E 100E
A1R457	321-0145-00		RES, FXD, FILI: 316 OHM, 14, 0.125N, TC $=$ TO	07716	CEAD316ROF
A1R458	321-0182-00		RES, FXD, FILH: 768 OHM, $17,0.125 \mathrm{H}, \mathrm{TC}=$ TO	07716	CEAD 688 ROF
A1R459	321-0180-00		RES, FXD, FILM: 732 OHAN, 12, $0.125 \mathrm{H}, \mathrm{TC}=\mathrm{TO}$	07716	CEADT32ROF
A1R460	$321-0141-00$		RES, FXD, FILM: 287 OHM , 12, $0.125 \mathrm{~m}, \mathrm{TC}=$ TO	19701	5033ED287ROF
A1R461	$321-0141-00$		RES, FXD, FILS: 287 OHMN, 12, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	19701	5033ED287ROF
A1R462	321-0194-00		RES, FXD, FILS:1.02K OHm, 12, 0.125N, TC=TO	07716	CER010200F
Q1R463	321-0215-00		RES, FXD, FILH:1.69K OHM , 12, 0.125\% , TC=TO	07716	CEAD16900F
A1R464	315-0431-00		RES , FXD, FILH:430 OHM , 5\% , 0.25 M	19701	5043 CX430ROJ
A1R465	$315-0.431-00$				
A1R467	315-0392-00		RES, FXD, FILH: 3.9 K OHM, $5 \mathrm{~K}, 0.25 \mathrm{~N}$	57668	NTR25J-E03K9
A1R468	315-0392-00		RES, FXD, FILH:3.9K OHA 5 , 0 , 0.25 N	57668	NTR25J-E03K9
A1R469	$315-0392-00$		RES, FXD, FILM: 3.9 K OHAN, $5 \mathrm{~K}, 0.25 \mathrm{~W}$	57668	NTR25J-E03K9
A1R470	$315-0392-00$		RES, FXD, FILM:3.9K OHM $, 55,0.25 \mathrm{~W}$	57668	NTR25J-E03K9
A1R471	311-1237-00		RES, VAR, MONW: 1 K OHM, 10\%, 0.50 N	32997	3386X-DY6-102
A1R473	315-0182-00		RES, FXD, FILM: 1.8 K OHM, 5\%, 0.25 K	57668	NTR25.J-E1K8
018474	315-0102-00		RES, FXD, FILM: $1 \times$ OHM , 5\%, 0.25 H	57668	NTR25JE01K0
A1R476	315-0301-00		RES, FXD, FILM: 300 OHM, $5 \%, 0.25 \mathrm{M}$	57668	NTR25J-E300E
A1R477	315-0132-00		RES, FXO, FILM: 1.3 K OHM, $5 \mathrm{5K}, 0.25 \mathrm{~N}$	57668	NTR25J-E01K3
A1R478	321-0215-00		RES, FXD, FILM:1.69K OHM, 12, $0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD16900F


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mrr. Part No.
A1R486	315-0221-00		RES , FXO, FI LM: 220 OHM , 5\%, 0.25M	57668	NTR25J-E220E
01R487	315-0221-00		RES , FXO, FILM:220 OHM ,5\%,0.25\%	57668	NTR25J-E220E
Q1R494	307-0104-00		RES, FXD, CMPSN: 3.3 OHM , 5k, 0.25 M	01121	C83365
01R489	307-0104-00		RES, FXD, CMPSN:3.3 OHM, 5\%, 0.25 N	01121	C83365
A1R500	315-0101-00		RES , FXD,FILM: 100 OHM , 5\%, 0.25 K	57668	NTR25J-E 100E
A1R501	315-0512-00		RES, FXD, FILM:5.1K OHM, 5\%, 0.25 K	57668	NTR25J-E05K1
A1R502	315-0911-00		RES , FXD, FI LM: 910 OHM , 57, 0.25 M	57668	NTR25J-E910E
A1R503	315-0473-00		RES, FXO, FILH:47K OHM, 5\%,0.25M	57668	NTR25J-E47K0
A1R504	315-0124-00		RES, FXO, FILM:120K OHM, 5\% , 0.25M	19701	5043CX120K0J
A1R505	315-0473-00		RES, FXO,FILM:47K OHM, 5\%, 0.25 M	57668	NTR25J-E47K0
A1R507	315-0391-00		RES , FXD, FILM:390 0HM,5\%,0.25N	57668	NTR25J-E390E
A1R509	315-0222-00		RES, FXD,FILM:2.2K OHM, 5\%, 0.25 K	57668	NTR25J-E02K2
A1R510	315-0471-00		RES, FXD, FILM:470 OHM , 5\%, 0.25\%	57668	NTR25J-E470E
A1R511	315-0392-00		RES, FXO,FILM:3.9K OHM,5\%,0.25M	57668	NTR25J-E03K9
Q1R512	315-0432-00		RES, FXO,FIU:4.3K OHM, 5K, 0.25 M	57668	NTR25J-E04K3
A1R513	315-0391-00		RES, FXD,FILH:390 01m, $5 \%, 0.25 \mathrm{~N}$	57668	NTR25J-E390E
A1R514	315-0471-00		RES, FXO,FILM:470 0Hm, 5\%, 0.25 N	57668	NTR25J-E470E
A1R515	315-0512-00		RES, FXD,FILM:5.1K OHM, 5\%, 0.25 N	57668	NTR25J-E05K1
A1R516	315-0392-00		RES, FXD, FILM:3.9K OHM , 5\%, 0.25 m	57668	NTR25J-E03K9
A1R517	315-0432-00		RES, FXD, FILM:4.3K OHM, 5\%, 0.25 N	57668	NTR25J-E04K3
01R518	315-0102-00		RES, FXD, FILM: 1K OHM, 5\%, 0.25 N	57668	NTR25JE01K0
01R521	315-0102-00		RES, FXD, FILM:1K OHM, 57, 0.25 K	57668	NTR25JE01KD
A1R522	315-0363-00		RES,FXD,FILM:36K OHM, 5\%,0.25N	57668	NTR25J-E36K0
A1R523	315-0153-00		RES,FXD,FILM:15K OHM, 5\%, 0.25 W	19701	5043CX15K00」
A1R524	321-0318-00		RES, FXD, FILM: 20.0 K OHM , 1\% , $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033E020K00F
A1R525	321-0322-00		RES, FXD, FIUM:22.1K OHM, 0.1\%,0.125 $\mathrm{M}, \mathrm{TC}=$ TO	19701	5033E022K10F
A1R526	315-0152-00		RES, FXD, FILM:1.5K OHM, 5\%, 0.25 N	57668	MTR25J-E01K5
A1R527	315-0472-00		RES, FXD, FILM:4.7K OHM , 5\%, 0.25M	57668	NTR25J-E04K7
A1R528	315-0311-00		RES , FXD , FILM:910 OHM , 5\%, 0.25 N	57668	NTR25J-E910E
A1R529	315-0332-00		RES, FXD, FILM:3.3K OHM, 5K, 0.25 N	57668	NTR25J-E03K3
A1R530	315-0470-00		RES, FXD, FILM:47 OHM, 5\%, 0.25\%	57668	NTR25J-E47E0
A1R531	315-0472-00		RES, FXD, FILM:4.7K OHM, $5 \%, 0.25 \mathrm{M}$	57668	NTR25J-E04K7
A1R532	315-0102-00		RES , FXD, FILM:1K OHN, 5\%, 0.25 N	57668	NTR25JE01K0
Q1R533	315-0102-00		RES, FXD, FILM: 1 K OHM, 5\%, 0.25 K	57668	NTR25JE01KO
A1R534	315-0102-00		RES, FXD, FILM: 1K OHM, 5\%,0.25M	57668	NTR25JE01K0
A1R535	315-0204-00		RES, FXD, FILM: 200K OHM, 5K, 0.25 K	19701	$5043 \mathrm{C} \times 200 \mathrm{KOJ}$
A1R536	315-0394-00		RES, FXD, FILM: 390K OHM , 5\% , 0.25M	57668	NTR25J-E390K
A1R537	315-0103-00		RES, FXD, FILM:10K 0HM,57,0.25	19701	5043CX10K00
A1R538	315-0512-00		RES, FXD, FILM:5.1K OHM, 5\%, 0.25 M	57668	NTR25J-E05K1
A1R539	315-0512-00		RES, FXD, FILM:5.1K OHM, 5\%, 0.25 M	57668	NTR25J-E05K1
91R540	315-0511-00		RES,FXD, FI M:510 0Hm,5\%,0.25\%	19701	5043CX510ROJ
A1R541	315-0511-00		RES, FXD, FILM:510 0Hm, 5\% , 0.25 M	19701	5043CX510ROJ
A1R542	315-0274-00		RES, FXD, FIUM:270K OHM, 5K, 0.25 M	57668	NTR25J-E270K
018543	315-0364-00		RES, FXD, FIU $: 360 \mathrm{~K}$ OHM, $5 \chi, 0.25 \mathrm{M}$	57668	NTR25J-E360K
018544	315-0431-00		RES, FXD, FILM:430 0Hm, 5\% , 0.25 N	19701	5043CX430R0J
018545	345-0102-00		RES , FXD, FILM: 1 K OHM, 5\%,0.25M	57668	MTR25JE01K0
A1R546	315-0333-00		RES, FXD, FILM:33K OHM, 5\%, 0.25 N	57668	NTR25J-E33K0
A1R547	315-0102-00		RES,FXD,FILH:1K OHM, 5\%,0.25K	57668	NTR25JE01K0
A1R548	315-0102-00		RES, FXD, FILM: 1 K OHM, 5\%,0.25\%	57668	NTR25JE01K0
A1R549	315-0821-00		RES, FXD, FILM:820 01\% ,54,0.25N	19701	5043Cx820ROJ
A1R550	315-0512-00		RES, FXD, FILM:5.1K OHM, 5\% , 0.25 M	57668	NTR25J-E05K1
A1R551	315-0472-00		RES , FXD, FILM:4.7K OHM, 5\%, 0.25 M	57668	NTR25J-E04K?
A1R552	315-0472-00			57668	NTR25, E04K7
A1R553	315-0472-00		RES, FXD, FILM:4.7K OHM, 5\%, 0.25 M	57668	NTR25J-E04K7
A1R554	315-0102-00		RES, FXD, FI LM: 1 K OHM, 5\%, 0.25 K	57668	NTR25JE01KD
A1R555	315-0681-00		RES, FXD, FILM:680 OHM, 5\%,0.253	57668	NTR25J-E680E
A1R556	315-0512-00		RES , FXD, FILM:5.1K OHM, 5K, 0.25 M	57668	NTR25J-E05K1
A1R558	315-0512-00		RES, FXO, FILM:5.1K OHM, $5 \%, 0.25 \mathrm{M}$	57668	MTR25J-E05\%1
A1R560	345-0512-00		RES, FXD, FILM:5.1K OHm, $5 \%, 0.25 \mathrm{~m}$	57668	NTR25J-E0.5K1


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1R561	315-0512-00		RES , FXD, FIUM:5.1K OHM , 5\%,0.25M	57668	NTR25J-E05K1
A1R562	315-0512-00		RES, FXD, FILM:5.1K OHM, 5X,0.25M	57868	NTR25J-E05K1
A1R564	315-0202-00		RES , FXD, FILM: 2 K OHW, $5 \mathrm{5}, 0.25 \mathrm{~N}$	57668	NTR25J-E 2K
A1R565	315-0301-00		RES, FXD, FIUM:300 OHM, 5̌ , 0.25N	57668	NTR25J-E300E
A1R568	315-0511-00		RES, FXD, FILM: 510 OHM , 5\%, 0.25 M	19701	5043CX510R0J
A1R568	315-0332-00		RES, FXD,FILM: 3.3 K OHM, 5\%,0.25M	57868	NTR25J-E03K3
A1R569	315-0432-00		RES, FXD, FILM:4.3K OHM , 5\%, 0.25 M	57868	NTR25J-E04K3
A1R571	315-0222-00		RES, FXD, FILM:2.2K OHM, 5\%,0.25	57868	NTR25J-E02K2
A1R572	315-0102-00		RES, FXD, FILH: 1 K OHM, $5 \mathbf{\chi}, 0.25 \mathrm{~N}$	57668	NTR25JE01K0
A18573	315-0222-00		RES, FXD, FILM: 2.2 K OHM, $5 \%, 0.25 \mathrm{~N}$	57668	NTR25J-E02K2
A18574	315-0102-00		RES, FXD, FILM: 1 K OHM, 5 , 0.25 K	57668	NTR25JE01K0
A1R576	315-0561-00		RES , FXD, FIL : 560 OHM , 5K, 0.25 M	19701	5043CX560RDJ
A18577	315-0221-00		RES , FXO, FIL $: 220$ OHM , 5\% , 0.25M	57668	NTR25J-E220E
A1R578	315-0561-00		RES , FXD, FIL $: 5600$ OHM , 5\% , 0.25 N	19701	5043CX560R0J
A1R580	315-0181-00		RES , FXD, FILH: 180 OHM , 5\% , 0.25 N	57668	NTR25J-E180E
A1R501	315-0102-00		RES, FXD, FILM: 1 K OHM, $57,0.25 \mathrm{~N}$	57668	NTR25JE01KO
A1R592	315-0151-00		RES, FXD, FILM: 150 OHM, $5 \chi$, 0.25 m	57668	NTR25J-E150E
A1R583	315-0101-00		RES, FXD, FILA 100 OHM , 5K, 0.25 M	57668	NTR25J-E 100E
A1R584	315-0102-00		RES, FXD, FILM: 1 K OHM , 5\%,0.25N	57668	NTR25JE01K0
A1R585	315-0472-00		RES, FXO, FILM:4.7K OHM , 5\%, 0.25 N	57668	NTR25J-E04K7
A1R586	315-0101-00		RES , FXD, FILA:100 OHM , 5\% , 0.25N	57668	NTR25J-E 100E
A18590	315-0183-00		RES , FXD, FIL $: 18 \mathrm{~K}$ OHM $, 5 \mathrm{~L}, 0.25 \mathrm{~N}$	19701	5043CX18K00,
A1R595	315-0682-00	B040100 B010245	RES, FXO, FILM:6.8K OHM, 5\%,0.25N	57668	NTR25J-E06K8
A1R595	315-0163-00	B010246	RES, FXD, FILA: 16 K OHM , $5 \chi, 0.25 \mathrm{M}$	57668	NTR25J-E 16K
A1R645	315-0201-00		RES , FXD , FILM: 200 OHM , 5\% , 0.25M	57668	NTR25J-E200E
A1R646	311-2231-00		RES , VAR, NOWH: TRMR, 1 K OHM $, 202,0.5 \mathrm{~K}$	TK1450	GFO6UT 1K
A1R648	315-0512-00		RES, FXD, FILM: 5.1 K OHM, $5 \%, 0.25 \mathrm{M}$	57668	NTR25J-E05K1
A4R649	315-0512-00		RES, FXD, FILM: 5.1 K OHM, $5 \%, 0.25 \mathrm{~N}$	57668	NTR25.-E05K1
A1R675	315-0470-00		RES, FXD, FILIS:47 OHM, $5 \%$, 0.25 M	57668	NTR25.J-E47E0
A1R676	315-0474-00		RES, FXD, FILM:470 OHM , 5\%, 0.25 M	57668	NTR25J-E470E
A1R756	315-0912-00		RES, FXD, FILM: 9.1 K OHON, $5 \%, 0.25 \mathrm{~N}$	57668	NTR25J-E09K1
A1R757	315-0202-00		RES, FXD, FILIM:2K OHM, 5K, 0.25 K	57668	NTR25J-E 2K
A1R758	329-0336-00		RES, FXD, FILS: 30.9 K OHM, $1 \mathrm{1K}, 0.125 \mathrm{~N}, \mathrm{TC}=$ T0	49701	5043ED30K90F
A1R759	321-0267-00		RES, FXO, FILS:5,90K OHM, 17, 0.125_, TC=T0	19701	5033E05K900F
A1R760	311-2229-00		RES, YAR, NONW: TRUR,250 OHM, 20\%, 0.5 F LINEAR	TK1450	GFO6UT 250
A1R761	321-0210-00		RES, FXD, FILM: 1.50 K OHM, 1\%, $0.125 \mathrm{M}, \mathrm{TC}=$ TO	19701	5033E01K50F
A1R764	315-0221-00		RES , FXD, FILA: 220 OHM , 5\% , 0.25N	57688	NTR25J-E220E
A1R766	321-0093-00		RES, FXO, FILM:90.9 OHM, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5043ED90R90F
A1R768	321-0162-00		RES, FXD, FILS:475 OHM, 12, 0.125\%, TC=T0	19701	5033ED475ROF
A1R770	315-0470-00		RES, FXD, FIL $: 47$ OHM , $5 \%, 0.25 \mathrm{~N}$	57688	NTR25J-E47E0
A1R773	321-0182-00		RES, FXD, FILH: 768 OHM, 12, $0.125 \%, \mathrm{TC}=$ T0	07716	CEAOT68ROF
A1R775	323-0310-00		RES, FXD, FILH:18.5K OHM, 1\%, $0.5 \mathrm{~K}, \mathrm{~T}=$ C= 0	75042	CECT0-1652F
A1R776	321-0205-00		RES, FXD, FILM: 1.33 K OHAM, 1\%, $0.125 \mathrm{M}, \mathrm{TC}=$ TO	19701	5033ED1K330F
01877	315-0470-00		RES, FXD, FILI: 47 OHM , 5X, 0.25 M	57668	NTR25.-E47E0
Q1R778	315-0101-00		RES, FXD, FILI 100 OHM , 5\% , 0.25 N	57668	NTR25J-E 100E
018779	345-0243-00		RES, FXD, FILM:24K OHM , 5\% , 0.25 M	57668	NTR25J-E24K0
A1R780	315-0470-00		RES, FXD, FILM:47 OHW , 5\%, $0.25 \%$	57688	NTR25J-E47E0
A1R782	329-0209-00		RES, FXD, FILH:1.47K OHM, 12, 0.125M, TC=TO	19704	5033E01K47F
A1R783	321-0201-00		RES, FXD, FILM: 1.24 K OHM , 17, $0.12514, \mathrm{TC}=$ T0	19701	5043ED1K210F
A1R785	323-0310-00		RES, FXD, FILH: 16.5 K OHM, 1\%, $0.5 \mathrm{~K}, \mathrm{~T}=$ = $=0$	75042	CECTO-1652F
A1R786	321-0205-00		RES, FXD, FILI: 1.33 K OHM , 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ T0	19701	5033ED1K330F
A1R787	315-0470-00		RES, FXD, FILS:47 OHM , 5\%, 0.25 M	57668	NTR25J-E47E0
A1R788	315-0101-00		RES, FXD, FILM: 100 OHMN, 5\%, 0.25N	57688	NTR25J-E 100E
01 R 789	315-0243-00		RES, FXD, FILM:24K OHM , 5\% , 0.25	57668	NTR25J-E24K0
94R792	321-0263-00		RES, FKO, FILM: 5.36 K OHM, $17,0.125 \mathrm{M}, \mathrm{TC}=$ T0	07716	CEA053600F
018793	321-0361-00		RES, FXD, FILM: 56.2 K OHM , 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAD56201F
A1R796	315-0100-00		RES, FXD, FILI:10 OHM , 5\%, 0.25 N	19701	5043CX10RR00J
A1R797	315-0900-00		RES, FXD, FILI: 10 OHM, 5\%,0.25	19701	5043CX10RR00J
A1R799	315-0100-00		RES, FXD, FILS: 10 OHM, $5 \mathbf{7}, 0.25 \mathrm{~N}$	19701	5043CX10RR00J


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mir. Code	Mir. Part No.
A1R800	315-0682-00		RES, FXD, FILM:6.8K OHM, 5\%, 0.25 N	57668	NTR25J-E06K8
A1R804	315-0102-00		RES, FXO, FILM: 1K OHM, 5\%, 0.25 N	57668	NTR25JE01K0
A1R805	315-0562-00		RES, FXO, FILM:5.6K OHM, 5\%, 0.25 N	57668	NTR25J-E05K6
A1R810	315-0682-00		RES, FXD, FILM:6.8K OHM ,5\%, 0.25 N	57668	NTR25J-E06K8
A1R814	315-0102-00		RES, FXD, FIUM: 1K OHM, 5\%,0.25	57668	NTR25JE01K0
A1R818	315-0302-00		RES, FXD, FIUM:3K OHM, 5\%, 0.25 N	57668	NTR25J-E03K0
A1R820	315-0332-00		RES, FXO, FIUM: 3.3K OHM ,5\%, 0.25 M	57668	NTR25J-E03K3
A1R822	301-0512-00		RES, FXO, FIUM:5.1K OHM, 5\%, 0.5 W	19701	5053CX5K100」
A1R823	301-0512-00		RES, FXO, FILM:5.1K OHM, 5\%, 0.5 W	19701	5053CX5K100J
91R825	315-0750-00		RES,FXO, FIUM: 75 OHM, 5\%, 0.25 N	57668	NTR25J-E75E0
A1R826	315-0104-00		RES, FXO, FI M: 100 K OHM,5\%,0.25M	57668	NTR25J-E100K
A1R828	315-0560-00		RES, FXD, FILM:56 OHM, 5\%, 0.25 N	57668	NTR25」-E56E0
A1R830	321-0212-00		RES, FXD, FIUM:1.58K DHM, 1\%,0.125N, TC=70	19701	5033ED 1K58F
A1R932	321-0222-00		RES, FXD, FIUM:2.00K OH, $1 \%, 0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED2K00F
A1R834	315-0101-00		RES, FXD, FIUM: 100 OHM, 5\% , 0.25 n	57668	NTR25N-E 100E
A1R835	321-0228-00		RES , FXD, FILM:2.32K OHM, 1\%, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5043E02K32F
A1R836	315-0102-00		RES, FXD, FILM: 1K OHM, 5\%, 0.25 N	57668	NTR25JE01K0
A1R840	315-0561-00		RES, FXO,FILM:560 OHN, 5\%, 0.25 M	19701	5043CX560ROJ
A1R841	322-0322-00		RES, FXD, FIUM:22.1K OHM, 12,0.25N, TC=TO	19701	5034RD22K1
A1R842	315-0241-00		RES, FXD, FIUM:240 OHM, 5\% , 0.25M	19701	5043CX240ROJ
A1R844	315-0104-00		RES, FXO, FILM: 100K OHM, 5\%,0.25N	57668	NTR25J-E100K
A1R845	315-0472-00		RES, FXO, FILM:4.7K OHM,5\%,0.25\%	57668	NTR25J-E04K7
A1R849	315-0102-00		RES, FXO, FIUM:1K OHM, 5\%, 0.25 M	57668	NTR25JE01K0
A1R851	311-2236-00		RES, VAR, MONHN: TRMR, 20K OHM, 20\%, D.5N LINEAR	TK1450	GFO6UT 20K
A1R852	315-0203-00		RES, FXO,FILM:20K OHM, 5\%,0.25M	57668	NTR25J-E 20K
A1R853	315-0244-00		RES, FXD, FIUM:240K OHM, 5\%, 0.25 K	19701	5043CX240K0J
A1R854	315-0472-00		RES, FXD, FIUM:4.7K OHM,5\%,0.25M	57668	NTR25J-E04K7
A1R858	315-0511-00		RES, FXD, FIUM:510 OHM, 5\%,0.25N	19701	5043CX510ROJ
A1R860	315-0625-00		RES, FXD, FIUM: 6. 2M OHM ,5\%, 0.25 M	01121	CB6255
A1R870	311-2239-00		RES, VAR, NONW\% : TRMR, 100K OHM, 20\%,0.5N LINEAR	TK1450	GF06UT 100K
A1R871	315-0102-00		RES, FXD, FIUM:1K OHM, 5\%, 0.25 N	57668	NTR25JE01K0
A1R872	315-0223-00		RES, FXO,FILM:22K OHM, 5\%,0.25\%	19701	5043CX22K00.J92U
A1R873	315-0513-00		RES, FXD, FILM:51K OHM , 5\% , 0.25 N	57668	NTR25J-E51K0
A1R874	311-2239-00		RES, VAR, NONW: TRMR, 100K OHM, 20\%,0.5N LINEAR	TK1450	GFO6UT 100K
A1R875	315-0102-00		RES, FXD, FILM: 1K OHM, 5\%,0.25N	57668	NTR25JED1K0
A1R877	315-0102-00		RES, FXD, FILM: 1K OHM, 5\%, 0.25 N	57668	NTR25JE01K0
A1R886	315-0184-00		RES, FXO, FILM: 180K OHM , 5\%, 0.25 M	19701	5043C×180K0J
A1R888	301-0514-00		RES, FXO, FIUM:510K OHM,5\%,0.5N	19701	5053Cx510K0J
A1R899	301-0514-00		RES, FXD, FIUM:510K OHM,5\%,0.5n	19701	5053CX510K0J
A1R890	301-0514-00		RES , FXD, FIU:510K OHM, 5\%, 0.5 M	19701	5053CX510KDJ
A1R891	301-0514-00		RES, FXD, FIU 5 510K OHM, 5\%, 0.5 M	19701	$5053 C \times 510 \mathrm{KOJ}$
A1R892	301-0514-00		RES, FXD, FILM:510K OHM , 5\% , 0.5 M	19701	$5053 \mathrm{C} \times 510 \mathrm{KOJ}$
A1R893	311-1933-00		RES, VAR, NONM : PNL, 5M OHN, 10\%, 0.5N	01121	23M909
A1R894	301-0514-00		RES, FXD, FILM:510K OHM, 5\% , 0.5 N	19701	$5053 \mathrm{CX510K0J}$
A1R905	301-0823-00		RES, FXD,FIU:82K OHm,5\%,0.5M	19701	5053CX82K00J
A1R906	301-0823-00		RES, FXO, FILM:82K OHM, 5\%, 0.5 N	19701	$5053 C \times 82 \times 001$
A1R907	308-0843-00		RES, FXO, WN: 0.2 OHM, 5\%, 1/0\%	91637	RS1A-90-R2J
A1R908	315-0302-00		RES, FXD, FILM:3K OHM, 5\%, 0.25 M	57668	NTR25J-E03KO
A1R909	315-0390-00		RES, FXO, FILM:39 OHM, 5\%,0.254	57668	NTR25J-E39E0
A1R910	315-0301-00		RES, FXO, FILM:300 OHM , 5\%, 0.25 M	57668	NTR25J-E300E
A1R912	321-0168-00		RES, FXO, FIUM:549 OHM, 12, $0.125 \mathrm{M}, \mathrm{TC}=$ TO	07716	CEAD549ROF
018913	321-0289-00		RES, FXD, FILM; 10.0K OHM, 1\%, $0.125 \mathrm{~K}, \mathrm{TC}=$ T0	19701	5033ED10K0F
A18914	321-0378-00		RES, FXD, FILM:84.5K OHM, 1\%,0.125 $\mathrm{N}, \mathrm{TC}=$ T0	07716	CEAOB4501F
A1R915	321-0289-00		RES, FXO, FILM: 10.0K OH, $17,17.125 \mathrm{~K}, \mathrm{TC}=$ TO	19701	5033ED10K0F
A1R916	315-0514-00		RES, FXD, FILM:510K OHM, 5\%,0.25M	19701	$5043 C \times 510 \mathrm{KOJ}$
A1R917	315-0303-00		RES, FXD, FILM: 30K OHM,5\%,0.25\%	19701	$5043 C \times 30 \mathrm{KODJ}$
A1R919	315-0113-00		RES, FXD, FILM: 11K OHN, 5\%,0.25	19701	$5043 C \times 11 \times 00 J$
A1R921	315-0303-00		RES, FXO, FILM:30K OHM, 5\%, 0.25 M	19701	5043 CX 30 K 00 J
A1R922	315-0203-00		RES, FXO, FILM:20K OHN,5\%,0.25N	57668	NTR25N-E 20K

8-18

Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1R925	315-0124-00		RES, FXD, FILM: 120K OHM , 5\%,0.25W	19701	$50438 \times 120 \mathrm{KOJ}$
A1R926	303-0154-00		RES, FXD, CMPSN: 150 K OHM, $5 \%$, 1N	24546	FP1 150K OHM 5\%
A1R927	315-0104-00		RES, FXD, FILM: 100 K OHM, 5\%,0.25W	57668	NTR25J-E100K
A18928	315-0682-00		RES, FXD, FILM: 6.8 K OHM, 5\%,0.25W	57668	NTR25J-E06K8
A1R929	315-0302-00		RES, FXD, FILM:3K OHM, $5 \mathrm{~K}, 0.25 \mathrm{H}$	57668	NTR25.5-E03K0
A1R930	315-0104-00		RES, FXD, FILM: 100K OHM, $5 \mathrm{~L}, 0.25 \mathrm{~N}$	57658	NTR25J-E100K
A1R934	308-0441-00		RES , FXD , WN: 3 OHM, 5\% 3M	14193	SA31-3R00J
A1R935	315-0121-00		RES, FXD, FILM: 120 OHM , 5\% , 0.25M	19701	5043CX120ROJ
A1R937	321-0234-00		RES, FXD, FILM:2.67K OHM , 12, 0.125 , TC=T0	19701	5033ED2K67F
A1R938	311-1248-00			32997	3386X-T07-501
A1R939	321-0304-00		RES, FXD, FILM: 14.3 K OHM, 12, $0.125 \mathrm{H}, \mathrm{TC}=$ T0	19701	5033ED14K30F
A1R940	315-0203-00		RES, FXD, FILM: 20 K OHM, 5\%, 0.25 M	57668	NTR25J-E 20K
A1R941	315-0102-00		RES, FXD, FILIS: 1 K OHM, $5 \mathrm{~K}, 0.25 \mathrm{~K}$	57868	NTR25JE01K0
A1R942	315-0102-00		RES, FXD, FILK: 1 K OHM, 5\%, 0.25 H	57668	NTR25JE01K0
A1R943	301-0472-00		RES, FXD, FILM: 4.7 K OHA , $5 \%, 0.5 \mathrm{~N}$	19701	5053CX4K700J
A1R944	315-0102-00		RES, FXD, FILM: 1 K OHM, 5K, 0.25 M	57668	NTR25JE01K0
A1R945	301-0102-00	80101008010269	RES, FXD, FILI: 1 K OHM, 5\%,0.50N	19701	5053CX1K000,
A1R945	308-0298-00	8010270	RES , FXD, WM: 560 OHM, $5 \%$, 3 N	00213	12405-560-5
A1R946	315-0330-00		RES, FXD, FILM: 33 OHM , 5\%, 0.25 M	19701	5043CX33R00J
A1R947	315-0330-00		RES, FXD, FILI: 33 OHM , 5K, 0.25 N	19701	5043CX33R00J
A1R948	315-0100-00		RES, FXD, FILI:10 OHA , 5K, 0.25 W	19701	5043CX10RROOJ
A1R949	308-0679-00		RES, FXD, WW: 0.51 OHA , 5\%, 2 ZW	75042	8NH 0.51 OHM 5\%
A1R953	345-0471-00		RES , FXD, FILA:470 OHE , 5\% , 0.25M	57568	NTR25J-E470E
A1R954	315-0471-00		RES, FXD, FIL 4 :470 0HM, 5\%,0.25M	57668	NTR25J-E470E
A18964	307-0106-00		RES , FXD, CIIPSN: 4.7 OHM , 5\%, 0.25 M	01121	CB 4705
A1R965	307-0103-00		RES, FXD, CIPSN: 2.7 OHAN, 5\%, 0.25 N	01121	CB2765
A1R966	307-0106-00		RES , FXD, CIMPSN:4.7 OHM, 5\%, 0.25 N	01121	C8 4765
A1R976	315-0512-00		RES, FXD, FILM: 5.1 K OHM , 5\%,0.25N	57668	NTR25J-E05K1
A1R978	315-0512-00		RES, FXD, FILM:5.1K OHM, 5\%, 0.25 N	57668	NTR25J-E05K1
A1R7114	321-0354-00		RES, FXD, FILM:47.5K OHm, 1\%, $0.125 \mathrm{M}, \mathrm{TC}=\mathrm{TO}$	19701	5043ED47K50F
A1R7117	315-0102-00		RES, FXD, FILI $: 1 \mathrm{~K}$ OHM, $5 \mathrm{~K}, 0.25 \mathrm{~K}$	57668	NTR25JE01k0
A1R7203	315-0102-00		RES, FXD, FILI: 1 K OHM, 5K, 0.25 N	57668	NTR25JE01K0
A1R7204	315-0682-00		RES, FXD, FILM: 6.8 K OHM , $5 \%, 0.25 \mathrm{~K}$	57668	NTR25J-E06K8
A1R7205	315-0402-00		RES, FXD, FIUM: 1 K OHM , 5K, 0.25 H	57668	NTR25JE01K0
0187206	315-0682-00		RES , FXD, FILM: 6.8 K OHM, $5 \mathrm{5}, 0.25 \mathrm{~N}$	57668	NTR25J-E06K8
A1R7207	315-0102-00		RES, FXO, FILM: 1 K OHM, 5K,0.25W	57668	NTR25JE01K0
A187208	315-0103-00		RES, FXD, FILA: 10 KK OHM , 5\% , 0.25 M	19701	5043CX10K00J
A1R7209	315-0102-00		RES, FXD, FILS:1K OHM, 5K, 0.25 M	57668	NTR25.JE01K0
A1R7210	315-0102-00		RES, FXD, FILI: 1 K OHM, 5K, 0.25 M	57668	NTR25JE01K0
A1R7214	315-0102-00		RES, FXD, FIL 1 : 1 K OHM, 5\%, 0.25 K	57668	NTR25JE01K0
A1R7212	315-0102-00		RES, FXD, FILIM:1K OHM, 5\%, 0.25 N	57668	NTR25JE01K0
A1R7213	315-0112-00		RES, FXD, FILM:1.1K OHM, $5 \mathrm{5}, 0.25 \mathrm{~K}$	19701	5043CX1K100J
A187214	315-0182-00		RES, FXO, FILM: 1.8 KK OHM, $5 \mathrm{5}, 0.25 \mathrm{~N}$	57668	NTR25J-E1k8
A1R7215	315-0182-00		RES, FXD, FILM: 1.8 KK OH, $5 \%, 0.25 \mathrm{~N}$	57668	NTR25J-E1K8
A1P7216	315-0100-00	8010246	RES, FXD, FILM: 10 OHM, 5\%,0.25N	19701	5043CX10RR00J
0187260	315-0101-00		RES, FXD, FIL $=1000 \mathrm{MN}, 5 \%, 0.25 \mathrm{H}$	57668	NTR25J-E 100E
A1R7264	315-0681-00		RES, FXD, FILM:680 04M, 5\%, 0.25 N	57668	NTR25J-E680E
A1R7262	315-0881-00		RES , FXD, FILM:680 0HM, 5\%, 0.25 N	57668	NTR25J-E680E
9187263	315-0681-00		RES, FXD, FILM: 680 OHM , 5\%,0.25M	57668	NTR25.J-E680E
A1R7304	315-0101-00		RES, FXD, FILM: 100 OHM, 5\%, 0.25 M	57668	NTR25J-E 100E
A187360	315-0103-00		RES, FXD, FIL	19701	5043CX10K00J
0187361	315-0182-00		RES, FXD, FILM: 1.8K Otm, $5 \mathrm{KK}, 0.25 \mathrm{~K}$	57668	NTR25J-E1K8
A187420	315-0751-00		RES, FXD, FILM: $75000 \mathrm{NW,5} \mathrm{\%}, 0.25 \mathrm{M}$	57668	NTR25J-E750E
A187421	315-0222-00		RES, FKD, FIUM:2.2K OHM , 5\%, 0.25 N	57668	NTR25J-E02K2
A187430	315-0393-00		RES, FXD, FILM: 39 K OHM, $54,0.25 \mathrm{M}$	57668	NTR25J-E39K0
A1R7431	315-0513-00		RES, FXD, FILM:51K OHM, 5\%, 0.25 N	57668	NTR25J-E51K0
A187440	315-0823-00		RES, FXD, FILM:B2K OHM, $5 \times, 0.25 \mathrm{~K}$	57668	NTR25J-E82K
A1R7441	315-0104-00		RES, FXD, FILH: 100K OHM, 5\%,0.25W	57668	NTR25J-E100K
A1R7442	315-0103-00		RES, FXD,FILM:10K OHM, $5 \%, 0.25 \mathrm{~N}$	19701	5043CX10K00J


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
0187470	315-0102-00		RES, FXD, FILM: 1K OHM, 5\%, 0.25M	57668	NTR25JE01K0
0187471	315-0102-00		RES, FXD, FILM: 1K OHM, 5\%, 0.25 N	57668	NTR25JE01K0
A1RT236	307-0125-00		RES, THERNAL:500 OHm, 10\%,NTC	15454	108501K-220-EC
A15901	260-1849-00		SWITCH, PUSH:DPDT, 4A, 250VAC	31918	NE15/F2U103EE
A1T350	120-1680-00		TRANSFORNER,RF:5 TURN, 8I8I LAR	80009	120-1680-00
A17390	120-1401-00		XFMR, TRIGGER:LINE, 1:1 TURNS RATIO	54937	DNI 500-2044
Q1T906	120-1439-00		TRANSFORIAER, RF: ENERGY STORAGE	54937	5002573
017944	120-1347-00		TRANSFORNER,RF:DRIVER SATURATING	54583	B0T-001
017948	120-1601-00		XFMR, PNR SDNEUP:HIGH VOLTAGE	80009	120-1601-00
91TP397	131-0589-00		TERMINAL, PIN:0.46 L X 0.025 SO PH BRI	22526	48283-029
A1TP460	131-0589-00		TERUINAL, PIN:0.46 L $\times$ 0.025 SO PH ERI	22526	48283-029
A1TP504	131-0589-00		TERMINAL, PIN:0.46 L X 0.025 SO PH 8RL	22526	48283-029
A1TP537	131-0589-00		TERWINAL, PIN:0.46 L X 0.025 SO PH BRI	22526	48283-029
01 1P942	131-0589-00		TERMINAL, PIN:0.46 L X 0.025 SO PH BRI	22526	48283-029
A1TP940	131-0589-00		TERMIMAL, PIN:0.46 L X 0.025 SO PH 8RI	22526	48283-029
91TP950	131-0589-00		TERMINAL, PIN:0.46 L X 0.025 SO PH BRI	22526	48283-029
014130	155-0274-00		MICROCKT, LINEAR:VERTICAL PREAMP	80009	155-0274-00
A1U180	155-0274-00		MICROCKT, LINEAR:VERTICAL PREAMP	80009	155-0274-00
A1U225	156-0742-00		MICROCKT , LINEAR: OPNL AMPL	01295	L318P
A1U310	156-0534-00		HICROCKT,LINEAR:DUAL DIFF AMPL	02735	CA3102E-98
a1U335	156-0534-00		MICROCKT, LINEAR:OUAL OIFF AMPL	02735	CA3102E-98
A1U350	156-1294-00		MICROCKT, LINEAR:NPN, 5 TRANSISTOR ARRAY	02735	CA3127E
010426	156-0158-00		MICROCKT, LINEAR:OUAL OPNL AMPL	04713	MC1458P1/MC1458U
A1v460	234-0107-20		INTEGRATED CKT:SCHMITT TRIGGER	80009	234-0107-20
A1U501	156-1225-00		MICROCKT, LINEAR:DUAL COMPARATOR	01295	L4393P
A1U502	156-1713-00		MICROCKT, DGTL:ECL, RETRIG MONDSTABLE MV	04713	MC10198(P OR L)
A1U504	156-1335-00		MICROCKT, DGTL: LSTTL, OUAL RETRIGGERABLE	07263	96LS02PCQR
91U506	156-1639-00		MICROCKT, DGTL:ECL, DUAL D, MA-SLAVE FF	04713	MC10H131(P OR L)
A14532	156-1641-00		MICROCKT, DGTL: ECL, QUAD 2-INPUT MOR GATE	04713	MC10H102(L OR P)
A1U537	156-0721-02		MICROCKT, DGTL:QUAD ST 2-INP MAMD GATES	18324	N74LS132(NBORFE)
A1U540	156-0388-03		MICROCKT , DGTL:OUAL D FLIP-FLOP	01295	SN74LS74ANP3
A1U555	156-0728-02		HICROCKT,DGTL: OUAO 2 INPUT GATE M/OC OUT,SC RN	01295	SN74LS09NP3
A1U565	156-0384-02		MICROCKT, DGTL:QUAD 2-INP NAND GATE	07263	74LS03PCQR
91U758	156-1149-00		MICROCKT, LINEAR:OPERATIONAL ANP, JFET INPUT	27014	LF351N/GLEA334
91U930	156-1627-00		MICROCKT, LINEAR:PULSE WIDTH WODULATED CONT CIRCUIT, SWITCHING POWER SUPPLY,SCRN	12969	UC494ACN
A14975	152-0806-00		SEIICOND OVC, OI:HV MULTR,4KVAC INPUT,12KVOC OUTPUT	12969	CMX647
A147201	156-0530-02		MICROCKT, DGTL:QUAD 2-INP MUX	01295	SN74LS157NP3
A1U7202	156-0328-00		MICROCKT, DGTL:DUAL MOS CLOCK DRIVER,SCRM	04713	MMH0026CP1D
A1VR645	152-0317-00		SEIICOMD DVC, DI: $2 \mathrm{EN}, \mathrm{SI}, 6.2 \mathrm{~V}, 5 \mathrm{X}, 0.25 \mathrm{H}, 00-7$	04713	S2G20012
A1VR712	152-0508-00		SEMICOND DVC, DI: $2 E N, S I, 12.6 V, 5 L, 0.4 \mathrm{M}, 00-7$	04713	S213294RL
A1VR764	152-0508-00		SEMICOND DVC, DI: $2 \mathrm{EN}, \mathrm{SI}, 12.6 \mathrm{~V}, 5 \mathrm{y}, 0.4 \mathrm{H}, 00-7$	04713	ST13294RL
A1va782	152-0243-00		SEMICOND OVC, DI : ZEN,SI, $15 \mathrm{~V}, 5 \mathrm{5K}, 0.4 \mathrm{~N}$, DO-7	04713	S213203 (1N9658)
A1vR828	152-0514-00		SEMICOMD OVC, DI: $2 \mathrm{EN}, \mathrm{SI}, 10 \mathrm{~V}, 1 \%, 0.4 \mathrm{M}, \mathrm{DO}-7$	04713	S2G15RL
A1VR925	152-0166-00		SEMICOMD OVC, DI: $2 E N, S I, 6.2 V, 5 \%, 0.4 \mathrm{M}, \mathrm{DO}-7$	04713	S211738RL
A1VR935	152-0255-00		SEMICOMD DVC, DI: $2 E N, S I, 51 V, 5 \%, 0.4 \mathrm{~K}, \mathrm{DO}-7$	04713	S2635009K7
A1VR943	152-0317-00		SEMICOMD DVC, DI: $2 \mathrm{EN}, \mathrm{SI}, 6.2 \mathrm{~V}, 5 \%, 0.25 \mathrm{M}, 00-7$	04713	57620012
A1VR953	152-0195-00		SEMICOMD OVC, DI: $2 \mathrm{NN}, \mathrm{SI}, 5.1 \mathrm{~V}, 5 \mathrm{~L}, 0.4 \mathrm{M}, 00-7$	04713	S211755RL
A1VR954	152-0195-00		SEMICOND DVC, DI: $2 \mathrm{EN}, \mathrm{SI}, 5.1 \mathrm{~V}, 5 \mathrm{~K}, 0.4 \mathrm{H}, \mathrm{DO}-7$	04713	S211755RL
A1W282	131-0566-00			24546	0 MA 07
A1M283	131-0566-00		BUS, COMD: OUM ${ }^{\text {P/ }}$ RES $0.09400 \times 0.225 \mathrm{~L}$	24546	0 HA 07
91M284	131-0566-00	8012600	BUS, COMD: OUMAY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	0 MA 07
011N335	131-0566-00		BUS, COMD: OLMAY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	0 HA 07
A1M400	131-0566-00		BUS, COMD: OUMAY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	0 Ma 07
A14408	131-0566-00		BUS, COND: DUMAY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	040 07
A1M410	131-0566-00		BUS, COMD: DUMAY RES, 0.094 00 X 0.225L	24546	0 MA 07
A1449	131-0566-00		BUS, COND: DLAMY RES,0.094 00 $\times 0.225 \mathrm{~L}$	24546	0 Ha 07


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description		Mfr. Code	Mfr. Part No.
A1M428	131-0566-00		BUS, COND: DUMAY RES, 0.094	$00 \times 0.225 \mathrm{~L}$	24546	DMA 07
A1M429	131-0566-00		BUS , COND: DUMAY RES , 0.094	$00 \times 0.225 \mathrm{~L}$	24546	0MA 07
A1N453	131-0566-00		BUS, COMD: DUAMY RES,0.094	$00 \times 0.225 \mathrm{~L}$	24546	0 MA 07
A1N459	131-0566-00		BUS, COND: DLAMY RES,0.094	$00 \times 0.225 \mathrm{~L}$	24546	0 MA 07
A1N494	131-0566-00		BUS, COND: DUAMY RES, 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1N501	131-0566-00		BUS, CONO: OLAMY RES,0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1N502	131-0566-00		BUS , COMD: OUMAY RES , 0.094	$00 \times 0.225 \mathrm{~L}$	24546	0 OMA 07
A1N503	131-0566-00		BUS, COND: DLAMY RES, 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1N531	131-0566-00		BUS, COND: DUMAY RES 0.094	00 $\times 0.225 \mathrm{~L}$	24546	OMA 07
A1N532	131-0566-00		BUS, COAD: DUMAY RES, 0.094	$00 \times 0.225 \mathrm{~L}$	24546	0 MA 07
A1N535	131-0566-00		BUS, COMD: DUAMY RES, 0.094	$00 \times 0.225 \mathrm{~L}$	24546	0 OMA 07
01*537	131-0566-00		BUS,COND:DUAFY RES , 0.094	$00 \times 0.225 L$	24546	OMA 07
A1*538	131-0566-00		BUS , COMD : DUAMY RES , 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A14541	131-0566-00		BUS, COND: DUAM RES, 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
-11*542	131-0566-00		BUS, COND: DUANY RES, 0.094	$00 \times 0.225 \mathrm{~L}$	24546	0 MA 07
A1m543	131-0566-00			$00 \times 0.225 \mathrm{~L}$	24546	0 MA 07
A1N544	131-0566-00		BUS,COAD:DUAFY RES,0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1*555	131-0566-00		BUS, COAD: DUANY RES, 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1~556	131-0566-00		BUS , COND: DUAMY RES , 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1~558	131-0565-00		BUS, COND: DUAMY RES, 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1M560	131-0566-00		BUS, COND; DUAM RES , 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1M565	131-0566-00		BUS, COAD: DUAMY RES , 0.094	DD X 0.225 L	24546	OMA 07
A1N570	131-0566-00		BUS, COND:DUMY RES, 0.094	$00 \times 0.225 \mathrm{~L}$	24546	DMA 07
A1:575	131-0566-00		BUS, COND: DLAMY RES, 0.094	DD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A1*591	139-0568-00		BUS , COMD:DUAFY RES , 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1M592	131-0566-00		BUS, COND: DUAMY RES, D. 094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A14602	131-0566-00		BUS, COND: DUAMY RES, 0.094	$00 \times 0.225 L$	24546	OMA 07
Q1w603	131-0566-00		BUS, COND: DUAMY RES,0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1)635	131-0566-00		BUS, COND: DUANY RES, 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A14649	131-0566-00		BUS, COND: DUAMY RES, 0.094	$00 \times 0.225 L$	24546	OMA D7
A111732	131-0566-00		BUS, COND: DUANY RES , 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A11770	131-0566-00		BUS, COND: DUANY RES, 0.084	$00 \times 0.225 L$	24546	OMA 07
A1M780	131-0566-00		BUS, COND:DUMAY RES,0.094	$00 \times 0.225 L$	24546	OMA 07
A1M885	131-0566-00		BUS,COND: DUAMY RES,0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A110954	131-0566-00		BUS, COND: DUANY RES, 0.094	OD X 0.225 L	24546	OMA 07
A1\%955	131-0566-00		BUS, COND: DUAMY RES, 0.094	OD X 0.225 L	24546	OMA 07
A1\%956	131-0566-00		BUS , COND: DUANY RES 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A114959	131-0566-00		BUS, COAD:DUMNY RES, 0.094	0D $\times 0.225 \mathrm{~L}$	24546	DMA 07
A110960	131-0566-00		BUS, COND: DUAMY RES, D. 094	OD X 0.225 L	24546	OMA 07
A114961	131-0566-00		BUS, COAD: DUMAY RES, 0.094	OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A1M964	131-0566-00		BUS, COND:DUNTY RES,0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A14.965	131-0566-00		BUS, COND:DUAPY RES,0.094	OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A149688	131-0566-00		BUS COAD , DLAMYY RES, 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1\%971	131-0566-00		BUS, COAN: DUANY RES, 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A110972	131-0566-00		BUS, COND:DUPMY RES, 0.094	OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A114974	131-0566-00		BUS, COND: DUANY RES, 0.094	$00 \times 0.225 L$	24546	OMA 07
A114975	131-0566-00		BUS, COND: DUAMY RES, 0.094	00 $\times 0.225 \mathrm{~L}$	24546	OMA 07
A1:976	131-0566-00		BUS, COND: DUMAY RES, 0.094	$00 \times 0.225 L$	24546	OMA 07
A114977	131-0566-00		BUS , COND: DUANY RES , 0.094	DD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A118978	131-0566-50		BUS, COND:DUNYY RES, 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A114891	131-0566-00		BUS, COND: DUAMY RES, 0.094	$00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A14992	131-0566-00		BUS, COND: DUMAY RES,0.094	$00 \times 0.225 \mathrm{~L}$	24546	DMA 07
A14993	131-0566-00		BUS, COND: DUAMY RES, 0.094	OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A14995	131-0566-00		BUS, COND: DUANY RES,0.094	OD X 0.225 L	24546	OMA 07
A14997	131-0566-00		BUS,COND: DUMAY RES, 0.094	00 X 0.225 L	24546	DMA 07
A114998	131-0566-00		BUS, COND:DUMY RES, 0.094	DD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A14999	131-0566-00		BUS,COND: DUANY RES, 0.084	DD X 0.225L	24546	OMA 07
A122111	174-0032-00		CA ASSY, SP, ELEC:4,26 ANG,	B. 75 L, RIBBON	80009	174-0032-00
A1K2112	174-0032-00		CA ASSY, SP, ELEC:4,26 ANG,	8.75 L,RIBBON	80009	174-0032-00


Component No．	Tektronix Part No．	Serial／Assembly No． Effective Dscont	Name \＆Description	Mfr． Code	Mfr，Part No．
A1H7120	131－0566－00		BUS，COA0：OURAYY RES ， $0.09400 \times 0.225 \mathrm{~L}$	24546	$0 \times 4007$
A1M7121	131－0566－00		BUS，COND：OUAMY RES， $0.09400 \times 0.225 \mathrm{~L}$	24546	0 MAR 07
A1M7122	131－0566－00		QUS，COND：OLAMY RES， $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1M7143	131－0566－00		BUS，COND：OUNY RES $0.09400 \times 0.225 \mathrm{~L}$	24546	0 MA 07
A1N7202	131－0566－00		日US，C0＊0：DUMAY RES ， $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1M7220	131－0566－00		GUS，COND：DUNHY RES， 0.094 OD $\times 0.225 \mathrm{~L}$	24546	01407
9117231	131－0566－00	80101008010245	QUS，COND：DUAMY RES ， 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
－1147250	131－0566－00		日US，COND：DLANY RES ， 0.094 OD X 0.225 L	24546	0 MAP 07
A1W7310	131－0589－00		TERMINAL，PIN： $0.46 \mathrm{~L} \times 0.025$ SO PH BRI	22526	48283－029
A1117314	131－0589－00		TERMINAL，PIN：0．46 L X 0.025 SO PH ERL	22526	48283－029
A1N7315	131－0589－00		TERMINAL，PIN：0．46 L $\times 0.025$ SO PH BRL	22526	48283－029
A1N7320	131－0566－00		日US，COND：OUAAY RES ，0，094 $00 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1M7360	131－0589－00		TERMINAL，PIN： $0.46 \mathrm{~L} \times 0.025$ SO PH BRI	22526	48283－029
A1M7364	131－0589－00		TERHINAL，PIN：0．46 L $\times 0.025$ S0 PH BRI	22526	48283－029
A1N7365	131－0589－00		TERMINAL，PIN：0．46 L X 0.025 S0 PH 8RI	22526	48283－029
A1N7420	131－0566－00		BUS ，COND：OUANY RES ， $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1W7440	131－0566－00		OUS，COND：DUANM RES， 0.094 OD X 0.225 L	24546	01407
A1M9000	179－2949－00		WIRING HARNESS：1／O	80009	179－2949－00
A1M9020	131－0566－00		BUS ，COND：DUHAY RES， 0.094 OD $\times 0.225 \mathrm{~L}$	24546	DMA 07
A1H9035	131－0566－00		BUS，COND：DUnAY RES， 0.094 OD X 0．225L	24546	OMA 07
A1＊9068	131－0566－00		OUS，CEAD：DUMAY RES， $0.09400 \times 0.225 \mathrm{~L}$	24546	01497
A1M9070	198－4819－00		MIRE SET，ELEC：PONER FET	80009	198－4819－00
A1M9080	175－9852－00		CA ASSY，SP，ELEC：3，18 Antic． 6.0 L，RIBBON	80009	175－9852－00
A1＊9 103	175－6138－00		CA ASSY，SP，ELEC：4，26 ANT，6．0 L，RIBBON	80009	175－6138－00
A1M9108	175－6138－00		CA ASSY，SP，ELEC： 4,26 ANTS， 6.0 L，RI8BON	80009	175－6138－00
A1＊9191	195－7747－00		LEAO，ELECTRICAL： 18 AMS， $3.5 \mathrm{~L}, 8-19$	80009	195－7747－00
A1F9300	175－9850－00		CA ASSY，SP ，ELEC：5，22 AMS， 7.0 L，RIB8ON	80009	175－9850－00
A1M9700	175－9252－00		CABLE ASSY，RF：B，26 AMG \＆1，50 OHM COAX，8．0 L	80009	175－9252－00
A149705	175－6137－00		CA ASSY，SP ，ELEC： 8,26 AMS，6．0 L，RI8BON	80009	175－6137－00
A1M9778	195－7065－00		LEAD，ELECTRICAL：22 AMG，1．5 L，9－2	80009	195－7065－00
A1M9788	195－7064－00		LEAD，ELECTRICAL： 22 anto ，2．0 L，9－5	80009	195－7064－00
A1M9870	136－0830－00		SKT，PL－IN ELEX：CRT SOCKET ASSY	80009	136－0830－00
A1M9991	175－6139－00		CA ASSY，SP，ELEC：3，26 Aing，4．0 L，RI880N	80009	175－6139－00
02	670－8699－00		CIRCUIT ED ASSY：ATTENUATOR	80009	670－8699－00
A2AT1	307－1014－06		ATTENUATOR，FXO：100X	80009	307－1014－06
azat2	307－1013－00		ATTENUATOR ，FXD：10X	80009	307－1013－00
A2AT51	307－1014－06		ATTENUATOR，FXD：100X	80009	307－1014－06
a2at52	307－1013－00		ATTENUATOR，FXD：10X	80009	307－1013－00
A2C2	285－1106－00		CAP，FXD ，PLASTIC：0．022UF，20\％，600V	14752	23081F223
A2C3	281－0158－00		CAP，VAR，CER DI：7－45PF，25V	59660	518－006 G 7－45
A2C6	283－0000－00		CAP，FXO，CER OI：0．001UF，＋100－0\％，500V	59660	831－610－Y510102P
A2C7	283－0185－00		CAP，FXD，CER DI： $2.5 \mathrm{PF}, 0.5 \mathrm{~L}$ ，50Y	51642	100－050－NPO－2598
A2C9	281－0826－00		CAP，FXO，CER DI：2200PF，5\％，100V	20932	401터100AD222x
A2C10	283－0100－00		CAP，FXD，CER DI：0．0047UF，10\％，200V	04222	SR306A472KAA
A2C13	281－0862－00		CAP，FXD，CER DI：0．001UF ，＋80－20\％，100V	04222	MA101C10ZMAA
A2C17	281－0862－00		CAP，FXD，CER DI： 0.001 UF，$+80-20 \%, 100 \mathrm{Y}$	04222	MA101C102MAA
A2C21	281－0773－00		CAP，FXD，CER DI：0．01UF，10X，100V	04222	HA201C103KAA
A2C26	281－0158－00		CAP，VAR，CER DI：7－45PF， 25 V	59660	518－006 G 7－45
A2C27	281－0893－00		CAP，FXD，CER DI：4．7PF，＋／－0．5PF，100V	04222	MA101A4R70AA
A2C30	281－0775－00		CAP，FXD，CER OI：0．1UF，20\％，50V	04222	MAZ05E104MAA
A2C75	281－0862－00		CAP，FXD，CER DI：0．001UF，＋60－20\％，100V	04222	MA101C102MAA
A2C38	281－0862－00		CAP，FXD，CER DI：0．001UF，＋80－207，100V	04222	MA101C10LHAA
A2C52	285－1106－00		CAP ，FXD，PLASTIC：0．022UF，20\％，600V	14752	230817223
A2C53	281－0158－00		CAP，YAR，CER DI：7－45PF， 259	59660	518－006 6 7－45
A2C56	283－0000－00		CAP，FXD，CER DI：0．001UF，$+100-0 \%$ ，500V	59660	831－610－Y500102P
A2C57	283－0185－00		CAP，FXD，CER DI：2．5PF ，0．5\％，50Y	51642	100－050－NPO－2598


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A2C59	281-0826-00		CAP , FXD, CER DI: 2200 PF , 5\%, 100V	20932	401EM100AD222K
A2C60	283-0100-00		CAP , FXD, CER DI:0.0047UF, 10\%,200V	04222	SR306A472KAA
A2C63	281-0862-00		CAP, FXD, CER DI: 0.001UF, +80-20\%, 100V	04222	
A2C67	281-0862-00		CAP, FXD, CER DI: 0.001UF, $+80-20 \%$, 100 V	04222	Mа101C102 ${ }^{\text {¢ }}$
A2C71	281-0773-00		CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	MA201C103KAA
A2C76	281-0158-00		CAP, VAR, CER DI:7-45PF, 25V	59660	518-006 6 7-45
A2C77	281-0893-00		CAP , FXD, CER DI:4.7PF, $+/-0.5 \mathrm{PF}, 100 \mathrm{~V}$	04222	Ma101a4R7DaA
A2C80	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\% , 50V	04222	MA205E104MAA
A2C85	281-0862-00		CAP, FXD, CER DI: 0.0014 F , $880-20 \%$, 100V	04222	Ma101C102MAA
A2C88	281-0862-00		CAP, FXD, CER DI: 0.001UF, +80-20\%, 100V	04222	Ma101C102MAA
A2C90	290-0776-00		CAP , FXD, ELCTLT: 22UF, +50-10\%, 10V	55680	ULA1A220TEA
A2C91	290-0776-00		CAP, FXD, ELCTLT: 22 UF , $+50-10 \%, 10 \mathrm{~V}$	55680	ulatazzotea
A2C93	290-0776-00		CAP , FXD , ELCTLT: 220 F , +50-10 \%, 10V	55680	ulatazzotea
A2C94	281-0862-00		CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%$, 100V	04222	MA101C102MAA
A2C96	290-0776-00		CAP , FXD, ELCTLT: $224 \mathrm{~F},+50-10 \%$, 10V	55680	ULA1A220TEA
A2C97	281-0862-00		CAP, FXD, CER DI: 0.0014 F + $800-20 \%$, 100V	04222	MA101C10zMAA
A2CR 7	152-0324-00		SEMICOND DVC, DI:SN,SI, 35V,0.14,00-7	14552	WT5128
A2CR18	152-0141-02		SEMICOND DVC, DI:SN, SI, 30V, 150MA,30V	03508	0A2527 (1N4152)
A2CR57	152-0324-00		SEMICOND DVC, DI:SN, SI, 35V , 0.14, 00-7	14552	MT5128
A2CR68	152-0141-02		SEMICOND DVC, ${ }^{\text {dI :SM, SI, 30V, 150MA, 30V }}$	03508	DA2527 (1N4152)
A2L90	120-0382-00		COIL,RF:210UH, +28\%-43\%, 14 TURNS	80009	120-0382-00
A2L. 91	120-0382-00		COIL,RF:210UH, +28\%-43\%, 14 TURNS	80009	120-0382-00
A2L93	120-0382-00		COIL, RF:2101H, +28\%-43\%, 14 TURNS	80009	120-0382-00
A2L96	120-0382-00		COIL,RF:210UH, +28\%-43\%, 14 TURNS	80009	120-0382-00
A2P9091	131-0608-00		TERMIMRL,PIN:0.365 L X 0.025 8RZ GLD PL (OUANTITY OF 3)	22526	48283-036
A2P9103	131-0608-00		TERMIMAL,PIN:0.365 L X 0.025 BRZ GLD PL (QUANTITY OF 4)	22526	48283-036
A2P9108	131-0608-00		TERNIMAL,PIN:0.365 L X 0.025 8RL GLD PL (OUANTITY OF 4)	22526	48283-036
A2P9200	131-0787-00		TERNIMAL,PIN:0.64 L X 0.025 SO PH BRI (OUANTITY OF 2)	22526	47359-000
A2013	151-1124-00		TRANSISTOR: JFE, N-CHAN, SI , SEL, TO-92	17856	J-2400
A2015	151-0711-00		TRANSISTOR:NPN, SI, T0-92	27014	MPSH14
A2018	151-0711-00		TRANSISTOR:NPN, SI, T0-92	27014	MPSH11
A2063	151-1124-00		TRANSISTOR: JFE, N-CHAN, SI , SEL, T0-92	17856	J-2400
A2065	151-0711-00		TRANSISTOR:NPW, SI, T0-92	27014	MPSH11
A2068	151-0711-00		TRANSISTOR:NPN, SI, T0-92	27014	MPSH11
A2R1	315-0620-02		RES, FXD, CIMPSN: 62 OHM, 52, 0.25 M	01121	${ }^{\text {CB6205 }}$
A2R2	317-0105-00		RES, FXD, CMPSN: 1M OHM, 5X,0.125N	01121	881055
A2R3	322-0614-00		RES, FXD, FILL:250K OHM, 1\%, $0.25 \mathrm{~N}, \mathrm{TC}=$ TO	75042	CEBTO-2503F
A2R4	317-0082-00		RES, FXD, CMPSN: 8.2 OHM , $5 \mathrm{X}, 0.125 \mathrm{H}$	01121	888265
A2R5	321-0469-00		RES , FXD, FILM: 750 K OHW, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	80009	321-0469-00
A2R6 6	317-0105-00		RES, FXD, CMPSN: 1M OHM , 5\%, 0.125 M	01121	B81055
A2R7	315-0180-00	8010100 B010184	RES, FXD, FILM: 18 OHM, 5x,0.25N	19701	5043CX18R00J
A2R7	315-0160-00	8010185	RES, FXD, FILM: 16 OHM, 5x,0.25M	19701	$5043 \mathrm{CX16R00J}$
A2R8	315-0620-02		RES , FXD , CMPSN: 62 OHMM, 5\%, 0.25 M	01121	C86205
A2R9	315-0432-00		RES, FXD, FILM: 4.3 K OHM, $5 \%, 0.25 \mathrm{~N}$	57668	NTR25J-E04K3
A2R10	311-2238-00		RES, VAR, NOWM: TRMR, 50 K OHM, 20\%, 0.5 N LINEAR	TK1450	GFO6UT 50 K
A2811	315-0102-00		RES, FXD, FILM: 1 K OHM, $5 \chi, 0.25 \mathrm{~N}$	57868	NTR25JE01K0
A2R12	315-0360-00		RES, FXO, FILu: 36 OHM, 5\%, 0.25 N	19701	5043CX36R00,
A2813	315-0101-00		RES, FXD, FILM: 100 OHM, 5\% , 0.25N	57668	NTR25J-E 100E
A2R14	317-0161-00		RES, FXD, CUPSN: 160 OHM , 5\% , 0.125N	01121	B81615
A2815	315-0101-00		RES, FXD, FILM: 100 OHM, 5\%, 0.25 M	57668	NTR25J-E 100E
A2R16	315-0162-00		RES, FXD, FILM: 1.6 K OHm, $5 \%, 0.25 \mathrm{~N}$	19701	5043CX1K600J
A2R17	315-0201-00		RES, FXD, FIL $: 200$ OHM , 5\%, 0.25 M	57668	NTR25J-E200E
A2R18	315-0911-00		RES , FXD, FILM:910 OHM , 5\%, 0.25 N	57668	NTR25J-E910E
A2R19	307-0843-00		RES NTWK, FXD, FI: INPUT ATTENUATOR	80009	307-0843-00
A2R21	315-0160-00		RES, FXD, FILM: 16 OHM, 5\%,0.25W	19701	5043C×16800 ${ }^{\text {J }}$


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A2R22	321-0210-00		RES , FXO, FILM: 1.50 K OHM , 1\% , $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED1K50F
A2R23	321-0210-00		RES, FXO, FILH: 1.50 K OHM, 1\%, $0.125 \mathrm{~K}, \mathrm{TC}=$ TO	19701	5033ED1K50F
A2R25	311-2226-00		RES, VAR, NONH: TRMR, 50 OHM , 20\% , 0.5 M	TK1450	GFO6UT 50 OHW
A2R26	311-0643-00		RES, VAR, NONH:	32997	3329H-L58-500
A2R27	315-0160-00		RES, FXD, FILH: 16 OHM, 57, 0.25w	19701	5043CX16R00J
A2R29	321-0090-00		RES, FXO, FIL	91637	CMF55116G84R50F
A2R30	315-0124-00		RES, FXO, FILM: 120K OHM , 5\%,0.25W	19701	5043CX120kOJ
A2R31	315-0750-00		RES, FXO, FILM: 75 OHM, $5 \mathrm{5K}, 0.25 \mathrm{~K}$	57668	NTR25J-E75E0
A2R33	311-2238-00		RES, VAR, NONM : TRMR, 50K OHM, 20\%, 0.5 h LINEAR	TK1450	GFobut 50 K
A2R34	315-0101-00		RES, FXD, FILM: 100 OHM , 5K, 0.25 M	57668	NTR25J-E 100E
A2R35	321-0144-00		RES, FXD, FIL : 309 OHM, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAO309ROF
A2R37	315-0102-00		RES, FXO,FILIL: 1K OHM ,5\%,0.25W	57668	NTR25JE01K0
A2R38	321-0144-00		RES, FXO, FILH:309 OHM , 12, 0. 125 M , TC=TO	07716	CEAD309ROF
A2R39	315-0242-00		RES, FXD, FILM: 2.4 K OHM,52,0.25\%	57668	NTR25J-E02K4
A2R41	315-0221-00		RES, FXD, FILM:220 OHW, 5\%,0.25\%	57668	NTR25J-E220E
A2R42	315-0333-00		RES, FXD, FILM:33K OHM, 5K, 0.25 W	57668	NTR25J-E33K0
A2R43	311-2218-00		RES, VAR, NOWM: PNL, 10K OHM, 20\% , $0.25 \mathrm{~W}, \mathrm{DPST}$	01121	OROER BY DESCR
A2R46	315-0182-00		RES, FXD, FILM:1.8K OHM ,5\%,0.25M	57668	NTR25J-E1K8
A2R47	311-2230-00		RES, VAR , MONMM: TRMR, 500 OHM, 20\%, 0.50 LINEAR	TK1450	GFO6UT 500
A2R48	315-0752-00		RES, FXD, FILM:7.5K OHM, 5\%,0.25M	57668	NTR25J-E07K5
A2R51	315-0620-02		RES, FXD, CMPSN: 62 OHM, 5\%, 0.25 W	01121	C86205
A2R52	317-0105-00		RES, FXD, CMPSN: 1M OHM, 57, 0.125 W	01121	881055
A2R53	322-0614-00		RES, FXO, FILH:250K OHM, 12, $0.25 \mathrm{H}, \mathrm{TC}=$ TO	75042	CEBTO-2503F
A2R54	317-0082-00		RES , FXD, CMPSN:8.2 OHM , 5\% , 0.125 W	01121	888265
A2R55	321-0469-00		RES , FXD , FILM: 750K OHM, 12, 0.125M, TC=T0	80009	321-0469-00
A2R56	317-0105-00		RES, FXO, CMPSN: 1 M OHM, $5 \mathrm{LK}, 0.125 \mathrm{M}$	01121	881055
A2R57	315-0180-00	80101008010184	RES , FXO, FILM: 18 OHM, $57,0.25 \mathrm{H}$	19701	5043CX18R00J
A2R57	315-0160-00	B010185	RES, FXD, FILI: 16 OHM, 5\%,0.25	19701	5043CX16R00J
A2R58	315-0620-02		RES , FXD, CMPSN: 62 OHM , 5X , 0.25 N	01121	C86205
A2R59	315-0432-00		RES, FXD, FILS: 4.3 K OHM, $5 \mathrm{SK}, 0.25 \mathrm{M}$	57668	NTR25J-E04K3
A2R60	311-2238-00		RES, VAR , NONWH:TRMR , 50K OHM , 20\% , 0.5 F L LINEAR	TK1450	GFo6ut 50 K
A2R61	315-0102-00		RES, FXD, FILH: 1 K OHM, $5 \mathrm{~L}, 0.25 \mathrm{H}$	57668	NTR25NE01K0
A2R62	315-0360-00		RES, FXD, FILH: 36 OHM , 5\%, 0.25 K	19701	5043CX36R00J
A2R63	315-0101-00		RES, FXD, FILA: 100 OHM , 52, 0.25 N	57668	NTR25I-E 100E
A2R64	317-0161-00		RES, FXD, CMPSN: 160 OHM , 52, 0.125 W	01121	B81615
A2R65	315-0101-00		RES, FXD, FILM: 100 OHM, 5K, 0.25 M	57668	NTR25J-E 100E
A2R66	315-0162-00			19701	5043CX1K600,
A2R67	315-0201-00		RES, FXD, FILH: 200 OHM, $5 \chi, 0.25 \mathrm{M}$	57668	NTR25J-E200E
A2R68	315-0911-00		RES, FXD, FILH:910 OHM, 5\%, 0.25 W	57668	NTR25.1-E910E
A2R69	307-0843-00		RES NTWX, FXD, FI: INPUT ATTENUATOR	80009	307-0843-00
A2R71	315-0160-00		RES , FXO, FILM: 16 OHM, 5\%, 0.25 K	19701	5043 C $\times 16 \mathrm{ROOJ}$
A2R72	321-0210-00		RES, FXO, FILM: 1.50 K OHM, $17,0.125 \mathrm{M}, \mathrm{TC}=$ TO	19701	5033ED1K50F
A2R73	321-0210-00		RES , FXD , FILS: 1.50 K OHM, 12, $0.125 \mathrm{~K}, \mathrm{TC}=$ TO	19701	5033E01K50F
A2R75	311-2226-00		RES, VAR, MONWH: TRMR, 50 OHM , 207, 0.5 H	TK1450	GFO6UT 50 OHM
A2R76	311-0643-00		RES, VAR, NOMNM: TRMR, 50 OHM, 0.5 N	32997	3929H-L58-500
A2R77	315-0160-00		RES, FXD, FILH: 16 OHM, 5\%, 0.25\%	19701	5043CX16R00J
A2R79	321-0090-00		RES, FXD, FILU: 84.5 OHM, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	91637	CMF55116G84R50F
A2880	315-0124-00		RES, FXO, FILS: 120K OHM, $52,0.25 \mathrm{~N}$	19701	5043CX120K01
A2R81	315-0750-00		RES , FXD, FILM: 75 OHM, 5\%, 0.25 M	57668	NTR25N-E75E0
A2R83	311-2238-00		RES, VAR, MONHN:TRMR, 50K OHM, 20\%, 0.5 N LIMEAR	TK1450	GFobut 50 K
A2R84	315-0101-00		RES, FXD, FILH: 100 Of+ , 5X, 0.25m	57668	NTR25J-E 100E
A2R85	321-0144-00		RES, FXD, FILH:309 OHM, 12, $0.125 \mathrm{M}, \mathrm{TC}=$ TO	07716	CEA0303R0F
A2R87	315-0102-00		RES, FXD,FILI: 1 K OHM, $5 \mathrm{LK}, 0.25 \mathrm{~K}$	57668	NTR25JE01K0
A2R88	321-0144-00		RES, FXO, FILS:309 OHM, 12, $0.125 \mathrm{~m}, \mathrm{TC}=$ TO	07716	CEA0309ROF
A2R91	315-0221-00		RES , FXD, FILM: 220 OHM , 52, 0.25 M	57668	NTR25J-E220E
A2893	311-2218-00		RES, VAR, NOMW : PNL, 10K OHM , 202, $0.25 \mathrm{~N}, 0 \mathrm{OPST}$	01121	order by oescr
A2R96	315-0182-00		RES, FXD, FILM: 1.8K OHW, 5\%,0.25N	57668	NTR25J-E1K8
A2897	311-2230-00		RES, VAR, NONWH: TRAR , 500 OHM, 20\% , 0.50 LINEAR	TK1450	GFO6UT 500
A2R98	315-0752-00		RES, FXD, FILM:7.5K OHM, 5\%,0.25	57668	NTR25N-E07K5


Component No.	Tektronix Part No.	Serial/Assembly No Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A251	263-1040-01		SWITCH ASSEMPLY:ACTUATOR, COUPLING	80009	263-1040-01
A2S 10	263-1041-00		SWITCH ASSEMBLY:ACTUATOR, VOLTS/DIV	80009	263-1041-00
A2543			(PART OF R43)		
A2551	263-1040-01		SHITCH ASSEMBLY:ACTUATOR, COUPLING	80009	263-1040-01
A2560	263-1041-00		SHITCH ASSEMBLY:ACTUATOR, VOLTS/DIV	80009	263-1041-00
A2593			(PART OF R93)		
A2U10	156-2469-00		MICROCKT , DGTL:OP AMP	01295	TLC271acP
A2U30	155-0273-00		MICROCKT, LINEAR:ATTEN AMPLIFIER	80009	155-0273-00
A2160	156-2469-00		MICROCKT, DGTL:OP AMP	01295	TLC271acP
A2U30	155-0273-00		MICROCKT, LINEAR:ATTEN AMPLIFIER	80009	155-0273-00
A2VR10	152-0744-00		SEMICOND DVC, DI: $2 \mathrm{EN}, 51,3.6 \mathrm{~V}, 5 \mathrm{5}, 0.44,00-7$	15238	IN747aTK
A2VR60	152-0744-00		SEMICOND DVC, DI:ZEN, SI , 3.6V, 5x, $0.44,00-7$	15238	IN747atk
42143	131-0566-00		BUS, COND: DIMAMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A2493	131-0566-00		BUS, COND:DIAAMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A2M94	131-0566-00		BUS, COND:DIAAM RES, 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A2996	131-0566-00		BUS, COND: DIAAM RES, $0.09400 \times 0.225 L$	24546	OMA 07
A3	670-8710-00	80101008012599	CIRCUIT BD ASSY:FR PNL	80009	670-8710-00
A3	670-8710-01	8012600	CIRCUIT BD ASSY:FRONT PNL	80009	670-8710-01
АЗС376	283-0006-00		CAP , FXD , CER DI: 0.02 OF , +80-20\%, 500V	59660	$084154575 v 002037$
АЗСЗ77	281-0576-00		CAP ,FXD,CER DI:11PF,5\%,500V	52763	2ROPL2007 MPOJC
АЗС379	283-0780-00		CAP, FXD, MICA DI: 125PF, 17,500V	00853	D155F1250F0
АЗС380	281-0578-00		CAP, FXD,CER DI: 18PF,5\%,500V	52763	2RDPL2007 18P0JC
АЗС901	281-0773-00		CAP, FXD, CER DI:0.014F, 10\%, 100V	04222	MA201C103KAA
АЗС905	281-0775-01		CAP, FXD, PLASTIC:0.1UF,20\%,50Y	04222	Ma205E104MAA
АЗС905	281-0775-01	B010552	CAP, FXD, PLASTIC: O. 1UF, 20\% ,50V	04222	MA205E104MAA
АЗС987	281-0773-00		CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	MA201C103KAA
A3CR534	152-0141-02		SEMICOND DVC, DI:SN, SI , 30V, 150MA, 30V	03508	DA2527 ( 1 N4152)
A3CR537	152-0141-02		SEMICOND DVC, DI:SN, SI, 30V, 150MA,30V	03508	DA2527 (1 1 4 152)
A3CR538	152-0141-02		SEMICOND DVC, DI:SN, SI, 30V, 150MA, 30V	03508	DA2527 ( 1 N4 152)
A3CR539	152-0141-02		SEMICOND OVC, DI:SN, SI, 30V, 150MA, 30V	03508	DA2527 (1 1 4 152)
A3CR648	152-0141-02		SEMICOND DVC, DI:SH,SI, 30V, 150MA,30V	03508	Da2527 (1N4152)
A3CR988	152-0141-02		SEMICOND OVC, DI:SN, SI, 30V , 150MA, 30V	03508	DA2527 (1N4 152)
АЗС8889	152-0141-02		SEMICOND OVC, DI:SN,SI, 30V, 150MA, 30V	03508	0A2527 (1 1 4 152)
A305518	150-1029-00		LT EIITTING DIO:GREEN, $5651 \mathrm{~N}, 35 \mathrm{MA}$	58361	06480/MV5274C
A3J9006	131-0589-00		TERMINAL,PIN:0.46 L $\mathbf{X} 0.025$ SQ PH BRZ (QUANTITY OF 2)	22526	48283-029
A3 39200	136-0499-02		CONW,RCPT, ELEC:CIRCUIT BD, 2 CONTACTS	00779	3-380949-2
A3J9250	136-0499-02		COWN,RCPT,ELEC:CIRCUIT BD,2 CONTACTS (QUANTITY OF 2)	00779	3-380949-2
A307410	151-0190-00		TRANSISTOR:NPN, SI, TO-92	80009	151-0190-00
A3R89	315-0242-00		RES, FXD , FILM:2.4K OHM, 5x,0.25M	57668	NTR25, -E02K4
A3R92	315-0333-00		RES , FXD, FILM: 33K OHM , 57, 0.25 N	57668	NTR25N-E33K0
A3R111	321-0251-00		RES, FXD, FILM:4.02K OHM, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033E04K020F
A3R112	311-2178-00		RES, VAR, NOW Wh: CKT B0, 500 OHM, 10\%, 0.5 M	12697	CO43473
A3R161	321-0251-00		RES, FXD,FILM:4.02K $01 \mathrm{~mm}, 17,0.125 \mathrm{H}, \mathrm{TC}=$ TO	19701	5033ED4K020F
A3R162	311-2178-00			12697	CM43473
A3R224	315-0200-00		RES, FXD, FILM: 20 OHM , 54, 0.25 N	19701	5043CX20R00J
A3R280	311-2147-00			12697	CW41769
A3R377	321-0807-00		RES, FXD, FILM:900K OHM, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033R0900K0F
A3R378	321-0617-00		RES, FXD, FIM 111 K OHM, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ T0	19701	
A3R379	315-0220-00		RES, FXD, FILM: 22 OHM , 5x, 0.25 H	19701	5043CX22R00」
A3R360	321-0459-00		RES, FXD, FILM:590K OHM , 1\%, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5043ED590K0F
A3R401	315-0200-00		RES, FXD, FILM: 20 OHN, 5X, 0.25 N	19701	5043 C20R00J
A3R439	311-2284-00		RES, VAR, MONW : CKT BD, 500 OHM, 10\%, $0.25 \mathrm{H}, \mathrm{SPST}$	12697	C143479
A3R519	315-0563-00		RES, FXD,FILU:56K OHM, 5x,0.25	19701	5043CX56K00J
A3R520	315-0682-00		RES, FXD, FILM:6.8K OHM, 5\%,0.25M	57668	NTR25J-E06K8
A3R602	311-2147-00			12697	CM41769


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A3R726	311-2147-00		RES, VAR, NOM WM:CKT B0, 5 K OHM , 20\% , 0.50 M	12697	CM4 1769
A3R951	315-0102-00		RES, FXD, FILS:1K OHM, $5 \mathrm{5}, 0.25 \mathrm{~m}$	57668	NTR25JE01K0
A3R952	315-0102-00		RES, FXD, FILS:1K OHM, 5\%, 0.25 M	57668	NTR25JE01K0
A3R960	311-2286-00		RES, VAR, NONW: ${ }^{\text {che }}$ CKT BD, 10 K OHM, 20\%, 0.5 M	12697	CM43481
A3R961	315-0682-00		RES,FXD, FILK:6.8K OHM , 5\% , 0.25N	57668	NTR25J-E06K8
A3R982	311-1560-00		RES, VAR,NONW: TRMR, 5K OHM, 0.5N	32997	3352T-1-502
A3R983	315-0201-00		RES , FXD, FILA 2000 OHM , $5 \mathrm{X}, 0.25 \mathrm{~N}$	57668	NTR25.-E200E
A3R985	315-0114-00		RES, FXD, FILK:110K OHM , 5\%, 0.25 N	19709	5043C×110K0」
A3R986	315-0434-00		RES, FXD, FILK:430K OHM , 5\%,0.25N	57668	NTR25.j-E430K
A3R987	315-0124-00		RES, FXD, FILM: 120K OHM, 5\%, 0.25 N	19701	5043CX120K0J
A3R988	315-0182-00		RES, FXD, FILM: 1.8 K OHM, $5 \%, 0.25 \mathrm{~N}$	57668	NTR25j-E1K8
A3R989	321-0239-00		RES, FXD, FILS: 3.01 K OHM, $1 \mathrm{~K}, 0.125 \mathrm{M}, \mathrm{TC}=$ TO	19701	5043 ED3K010F
A3R990	321-0126-00		RES, FXD, FILM: 200 DHA, $12,0.125 \mathrm{H}, \mathrm{TC}=$ TO	19701	5033ED200ROF
A387362	315-0332-00		RES, FXO, FIL 3 3.3K OHM, $5 \mathrm{LK}, 0.25 \mathrm{H}$	57668	NTR25, -E03K3
A3R7401	315-0333-00		RES, FXD, FILK:33K OHM , $5 \mathrm{~K}, 0.25 \mathrm{~N}$	57668	NTR25.-E33K0
A3R7402	315-0622-00		RES,FXD, FILM: 6.2 K OHM, $5 \mathrm{5}, 0.25 \mathrm{~N}$	19701	5043CX6K200J
A3R7403	315-0202-00		RES, FXO, FIUN: 2 K OHM $, 5 \chi, 0.25 \mathrm{~K}$	57668	NTR25.J-E 2K
A3590	260-1995-00		SHITCH, PUSH:1 BUTTON, 2 POLE,SLOPE	71590	K4035200
A3S200	260-2075-00		SWITCH, PUSH: SPOT, 50VDC, 500M AMP	80009	260-2075-00
A3S226	260-2075-00		SNITCH, PUSH:SPDT, 50VDC, 5004 AMP	80009	260-2075-00
A35380	260-2033-00		SWITCH,SLIDE:DPTT , 125V ,0.5A	82389	ORDER BY DESCR
A35390	260-2114-00		SHITCH, PUSH:SPDT, MOMENTARY	59821	ORDER BY DESCR
A35392	260-2033-00		SHITCH, SLIDE:DPTT, 125V ,0.5A	82389	ORDER BY DESCR
A35401	260-2110-00		SWITCH, PUSH: 1 SPOT/2 DPOT	59821	ORDER BY DESCR
A35438	---------		(PART OF R438)		
A35460	260-2075-00		SHITCH, PUSH:SPDT, 50VDC, 500M AMP	80009	260-2075-00
A35545	260-2033-00		SWITCH,SLIDE:DPTT, 125V,0.5A	82389	ORDER BY DESCR
A35550	260-2033-00		SWITCH,SLIDE:DPTT, 125V ,0,5A	82389	ORDER BY DESCR
A35555	260-2033-00		SMITCH, SLIDE:DPTT, 125V ,0.5A	82389	ORDER BY DESCR
A35602	260-2075-00		SNITCH, PUSH: SPOT, 50VDC, 500M AMP	80009	260-2075-00
A35648	260-2033-00		SWITCH, SLIDE:DPTT, 125V , 0.5A	82389	OROER BY DESCR
A357401	260-2075-00		SWITCH, PUSH: SPDT, 50VDC, 500\% AMP	80009	260-2075-00
A3U985	156-0067-00		MICROCKT, LINEAR:OPNL AMPL, SEL	04713	MC1741CP9
A3M515	131-0566-00		BUS, COND: DUANY RES, 0.094 OD $\times 0.2251$	24546	OMA 07
АЗ15534	131-0566-00		BUS, COND: DUMAY RES, 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
АЗ\%539	131-0566-00		BUS, COND:DLANY RES, 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
АЗ\%630	131-0566-00		BUS, COMD:DUANY RES, 0.094 OD $\times 0.225 \mathrm{~L}$	24546	0 Ma 07
АЗН901	131-0566-00		BUS, COND: DUACH RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	01407
АЗН902	131-0566-00		BUS, CONO: DUAMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	014007
АЗ\%903	131-0566-00		BUS, CONO:DUAMY RES, 0.094 OD $\times 0.225 \mathrm{~L}$	24546	09407
АЗ\#904	131-0566-00		BUS, CON0: DLing Res, $0.09400 \times 0.225 \mathrm{~L}$	24546	04907
A3M7457	131-0566-00		BUS, COND: DUAMY RES, $0.09400 \times 0.225 L$	24546	OMA 07
A3174458	131-0566-00		BUS, CONO:DLANY RES, 0.094 OD $\times 0.225 \mathrm{~L}$	24546	01407
A349000	131-3345-00		TERM SET, PIN:HEAOER,MALE, 24 PIN	TK1483	082-2940-S545
A3149000	131-3346-00		TERM SET, PIN:HEADER,MALE, 21 PIN	TK1483	082-3040-5546
A3149520	131-0566-00		BUS, CONO:DLAMY RES, 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A3n9529	131-0566-00		BUS, COND: DOMY RES , 0.094 OD X 0.225 L	24546	014007
A3*9900	175-0000-00		NO INFORMATION:	80009	175-0000-00
A4	670-8709-00		CIRCUIT BD ASSY:TIMING	80009	670-8709-00
A4C673	281-0797-00		CAP, FXD, CER DI: 15 PF , 10\%, 100V	04222	Ma106A150xaa
A4C701	295-0003-00		CAP SET, MATCHED: 2 EA 1.OUF, 1.5\%,50V,0.0.0.1 UF, 1.5\%, 100V, MTCH $0.75 \%$	80009	295-0003-00
A4C702	283-0674-00		CAP, FXD, MICA DI:85PF, 12, 500V	00853	0155F850FO
A4C703	281-0207-00		CAP, VAR, PLASTIC: 2-18PF, 100 V	52769	6XA 18000
A4C705	281-0813-00		CAP, FXD, CER DI:0.047UF, 208,50V	05397	C412C473N5V2CA
A4C706	281-0773-00		CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	Maz01C103K¢A
A4C707	281-0775-00		CAP , FXD, CER D1:0.1UF, 20\% ,50V	04222	MAZ05E104MAA


Component No,	Tektronix Part No,	Serial/Assembly No. Effective Dscont	Name 8 Description	Mfr. Code	Mfr. Part No.
A4C708	281-0756-00		CAP, FXD, CER DI:2.2PF, +/-0.5PF,200V	04222	MA106A2R20AA
A4C710	281-0813-00		CAP, FXD, CER DI:0.047UF,20\%,50V	05397	C412C473M5V2CA
A4C712	283-0674-00		CAP, FXD, MICA DI;85PF, 1\%,500V	00853	D155F850FO
A4C713	281-0207-00		CAP, VAR, PLASTIC:2-18PF,100V	52769	GXA 18000
A4C714	281-0755-00		CAP, FXD, CER DI:2.2PF, +/-0.5PF,200V	04222	MA106A2R20AA
A4C720	281-0775-00		CAP, FXD , CER DI:0.1UF,20\% ,50V	04222	MAZ05E104MAA
A4C724	281-0773-00		CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	MAZ01C103KAA
A4C728	283-0203-00		CAP, FXD, CER OI:0.47UF,20\%,50V	04222	SR305SC474MAA
A4C749	281-0775-00		CAP, FXD, CER DI:0.1UF,20\% ,50V	04222	MA205E104MAD
A4C750	290-0246-00		CAP, FXD, ELCTLT:3.3UF, 10\%, 15V	12954	D3R3EA15K1
A4C751	281-0809-00		CAP,FXD,CER DI:200 PF,5\%,100V	04222	MA101A201JAA
A4C752	281-0775-00		CAP, FXD, CER DI:0.1UF,20\% ,50V	04222	MAZO5E104NAA
A4C755	283-0107-00		CAP , FXD, CER DI:51PF, 5\%,200V	04222	SR206A510JAA
A4CR732	152-0141-02		SEMICOMD DVC,DI:SN, SI, 30V,150MA,30V	03508	002527 (1N4152)
A4CR742	152-0141-02		SEMICOMD DVC, DI:SN, SI, 30V, 150MA, 30V	03508	002527 (1N4152)
A4CR760	152-0141-02		SEMICOND DVC,DI:SN, SI, 30V,150MA,30V	03508	002527 (1N4152)
A4CR761	152-0141-02		SEMICOND DVC, DI: SN, SI , 30V, 150MA , 30 V	03508	0A2527 (1N4152)
A4.J9700	131-0608-00		TERHINAL, PIN: $0.365 \mathrm{~L} \times 0.025$ 8RZ GLD PL (OUANTITY OF 10)	22526	48283-036
A4.39705	131-0608-00		TERMINAL, PIN: $0.365 \mathrm{~L} \times 0.025 \mathrm{BRZ}$ GLD PL (QUANTITY OF 8)	22526	48283-036
A4P9250	131-0787-00		TERMINAL, PIN:0.64 L X 0.025 SO PH BRZ (OUANTITY OF 3)	22526	47359-000
040701	151-0424-00		TRANSISTOR:NPN, SI , T0-92F	04713	SPS8246
040704	151-1042-00		SEMICOND DVC SE:FET, SI, TO-92	04713	SPF627M2
040706	151-0736-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0736-00
040709	151-0424-00		TRPMSISTOR:NPM, SI, T0-92F	04713	SPS8246
040710	151-1042-00		SEMICOND DVC SE:FET , SI, T0-92	04713	SPF627M2
040712	151-0736-00		TRAWSISTOR:NPN, SI , T0-92	80009	151-0736-00
040732	151-0712-00		TRANSISTOR: PMP , SI , T0-92	04713	SPS8223
040737	151-0188-00		TRONSISTOR:PNP, SI , T0-92	80009	151-0188-00
040742	151-0712-00		TRANSISTOR:PNP, SI , T0-92	04713	SPS8223
A48673	317-0472-02		RES , FXD, CMPSN:4.7K OHM, 5\%,0.125M MI	57668	TR20JE-04K7
A4R701	307-0780-01		RES NTMK, FXD,FI:TIMING	80009	307-0780-01
A4R702	322-0519-01		RES , FXD, FILM:2.49M OHM, $0.5 \%, 0.25 \mathrm{~N}, \mathrm{TC}=$ T0	07716	CCA0249030
A4R703	317-0100-02		RES , FXD, CNIPSN: 10 OHN, 5\%, 0.125	57668	TR20J-E10E
A4R704	315-0622-00		RES, FXD,FILM:6.2K OHN,5\%,0.25M	19701	5043CX6K200J
A4R705	317-0151-03		RES , FXD, CMPSN: 150 OHM, 5\%,0.125M	57668	TR20J-E150E
A4R707	301-0202-00		RES, FXD, FILH:2K OHM,5\%,0.5N	19701	5053CX2K000J
A4R709	317-0100-02		RES , FXD, CMPSN: 10 OHM, 5\%,0.125M	57668	TR20J-E10E
A4R710	317-0151-03		RES, FXD, CMPSN: 150 OHM, 5\%,0.125M	57668	TR20J-E150E
A4R711	307-0780-01		RES NTHK,FXD,FI:TIMING	80009	307-0780-01
A4R713	301-0202-00		RES , FXD, FILM:2K OHM,5\%,0.5	19701	$5053 \mathrm{C} \times 2 \mathrm{K000J}$
A4R724	317-0100-02		RES , FXD , CMPSN: 10 OHM , 5\% , 0.125M	57668	TR20J-E10E
A4R727	321-0246-00		RES , FXD, FILA:3.57K OfN, 12, 0.125 , TC=TO	19701	5043EO3K570F
A4R728	321-0211-00		RES , FXD, FILM:1.54K OFAN, 1\%, 0.125M, TC=T0	07716	CEAD15400F
A4R730	311-2231-00			TK1450	GFO6UT 1K
A4R731	321-0244-00	80101008010399	RES , FXD, FILM:3.40K D+W, 1\%, 0.125 $\mathrm{N}, \mathrm{TC}=$ T0	19701	5043ED3K400F
A4R731	321-0240-00	B010400	RES, FXD, FILH:3.09K OHN, 12, 0.125M, TC=T0	07716	CEAD30900F
A4R732	321-0198-00			07716	CEAD11300F
048733	321-0203-00		RES, FXD, FILM:1.27K OHM, 1\%, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAD12700F
A4R737	315-0392-00		RES, FXD, FILH:3.9K OHM, 5K, 0.25 M	57668	NTR25J-E03K9
Mr8738	315-0512-00		RES, FXD, FILM:5.1K OHN, $5 \%, 0.25 \mathrm{~N}$	57658	NTR25J-E05K1
A4R740	311-2231-00		RES, VAR, NOMFN: TRMR, 1K OHM, 20\% , 0.5N	TK1450	GFOEUT 1K
A4R741	321-0244-00	B010100 8010399	RES, FXD, FILH:3.40K OFN, 12, 0.125N, TC=T0	19701	5043E03K400F
A48741	321-0240-00	B010400	RES, FXD, FILH:3.09K OHM, 12,0.125 $\mathrm{M}, \mathrm{TC}=$ TO	07716	CEAD30900F
A4R742	321-0198-00		RES, FXD, FILH:1.13K OHM, 1Z, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAO11300F
A4R743	321-0203-00		RES , FXD, FILM:1.27K OFM, 12, 0.125M, TC=TO	07716	CEAD12700F
A4R744	315-0101-00	B040400 BD10245	RES, FXD, FILA: 100 OHM , 5\% , 0.25	57668	NTR25J-E 100E


Component No．	Tektronix Part No．	Serial／Ass Effective	mbly No． Dscont	Name \＆Description	Mfr． Code	Mfr．Part No．
048744	315－0470－00	8010246		RES，FXO，FILM：47 OHM，5\％，0．25N	57668	NTR25J－E47E0
04R745	321－0177－00			RES，FXD，FILM：681 OHM，1\％，0．125N，TC $=$ T0	07716	CEA0681ROF
A4R746	321－0184－00			RES，FXD，FIM：806 OHM，1\％， $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED806R0F
04R747	315－0101－00			RES，FXO，FILM：100 OHM，5\％，0．25	57668	NTR25J－E 100E
A4R748	315－0113－00			RES，FXD，FILM：11K OHm，5\％， 0.25 M	19701	5043CX11K00d
A4R749	311－2234－00			RES，VAR，NONHM：TRMR，5K OHM，20\％， 0.5 M	TK1450	GFO6UT 5K
A4R750	315－0113－00			RES，FXD，FILM： 11 K OHM，5\％， 0.25 N	19701	$5043 \mathrm{CX11K00」}$
04R751	321－0326－00			RES，FXD，FILM：24．3K OHM，12，0．125N，TC＝TO	19701	5043En24K30F
$04 R 752$	317－0100－02			RES，FXD，CNPSN： 10 OHM，5\％，0．125N	57668	TR20J－E10E
048753	321－0216－00			RES，FXO，FI M ： 1.74 K OHM，1\％， $0.125 \mathrm{H}, \mathrm{TC}=$ TO	07716	CEAO17400F
04R754	311－2227－00			RES，VAR，MON＋M：TRMR， 100 OHM，20\％， 0.5 N LINEAR	TK1450	GFO6UT 100
A4R755	315－0620－00			RES，FXD，FILM：62 OHM，5\％， 0.25 N	19701	5043CX63R00J
A4R763	315－0224－00			RES，FXD，FIU $: 220 \mathrm{~K}$ OHM，5\％， 0.25 M	57668	NTR25J－E220K
A4R765	321－0414－00			RES，FXO，FILM：200K OHM，1\％，0．125N，TC＝TO	07716	CEAD20002F
Q4R767	315－0333－00			RES，FXD，FILM：33K OHM ，5\％，0．25N	57668	NTR25J－E33K0
94R769	315－0163－00			RES，FXO，FILM：16K OHM，5\％，0．25N	57668	NTR25J－E 16K
04 P 771	317－0473－02	8010100	8011439	RES ，FXO，CMPSN： 47 K OHM ，5\％， 0.125 N	57668	TR20」－E47K0
$04 \mathrm{P771}$	317－0104－00	8011440	8011872	RES，FXD，CMPSN：100K OHM，5\％，0．125N	01121	BB1045
$04 \mathrm{P771}$	313－1104－00	8011873		RES，FXD，FILM：100K OHM，5\％，0．2H	57668	TR20JE100K
A4R772	315－0473－00	8010100	8011439	RES，FXO，FILM：47K OHM ，5\％， $0,25 \mathrm{~N}$	57668	NTR25J－E47K0
A4R772	315－0204－00	8011440		RES，FXD，FILM：200K OHM，5\％， 0.25 M	19701	5043CX200K0」
A4R774	315－0224－00			RES，FXD，FILM：220K OHM，5\％， 0.25 M	57668	NTR25J－E220K
04R781	321－0385－00			RES，FXD，FILM：100K OHA，17， $0.125 \mathrm{M}, \mathrm{TC}=$ TO	19701	5033ED100K0F
A4R790	315－0100－00			RES，FXO，FILM：10 DHM ，5\％，0．25N	19701	5043CX10RR00J
A4S704	260－2023－02			SNITCH，ROTARY：TIMING，A／B SNEEP	80009	260－2023－02
94U715	156－1191－01			MICROCKT，LINEAR：DUAL BI－FET OP－AMP ， 8 DIP	80009	156－1191－01
A4U750	156－1150－00			MICROCKT，LINEAR：VOLTAGE REGULATOR，NEGATIVE	04713	MC79L05ACP
A4U751	156－0991－00			MICROCKT，LINEAR；VDLTAGE REGULATOR	04713	MC78L05ACP
A4U760	155－0124－00			MICROCKT，LINEAR：HORIL PREAMP	80009	155－0124－00
A4VR749	152－0149－00			SEMICOND DVC，OI：2EN，SI，10V ，5\％， $0.4 \mathrm{H}, 00-7$	15238	75406
A5	670－8741－00			CIRCUIT 80 ASSY：ALT SM	80009	670－8711－00
A5C605	281－0771－00			CAP，FXO，CER DI：2200PF，220\％，200V	04222	MA106E2224AA
A5C606	290－0776－00			CAP，FXD，ELCTLT：22UF，＋50－10 \％，10V	55680	ULA1A2ZOTEA
A5C610	281－0862－00			CAP，FXD，CER OI： 0.001 UF ，＋80－20\％，100V	04222	MA101C10ZMAA
A5C643	281－0811－00			CAP，FXD，CER DI：10PF，10\％，100V	04222	MA101A100KAA
A5C655	281－0773－00			CAP，FXD，CER DI：0．01UF，10\％，100V	04222	MA201C103KAA
A5C657	281－0862－00			CAP，FXD，CER DI： 0.001 F ，＋60－20\％，100V	04222	MA101C10zHAA
A5C659	281－0773－00			CAP，FXD，CER DI：0．01UF，10\％，100V	04222	MAZ01C103K＿A
A5C665	281－0797－00			CAP，FXD，CER DI：15PF，10\％，100Y	04222	MA106A150KAA
A5C667	281－0759－00			CAP，FXD，CER DI：22PF，10\％，100V	04222	MA101A2Z0KAA
A5C672	281－0759－00			CAP，FXD，CER DI：22PF，10\％，100V	04222	MA101A220KPA
A5C694	281－0775－00			CAP，FXD，CER DI：0．1UF， $20 \mathrm{Z}, 50 \mathrm{~V}$	04222	MAZO5E104KA
A5CR625	152－0141－02			SENICOND DVC，DI：SN，SI，30V，150MA，30V	03508	DA2527（1N4152）
A5CR626	152－0141－02			SEMICOND OVC，DI：SH，SI，30Y，150MA，30V	03508	DA2527（1N4152）
A5CR680	152－0141－02			SEMICOND DVC，DI：SN，SI，30Y，150MA，30V	03508	DA2527（1N4152）
A5CR684	152－0141－02			SEMICOND DVC，DI：SH，SI ，30Y，150MA，30Y	03508	DA2527（1N4152）
A5CR685	152－0141－02			SEMICOND DVC，OI：SN，SI，30V，150MA，30V	03508	Da2527（1N4152）
A5CR687	152－0141－02			SEMICOND DVC，DI ：SN，SI ，30V，150MA ，30V	03508	DA2527（144152）
A5CR816	152－0153－00			SEAICOMD DVC，DI ：SM ，SI ， $10 \mathrm{~V}, 50 \mathrm{MA}$ ，．DO－7	D7263	FDP003
A5CR817	152－0141－02			SEIICOND OVC，DI：SM，SI ，30V ，150NA， 30 V	03508	0a2527（1N4152）
A5， 14220	131－0608－00			TERMIMAL，PIN：0．365 L X 0.025 日RZ GLD PL （OUANTITY OF 2）	22526	48283－036
A5L667	120－0382－00			COIL，RF：2100H，＋28\％－43\％， 14 TURHS	80009	120－0382－00
A50630	151－0369－00			TRANSISTOR：PWIP，SI ， $\mathrm{X}-55$	04713	SPS8273
A50631	151－0369－00			TRANSISTOR：PMP，SI ， $\mathrm{X}-55$	04713	SPS8273
A50637	151－0276－01			TRANS ISTOR：PWP，SI ，TO－92	TK1016	S1423－TPE2
050643	151－0190－09			TRANS ISTOR：NPN，SI ，TO－106	07263	S44294（ammpack）

8－28

Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A50670	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A50674	151-0188-00		TRANS ISTOR:PNP, SI , T0-92	80009	151-0188-00
250682	151-0188-00		TRANS ISTOR:PNP, SI, T0-92	80009	151-0188-00
A50683	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A50684	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A50687	151-0190-00		TRANSISTOR:NPN,SI, T0-92	80009	151-0190-00
A5R604	321-0180-00		RES, FXD, FILM: $732 \mathrm{OHM}, 17,0.125 \mathrm{H}, \mathrm{TC}=$ TO	07716	CEAOP32ROF
A5R605	321-0141-00		RES, FXO, FILM: 287 OHM, 17, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	19701	5033ED287ROF
A5R606	321-0196-00		RES, FXD, FIL $: 1.07 \mathrm{~K}$ OHM, 12, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	07716	CEA010700F
A5R609	315-0222-00		RES, FXD, FILM:2.2K OHA, $5 \mathrm{5K}, 0.25 \mathrm{~K}$	57668	NTR25J-E02K2
A5R610	315-0241-00		RES, FXD, FILM:240 0HM, 5\%,0.25N	19701	5043CX240ROJ
A5R611	315-0470-00		RES, FXD, FILM: 47 OHM, 5\% , 0.25M	57668	NTR25J-E47E0
A5R613	315-0101-00		RES, FXD, FILA: 100 DHM, 5\%, 0.25 H	57668	NTR25J-E 100E
A5R614	321-0130-00		RES, FXD, FILM: 221 OHM, 17, 0.125M, TC=T0	19701	5043ED221R0F
A5R616	321-0145-00		RES, FXO, FILM:316 OHM, 17, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	07716	CEAO316ROF
A5R617	321-0182-00		RES, FXD, FILH: 768 OHM, 12, 0.125 $\mathrm{H}, \mathrm{TC}=$ T0	07716	CEAO768ROF
A5R618	321-0141-00		RES , FKD, FIL : 287 OHM, 12, 0.1251, TC= T0	19701	5033ED287ROF
A5R619	321-0215-00		RES, FKD, FILS: $1.69 \mathrm{~K} 0 \mathrm{HA}, 1 \mathrm{l}, 0.125 \mathrm{M}, \mathrm{TC}=$ T0	07716	CEAD16300F
45R621	321-0215-00		RES, FXD, FILM: 1.69 K OHM , 12, $0.125 \mathrm{~K}, \mathrm{TC}=$ TO	07716	CEAD16900F
A5R623	315-0431-00			19701	5043CX430ROJ
A5R624	315-0431-00		RES, FXD, FILH:430 OHM, 5\%,0.25	19701	5043CX430ROJ
A5R625	315-0512-00		RES, FXD, FILM: $5.1 \mathrm{~K} 0 \mathrm{HM}, 5 \mathrm{5}, 0.25 \mathrm{H}$	57868	NTR25J-E05K1
A5R626	315-0102-00		RES, FXD, FILM: 1 K OHM, $5 \mathrm{~L}, 0.25 \mathrm{H}$	57668	NTR25JE01K0
A5R627	311-1237-00		RES, VAR, NOWW: 1 K OHM, $10 \%, 0.50 \mathrm{H}$	32997	3386X-DY8-102
A5R628	315-0512-00		RES, FXD, FILM: 5.1 K OHM, 5\%, 0.25 N	57668	NTR25J-E05K1
A5R630	315-0431-00		RES, FXD, FILM:430 OHM, 5\%,0.25\%	19701	5043CX430ROJ
R5R631	315-0431-00		RES, FXD, FILM:430 0HM , 5\%, 0.25 W	19701	$5043 \mathrm{CX4} 30 \mathrm{ROJ}$
A5R632	315-0201-00		RES ,FXD, FIL $: 200$ OHM , 5\%, 0.25 M	57668	NTR25J-E200E
A5R633	315-0181-00		RES , FXD, FILS: 180 OHM , 5\% , 0.25 M	57668	NTR25J-E180E
A5R634	315-0181-00		RES,FXD, FIL $: 180$ OHM , 5K, 0.25 N	57668	NTR25J-E180E
45R637	315-0104-00		RES, FXD, FILM: 100K OHM , 5\% , 0.25K	57668	NTR25J-E100K
A58638	315-0102-00		RES, FXD, FILM:1K OHM, $5 \mathrm{~K}, 0.25 \mathrm{M}$	57668	NTR25JE01K0
A5R640	315-0185-00			01121	C81855
A5R642	321-0314-00		RES, FXD, FIL : 18.2 K OHM , 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5043ED18K20F
A5R643	321-0322-00		RES, FXD, FILS:22.1K $01 \mathrm{AN}, 0.17,0.125 \mathrm{~N}, \mathrm{TC}=$ T0	19701	5033ED22K10F
A5R644	315-0512-00		RES, FXD, FILM:5.1K OHM , 5K, 0.25 K	57668	NTR25.-E05K1
A5R650	315-0512-00		RES, FXD, FILM: 5.1 K OHM, $5 \mathrm{5K}, 0.25 \mathrm{~K}$	57668	NTR25J-E05K1
A5R651	321-0277-00		RES, FXD, FIL : 7.50 K OHM, 12, $0.125 \mathrm{M}, \mathrm{TC}=$ TO	24545	Na5507501F
A5R652	311-1238-00		RES, VAR, MOAWN: TRMR, 5K OHM, 0.5 H	32997	3385X-DY6-502
15R653	321-0289-00		RES, FKD, FILM: 10.0 K OHAM, 12, $0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED10K0F
A5R657	315-0102-00		RES, FXD, FILM: 1 K OHM, $5 \mathrm{~L}, 0.25 \mathrm{M}$	57668	NTR25JEO1K0
A5P659	315-0221-00		RES,FXD, FILM:220 OHM, $5 \chi, 0.25 \mathrm{M}$	57668	NTR25J-E220E
150660	315-0471-00		RES, FXD, FILM:470 OHM , 5\%, 0.25 H	57668	NTR25J-E4T0E
A5R662	315-0392-00		RES, FXD, FILM: 3.9 K OHM, $5 \mathbf{5}, 0.25 \mathrm{~N}$	57668	NTR25J-E03K9
A5R663	315-0102-00		RES, FXD, FILM: 1 K OHM, $5 \mathrm{~K}, 0.25 \mathrm{M}$	57668	WTR25JE01K0
A5R664	315-0392-00		RES, FKD, FILM: 3.9 K OHM,5K,0.25K	57668	NTR25J-E03K9
A5R665	315-0513-00		RES, FXD, FILM: 51 K DHW, $5 \mathrm{~K}, 0.25 \mathrm{M}$	57668	NTR25J-E51K0
A50667	315-0302-00		RES, FXD,FILS:3K OHW, 5K,0.254	57688	NTR25J-E03K0
A5R668	315-0512-00		RES, FKD, FILM: 5.1 K OHM, $5 \mathrm{5}, 0.25 \mathrm{~K}$	57668	NTR25J-E05K1
A5R669	315-0102-00		RES,FXD,FILS:1K OHM, 5K,0.25M	57668	NTR25JE01K0
A5R670	315-0102-00		RES, FXD, FILS:1K OHM, 5X,0.25M	57668	NTR25JE01K0
A5R671	315-0102-00		RES, FXD, FILS: 1 K OHM, 57,0.25M	57668	NTR25JE01K0
A5R672	315-0331-00		RES, FXD, FILH: 330 OHM, 5\%, 0.25 N	57668	NTR25J-E330E
A5R674	315-0102-00		RES,FXD, FILM: 1K OHM, 5\%,0.25\%	57668	NTR25JE01K0
A5R678	315-0561-00		RES, FXD, FILM: 560 OHM, 5\%,0.25M	19701	5043CX560ROJ
A5R679	315-0470-00		RES, FXD, FILL:47 OHM, 5\%,0.25M	57668	NTR25J-E47E0
A5R682	315-0431-00		RES, FXD, FILH:430 OHM, $52,0.25 \mathrm{H}$	19701	$5043 \mathrm{CX430ROJ}$
A5R683	315-0431-00		RES, FXD, FILM:430 OHM , 5\%, 0.25 M	19701	5043 CX430R0J
A5R684	315-0331-00		RES, FXD, FILA: 330 OHM, 5\%, 0.25 M	57668	NTR25J-E330E


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mir. Part No.
A5R686	315-0181-00		RES , FXO, FILM 1300 OHM , 5K, 0.251	57668	NTR25J-E180E
A5P687	315-0331-00		RES, FXD, FILM:330 OHM , 5K, 0.25 M	57668	NTR25J-E330E
A5R688	315-0181-00		RES, FXO, FILM: 180 OHW , 5K, 0.25 H	57668	NTR25J-E180E
A5R689	315-0471-00		RES, FXO, FIU $: 470$ OHM $5 \mathrm{5K}, 0.25 \mathrm{M}$	57668	NTR25J-E4TOE
A5R816	315-0562-00		RES, FXD, FILM: 5.6 K OHM, 52, 0.25 N	57668	NTR25.J-E05K6
A5R817	315-0302-00		RES, FXD, FILM:3K OHM , $5 \mathrm{~L}, 0.25 \mathrm{H}$	57668	NTR25J-E03K0
A5U605	234-0107-20		INTEGRATEO CKT:SCHIITT TRIGGER	80009	234-0107-20
A5U655	156-1126-00		MICROCKT, LIMEAR:VOLTAGE COMPARATOR	01295	U311P
A5U660	156-0385-02		HICROCKT, DGTL:HEX INVERTER	07263	74LSO4PCQR
A5U665	156-0382-02		HICROCKT, DGTL: QUAO 2 INP NAMO GATE BURN	18324	N74LSOONE
A5U670	156-1639-00		HICROCKT, DGTL: ECL, DUAL D MA-SLAVE FF	04713	WC10H131(P OR L)
A5U680	156-0382-02		WICROCKT, DGTL: QUAD 2 INP NAND GATE BURN	18324	N74LSOONE
A5VR660	152-0195-00		SEMICOND DVC, 01 : $2 \mathrm{EN}, \mathrm{SI}, 5.1 \mathrm{~V}, 5 \mathrm{~L}, 0.4 \mathrm{M}, \mathrm{DO}-7$	04713	S211755RL
A5\#638	131-0566-00		BUS, COMD: OULAMY RES $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA O?
A5N643	131-0566-00		BUS,COND: DUAMY RES $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A5N655	131-0566-00		BUS, COND: DUANY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	01407
A5N658	131-0566-00		BUS, COND: DLAAMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	01407
A5N672	131-0566-00		BUS,COND:DUAAM RES,0.094 $00 \times 0.225 \mathrm{~L}$	24546	01407
A5N678	131-0566-00		BUS, COND: DUAAM RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A5N690	131-0566-00		BUS, COMD:OUNWY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	04 Mar
A51691	131-0566-00		BUS, COND:OLAAM RES $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A5N695	131-0566-00		BUS, COND:DUNAT RES $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A5N696	131-0566-00		BUS, COND: OUANY RES $0.09400 \times 0.225 \mathrm{~L}$	24546	01407
A549400	131-0589-00		TERMIMAL, PIN: 0.46 L X 0.025 S0 PH BRI	22526	48283-029


A6	670-7615-00
A6C900	285-1252-00
A6C902	285-1192-00
A6C903	285-1192-00
A6R900	301-0474-00
A6R901	301-0512-00
A6R903	301-0131-00
A6RT901	307-0863-00
АбT901	120-1449-00
А6T903	120-1455-00
A6VR301	307-0456-00
	196-0531-00
A6M3041	195-7745-00
A613091	196-0505-00
A613191	195-7747-00


CIRCUIT 80 ASSY: AII FILTER	80008	670-7615
CAP, FXD, PLASTIC:0.15UF, 10\% , 250VAC	D5243	772-415-200
CAP, FXD, PPR DI:0.0022 UF, 20\% ,250VAC	TK0515	PME271Y510
CAP, FXD, PPR 01:0.0022 UF,20\%,250VAC	TK0515	PME271Y510
RES, FXD, FILA:470K OHW , 57, 0.5 M	19701	5053CX470K0J
RES , FXD, FIUM:5.1K OHW , $5 \mathrm{~K}, 0.5 \mathrm{~N}$	19701	5053CX5K100J
RES, FXO, FILM: 130 OHW , 5\%, 0.5 H	19701	5053CX130ROJ
RES, THERMAL: 10 OHM, 10\%, NTC	154	Sf-135
TRANSFORMER,RF:COMMON MODE, 2.7WH, 20	02113	P104
TRANSFORMER,RF:OI FFERENTIAL MODE, POT CORE	TK1339	
RES,V SENSITIVE:250VAC, 15M, METAL OXIDE	03508	MOV-V250LA15A
LEAO, ELECTRICAL: 18 ama , 3.0 L, 0 -01	80009	196-0531-00
LEAD, ELECTRICAL: 18 AMN, 3.5 L, 0-04	80009	195-7745-00
LEAD, ELECTRICAL: 18 AHG, 3.0 L,0-9	80009	186-0505-00
LEAO, ELECTRICAL: 18 AHs, 3.5 L, 8-19	80009	195-7747-00

CIRCUIT BO ASSY:INTES POT (SEE R9802 REPL)

CIRCUIT BO ASSY:Storage	80009	670-8702-00
CIRCUIT BO ASSY:STORAGE	80009	670-8702-01
CAP, FXO, CER 01: 109 F ,20\%, 100V	04222	Ma101a100uma
CAP, FXO, CER OI: 10 PF , 20\%, 100V	04222	Ma101a100ma
CAP, VAR, CER 01:5-25PF,100V	59660	518-000A5-25
CAP, FXD, CER DI:100 PF, 10\%, 100V	04222	MA101a101kaA
CAP, FXO, CER DI:10PF,20\%,100V	04222	MA101A100MAA
CAP, FXO,CER DI: $10 \mathrm{PF}, 208,100 \mathrm{~V}$	04222	MA101a100MAA
CAP, VAR, CER DI:5-25PF,100V	59660	518-00005-25
CAP, FXD, CER DI:100 PF, 10\%,100V	04222	M ${ }^{\text {a }}$ 101a101kAA
CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	MA201C103KAA
CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	MA201C103KAA
CAP, FXO, CER DI:0.1UF, 20\%,50V	04222	MA205E109ma


Component No,	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mrr. Code	Mfr, Part No,
A10C2118	281-0775-00		CAP , FXD, CER DI:0.1UF, 20\% , 50Y	04222	Maz05E104MAA
A10C2119	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50Y	04222	MAZ05E104MAA
A10C2120	281-0775-00		CAP, FXD, CER D1:0.1UF,20\%,50V	04222	Ma205E104MAQ
A10C2123	281-0775-00		CAP, FXD, CER D1:0.1UF,20\%,50V	04222	MAZ25E104MAA
A10C2159	283-0260-00		CAP, FXD,CER DI:5.6PF, +/-0.25PF,200V	51642	150 200NP0569C
A10C2152	281-0775-00		CAP, FXD,CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A10C2153	281-0775-00		CAP , FXD, CER DI:0.1UF,20\%,50V	04222	Ma205E104MAA
A10C2154	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A10C2203	281-0775-00		CAP, FXD,CER DI:0.1UF,20\%,50V	04222	MAZ05E104MAA
A10C2206	281-0775-00		CAP, FXD,CER 01:0.1UF,20\%,50V	04222	Maz05E104MAA
A10C2224	281-0758-00		CAP, FXO,CER DI:15PF,20\%,100V	04222	Ma101a150MAA
A10C2225	281-0756-00		CAP , FKO, CER DI: $2.2 \mathrm{PFF},+/-0.5 \mathrm{PF}$, 200V	04222	MA106A2R2DAA
A10C2226	281-0775-00		CAP, FXD, CER DI:0.1UF,201,50Y	04222	Maz205E104MAA
A10C2228	281-0775-00		CAP, FXO, CER DI:0.1UF,20\%,50Y	04222	Mazo5e104MAA
A10C2229	281-0775-00		CAP, FXD, CER DI:0.11F, 20\%,50V	04222	MAZO5E104MAA
A10C2230	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\%,50Y	04222	Maz205E104MAA
A10C2233	290-0246-00		CAP, FXD, ELCTLT:3.3UF, 10\%, 15 V	12954	D3R3EA15K1
A10C2235	281-0898-00		CAP, FXD, CER DI: $7.5 \mathrm{PF},+/-0.5 \mathrm{PF}$,500V	96733	XR3446
A10C2236	281-0775-00		CAP , FXD, CER DI:0.1UF,20\%,50Y	04222	MAZ25E104MAA
A10C2237	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MAZ05E104MAA
A10C2238	281-0775-00		CAP, FXD, CER D1:0.1UF,207,50Y	04222	MAZO5E104MAA
A10C2239	281-0775-00		CAP, FXD, CER D1:0.1UF,20\%,50V	04222	MAZO5E104MAA
A10C2240	281-0775-00		CAP, FXD,CER DI:0.1UF,20\%, 50 V	04222	MAZ25E104MAA
a10C2241	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A10C2242	281-0775-00		CAP, FXD, CER D1:0.1UF,20\%,50Y	04222	MAZO5E104MAA
A10C2245	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MAZO5E104MAA
A10C2246	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50Y	04222	MAZ25E104MAA
A10C2247	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50Y	04222	MA205E104MAA
A10C2248	281-0775-00		CAP, FXD,CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A10C3101	281-0775-00		CAP , FXD, CER DI:0.1UF, 20\% ,50V	04222	MA205E104MAA
A10C3102	281-0775-00		CAP , FXD, CER DI:0.1UF,20\%,50Y	04222	mazo5e104Maa
A10C3104	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MAZ05E104MAA
A10C3105	281-0775-00		CAP, FXD, CER DI:0.1UF,207,50Y	04222	MA205E104MAA
A10c3112	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A10C3232	281-0773-00		CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	MA201C103KAA
A10C3236	281-0773-00		CAP, FXD, CER DI: 0.01 UF, 10\%, 100V	04222	MA201C103KAA
A10C3306	281-0773-00		CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	MA201C103KAA
A10c3307	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	Maz205E104MaA
A10C3308	281-0773-00		CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	MA201C103KAA
A10C4101	281-0773-00		CAP, FXD, CER DI:0.014F, 10\%, 100V	04222	MA201C103KAA
A10C4 106	281-0773-00		CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	Maz01C103kaa
A10C4110	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%, 50V	04222	Maz25E104MAA
$\text { A10C4 } 125$	$281-0773-00$		CAP, FXD,CER DI:0.01UF, 102, 100V	04222	mazo1c103KaA
A10C4126	281-0773-00		CAP, FXD, CER DI:0.014F, 10\%, 100V	04222	Maz01C103KAA
A10C4201	283-0789-00		CAP, FXD, MICA DI:600PF, 14, 500V	00853	0153F601F0
A10C4202	281-0158-00		CAP, VAR, CER DI:7-45PF, 25V	59660	518-006 G 7-45
A10C4203	281-0759-00		CAP, FXD, CER DI: 22PF, 10\%,100V	04222	Ma101a2zokaa
A10C4217	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\% , 50Y	04222	MAZO5E104MAA
A10C4232	281-0775-00		CAP, FXD, CER DI: 0.1 1UF,20\%, 50 Y	04222	MAZ05E104MAA
A10C9001	290-0297-00	80101008012599	CAP, FXD, ELCTLT: 39UF, 10\%, 10 V	05397	T1108396K010AS
a10c9002	290-0297-00	80101008012589	CAP, FXD, ELCTLT: 39UF, 10\%, 10V	05397	T1108396K010AS
A10c9002	290-0847-00	8012600	CAP, FXD, ELCTLT:47UF, +50-10\%, 10V	54473	
a10C9003	290-0297-00	80101008012599	CAP, FXD, ELCTLT: 39UF, 10\%, 10V	05397	T1108396K010AS
A10c9004	290-0297-00	80101008012599	CAP , PXD, ELCTLT: 39UF, 10\%, 10V	05397	T1108396K010AS
A10C9005	290-0297-00	8010100 B012599	CAP, FXD, ELCTLT: 39UF, 10\%, 10V	05397	T1108396K010AS
A10C9006	290-0297-00	8010100 B012599	CAP, FXD, ELCTLT: 39UF, 10\%, 10V	05397	T1108396K010AS
А 10 C9006	290-0847-00	8012600	CAP, FXD, ELCTLT:47UF, +50-10\%, 10V	54473	ECE-P1av470S
A10C3007	290-0297-00	80101008012599	CAP, FXD, ELCTLT: 39UF, 10\%, 10V	05397	T1108396K010AS


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A10C9007	290-0847-00	8012600	CAP, FXD, ELCILT: 4 TUF, $+50-10 \%$, 10 V	54473	ECE-P1av470S
-10c9101	281-0775-00		CAP, FXD, CER 01:0.1UF, 20\%,50V	04222	MA205E104MAA
a10c9102	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\%,50V	04222	MA205E1044AA
A10C9104	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\%,50V	04222	MAZ05E104MAA
Q10C9107	290-0246-00		CAP, FXO, ELCTLT:3.3UF, 10\%, 15V	12954	03R3EA15K1
A10c9109	281-0775-00		CAP, FXO, CER 0I:0.1UF, 20\%,50V	04222	MA205E104MAA
A10c9201	281-0775-00		CAP, FXO, CER 01:0.1UF, 202,50V	04222	MAZ05E104MAA
A10C9202	281-0775-00		CAP, FXO, CER DI:0.1UF,20X,50V	04222	MA205E104MAA
A10C9203	281-0775-00		CAP, FXO,CER OI:0.1UF, 20\%,50V	04222	MA205E1044AA
A10C9205	281-0775-00		CAP, FXO, CER OI:0.1UF, 207,50V	04222	MA205E104MAA
A10C9206	281-0775-00		CAP, FXO, CER OI:0.1UF, 20X,50V	04222	MA205E104MAA
a10c9207	281-0775-00		CAP, FXO, CER OI:0.1UF,20X,50V	04222	MA205E104MAの
a10c9210	281-0814-00		CAP, FXD, CER 01: 100 PF, 10\%, 100V	04222	MA1010101KAA
A10c9211	281-0775-00		CAP, FXX, CER 01:0.1UF, 20\%,50V	04222	MA205E1044AA
A10c9212	281-0775-00		CAP, FXD, CER OI: $0.14 \mathrm{~F}, 202,50 \mathrm{~V}$	04222	MA205E1044AA
A10C9220	281-0814-00		CAP, $\times$ XD, CER 01:100 PF, 10\%, 100V	04222	MA101A101KAA
a10c9221	281-0775-00		CAP, FXD, CER DI:0.1UF, 200 , 50 V	04222	MA205E104MAA
A10c9222	281-0775-00		CAP, FXD, CER DI:0.1UF,202,50V	04222	Maz05E104má
-10c9223	281-0775-00		CAP, FXO, CER D1:0.1UF,20\%,50V	04222	Mazose104maa
A10c9250	281-0775-00		CAP, FXO, CER DI:0.14F, 20\%,50V	04222	MA205E104MAA
A10c9301	281-0775-00		CAP, FXO, CER 01:0.1UF, 20\%, 50 V	04222	MA205E1044MA
A10c9302	281-0775-00		CAP, FXO, CER OI:0.1UF, 20\%,50V	04222	MA205E1044 ${ }^{\text {a }}$
A10C9410	281-0862-00		CAP, FXO, CER OI:0.001UF, $+80-20 \mathrm{z}, 100 \mathrm{~V}$	04222	ma101C10zma
A10c9411	281-0862-00		CAP, FXD, CER OI:0.001UF, $+80-202,100 \mathrm{~V}$	04222	MA101C102mah
A10CR2101	152-0141-02		SEIICOND DVC, OI:SN, SI, 30V, 150MA,30V	03508	Da2527 (1N4152)
Q10CR2102	152-0141-02		SEIICOND DVC, OI:SM, SI, 30V, 150MA, 30V	03508	DA2527 ( $1 \times 4152$ )
A10CR2103	152-0141-02		SEIICONO OVC, DI:SH,SI, 30V, 1504A, 30V	03508	Da2527 (1N4152)
A10CR2104	152-0141-02		SEIICONO DVC, DI:SK, SI, 30V, 150MA, 30V	03508	0a2527 (1N4152)
A10CR2105	152-0141-02		SEIICOND DVC, DI:SH,SI, 30V, 1504A, 30V	03508	DR2527 (1N4152)
A10CR2106	152-0141-02		SEIICOAD DVC, DI:SM, SI, 30V, 150MA,30V	03508	DA2527 (1N4152)
A10CR2107	152-0141-02		SEIICOND OVC, DI: SM , SI , 30V , 150MA, 30V	03508	Da2527 (1N4152)
A10CR2108	152-0141-02		SEIICOND OVC, DI:SN, SI, 30V, 1504A, 30V	03508	Da2527 (1N4152)
a10CR2109	152-0141-02		SEIICOND DVC, DI:SN,SI, 30V, 1504A, 30V	03508	Da2527 (1) 1 152)
A10CR2111	152-0269-00		SEIICOND OVC, OI:WVC, S1, 35V , 33PF, D0-7	04713	SW1263
A10CR2112	152-0269-00		SEEICOND OVC, DI:WVC, SI, 35V, 33PF, DO-7	04713	Siviz63
A10CR2203	152-0885-00		SEIICOND DVC,OI:SCHOTTKY BARRIER,SI,5V,10UA   2 5.0VR,228	96341	$4 \mathrm{E72}$
A10, 2111	131-0787-00		TERMINAL,PIN:0.64 L X 0.025 SO PH BRZ (Quantity of 4)	22526	47359-000
A10, 2112	131-0787-00		TERMINAL,PIN:0.64 L $\times 0.025$ SO PH BRZ (Qupwilit of 4)	22526	47359-000
A10, 4104	131-0608-00		TERMINAL, PIN: $0.365 \mathrm{~L} \times 0.025$ BRL GLD PL (QuOWTITY OF 3)	22526	48283-036
Q10.J6100	131-0091-00		CONW,RCPT, ELEC:HEAOER, $2 \times 17,0.1$ SPACING	22526	65610-134
A10.18100	131-2401-00		COWN,RCPT, ELEC: $2 \times 25$, MALE	TK1483	082-2543-5010
A10.19104	131-0600-00		TERMINAL,PIN: $0.365 \mathrm{~L} \times 0.025$ BRZ GLD PL (QUANTITY OF 3)	22526	48283-036
A10.J9105	131-0608-00		TERMIMAL, PIN: $0.365 \mathrm{~L} \times 0.025$ BRL GLD PL (OUDNTITY DF 12)	22526	48283-036
A10,9107	131-0608-00		TERNINAL, PIN: $0.365 \mathrm{~L} \times 0.025$ BRL GLD PL (QUPNTITY OF 3 )	22526	48283-036
A10L2937	108-0245-00		CHOKE,RF:FIXED, 3.9UH	76493	86310-1
A10L2139	108-0245-00		CHOKE, RF:FIXED, 3.9HH	76493	86310-1
A10P4 104	131-0993-00		BUS, CONDUCTOR:SHLNT ASSERELY, BLACK	22526	65474-005
A10P9104	131-0993-00		BUS, CONDUCTOR:SHLNT ASSEBELY, BLACK	22526	65474-005
A10P9105	131-0993-00		BUS ,CONOUCTOR:SHUNT ASSEBALY, BLACK	22526	65474-005
Q10pg 107	131-0993-00		BUS, CONDUCTOR: SHLNT ASSEPBLY, BLACK	22526	65474-005
01002101	151-0712-00		TRANSISTDR:PNP , SI , T0-92	04713	SPS8223
A1002102	151-0712-00		TRANSISTDR: PWP , SI, T0-92	04743	SPS8223
A1002103	151-0271-00		TRONSISTOR:PNP, SI, T0-92	04713	SPS8236


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1002104	151-0711-00		TRANSISTOR:NPN, SI, T0-92	27014	MPSH11
A1002105	151-0472-00		TRANSISTOR:NPN,SI, T0-92	51984	NE4 16328
A1002106	151-0369-00		TRANSISTOR:PNP, SI , X-55	04713	SPS8273
A1002107	151-0369-00		TRANSISTOR:PNP, SI , X-55	04713	SPS8273
A1002150	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A1002207	151-0711-00		TRANSISTOR:NPN, SI, T0-92	27014	MPSH14
A1022208	151-0711-00		TRANSISTOR:NPN, SI, T0-92	27014	MPSH11
A1002209	151-1042-00		SEMICOND DVC SE:FET, SI, T0-92	04713	SPF627M2
A1002211	151-0711-00		TRANSISTOR:NPN, SI, T0-92	27014	MPSH11
A1002212	151-0472-00		TRANSISTOR:NPN, SI, T0-92	51984	NE416328
A1002213	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A1004203	151-0220-03		TRANSISTOR:PNP, SI, T0-92	03508	Х39Н2999
A1004204	151-0220-03		TRANSISTOR:PNP, SI, T0-92	03508	X39Н2999
01004205	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A1094207	151-1121-00		TRANSISTOR:FE,N CHANNEL, SI, T0-92	17856	$\checkmark 10206$
A1094227	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A1009100	151-0190-00		TRANSISTOR:NPN,SI,T0-92	80009	151-0190-00
A10R2101	321-0165-00		RES, FXD, FILS: 511 OHAM, 12, 0.125M, TC=T0	07716	CEAO511ROF
A10R2102	321-0165-00		RES, FXD, FILG:511 OtM , 12, 0.1251, TC=TO	07716	CEAD511ROF
A10R2104	315-0151-00		RES, FXD, FIL	57668	NTR25J-E150E
A10R2105	315-0510-00		RES, FXD, FILM:51 OHM, 5\%, 0.25 N	19701	5043CX51R00J
A10R2106	315-0510-00		RES, FXD, FILM:51 OHA , 5\% , 0.25	19701	5043CX51R00J
A10R2107	321-0068-00		RES , FXD, FIL $=49.9$ OHM, $0.57,0.125 \mathrm{~K}, \mathrm{TC}=$ TO	91637	CMF55116G49R90F
A10R2108	311-2226-00		RES , VAR , NOMW : TRMR, 50 OHM , 20\% , 0.5\%	TK1450	GFO6UT 50 OHM
A10R2109	321-0109-00		RES, FXD, FILA: 133 OHM, 12, 0. 125N, TC=T0	07716	CEAD133ROF
A10R2110	321-0109-00		RES, FXD, FILS: 133 OHM, 12,0.125N, TC=T0	07716	CEAD133ROF
A10R2114	321-0165-00		RES, FXD, FILS: 511 OHAM, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEEP0511ROF
A10R2112	321-0165-00		RES, FXD, FILI: 511 OHA1, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ T0	07716	CEAD511ROF
A10R2114	315-0151-00		RES , FXD, FIL $: 150$ OHM , 5\% , 0.25M	57668	NTR25J-E150E
A10R2115	315-0510-00		RES, FXD, FILS: 51 OHm, $57,0.25 \mathrm{~W}$	19701	5043CX51R00J
A10R2116	315-0510-00		RES, FXD, FILM: 51 OHAN, 5\%, 0.25 M	19701	5043CX51R00J
A10R2117	321-0068-00		RES, FXD, FILM: 49.9 OHAN, 0.5\% , 0.125m, TC=T0	91637	CMF55116G49R90F
A10R2118	311-2226-00		RES , VAR, NOM WM: TRMR, 50 OHAN, 20\%, 0.5 M	TK1450	Gfo6ut 50 OHM
A10R2119	315-0242-00		RES , FXD, FILM:2.4K OHN, $5 \mathrm{5K}, 0.25 \mathrm{~N}$	57868	NTR25J-E02K4
A10R2120	321-0069-00		RES, FXD, FILM:51.1 OHM, 17, 0.125N, TC=T0	91637	CMF55116651R10F
A10R2121	321-0069-00		RES, FXD, FIL $: 51.1$ OHM, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	91637	CMF55116851R10F
A10R2122	321-0139-00		RES, FXD, FILS:274 OHM, 12,0.125N, TC=TO	07716	CEAD274ROF
A10R2123	321-0069-00		RES, FXD, FIL $: 51.1$ OHA, 17, 0.125 N, TC=T0	91637	CMF55116651R10F
A10R2124	321-0069-00		RES, FXD, FIL $=51.1$ OHM, 1Z, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	91637	CMF55116851R10F
A10R2125	321-0139-00		RES, FXD, FILS: 274 OHMN, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAD274ROF
A10R2126	321-0207-00		RES, FXD, FILI: 1.40 K 0 OHM, 12, $0.125 \mathrm{M}, \mathrm{TC}=$ T0	19701	5033E01K400F
A10R2127	321-0255-00		RES, FXD, FILS:4.42K OHm, 12, 0.125M, TC=TO	19701	5033E04K420F
A10R2128	321-0162-00		RES, FXD, FILS:475 01m, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED475R0F
A10R2129	321-0165-00		RES, FXD, FILS: 511 OHM, 12, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	07716	CEAD511ROF
A10R2130	315-0242-00		RES, FXD, FILM: 2.4 K OHM, $5 \mathrm{5K}, 0.25 \mathrm{~N}$	57668	NTR25.-E02K4
A10R2131	315-0152-00		RES, FXD, FILM: 1.5 K OHM, $5 \mathrm{5K}, 0.25 \mathrm{~N}$	57668	NTR25J-E01K5
A10R2133	321-0165-00		RES, FXD, FILS: 511 OHM, 17, $0.125 \mathrm{M}, \mathrm{TC}=$ TO	07715	CEADS11ROF
A10R2137	321-0102-00		RES, FXD, FILM: 113 OHM, 17, 0.125 H , TC=TO	07716	CEA0113ROF
A10R2138	311-2223-00		RES, VAR, NOMW: TRMR, 10 OHM, 20\%,0.5M LINEARTA PE $\%$ REEL	80009	311-2223-00
A10R2139	321-0098-00		RES, FXD, FILS: 102 OHM, 17, 0.1253 , TC $=$ TO	07716	CEA0102R0F
A10R2140 A10R2141	-321-0165-00			07716 07716	CEAD511ROF
A10R2143	321-0200-00		RES, FXD, FILS: 1.18 K OHM, iK, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED11K80F
A10R2144	321-0151-00			07716	CEAD365ROF
A10R2145	315-0270-00		RES, FXD, FIL $: 27$ OHA , $5 \chi, 0.25 \mathrm{M}$	19701	5043CX27R00J
A10R2146	321-0149-00		RES, FXD, FILH: 348 04m, 14, $0.125 \mathrm{~m}, \mathrm{TC}=$ TO	07716	CEAD348R0F
A10R2147	321-0149-00		RES, FXD, FILS: 348 OHM, 17, $0.125 \mathrm{~m}, \mathrm{TC}=$ TO	07716	CEAD348ROF
A10R2148	315-0561-00		RES, FXD,FILM:560 DHM, 5\%, 0.25 K	19701	5043CX560ROJ


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Decont	Name \& Description	Mír. Code	Mfr, Part No.
A10R2149	315-0391-00	8010100 B010199	RES, FXD, FILM:390 OHN, 5\%, 0.25\%	57668	NTR25J-E390E
A10R2149	315-0221-00	B010200 B012599	RES, FXD, FIUM:220 OHM, 5\%, 0.25 m	57668	NTR25J-E220E
A10R2149	311-2230-00	B012600	RES, VAR, NOMMA: TRUR, 500 OHM, 20\%, 0.50 LINEAR	TK1450	GF06UT 500
A10R2150	315-0221-00		RES, FXD, FIL $: 220$ OHM, 5\% , 0.25N	57668	NTR25J-E220E
A10R2151	301-0271-00		RES, FXD, FILM:270 OHH, 5\%,0.5M	19701	5053CX270ROJ
A10R2152	315-0100-00		RES, FXD, FILM: 10 OHM, 5\% , 0.25M	19701	5043CX10RR00J
A10R2153	321-0214-00		RES, FXD, FIUM: 1.65K OHM , 1\%, $0.125 \mathrm{H}, \mathrm{TC}=$ T0	19701	5033ED1K65F
A10R2154	321-0657-00		RES, FXD, FIUM:60 OHM, 1\%, $0.125 \mathrm{~N}, \mathrm{TC}=$ T0	57668	CRB14 FXE 60 OHN
A10R2155	321-0816-00		RES, FXD, FILM:5K OHN, 12,0.125n, TC=TO	24546	NA5505001F
A10R2156	321-0641-00		RES, FXO, FIUM:1.8K OHM, 12, 0.125, TC=T0	91637	MFF1816G18000F
A10R2157	321-0197-00		RES, FXD, FIU:1.10K OHM, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAD11000F
A10R2257	321-0197-00		RES, FXD, FILM:1.10K OHN, 1\%, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAD11000F
A10R2258	321-0222-00		RES, FXO, FILM:2.00K OHM, 1\%, 0.125n, TC=TO	19701	5033@02K00F
A10R2259	321-0816-00		RES, FXO, FILM:5K OHM, 1\%,0.125N, TC=TO	24546	NA5505001F
A10R2260	321-0641-00		RES, FXO, FIM 1.1 .8 K OHM, 1\%, $0.125 \mathrm{M}, \mathrm{TC}=$ T0	91637	MFF1816618000F
A10R2265	321-0177-00		RES, FXD, FILM: 681 OHM, 1\% , 0.125N, TC=TO	07716	CEA0681ROF
A10R2266	321-0183-00		RES, FXD, FILM: 787 OHM, 12,0.125n, $\mathrm{TC}=$ T0	07716	CEA0787R0F
A10R2267	321-0188-00		RES, FXD, FILM:887 OHM, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAB887ROF
A10R2268	315-0470-00		RES , FXD, FILM:47 OHM , 5\% , 0.25 M	57668	NTR25J-E47E0
A10R2269	307-0526-00		RES NTMK, FXD, FI: 5,510 OHN, 10\%, 0.125N	11236	750-61-R510 OHA
A10R2270	315-0511-00		RES , FXD, FILM:510 OHM, 5\% , 0.25 N	19701	5043CX510ROJ
A10R2274	315-0181-00		RES, FXO, FILM:180 OHM ,5\%,0.25N	57668	NTR25J-E180E
A10R2275	315-0510-00		RES, FXD, FIUM:51 OHM, 5\%,0.25M	19701	5043CX51R00J
A10R2276	315-0510-00		RES , FXO, FIUM:51 OHM , 5\%, 0.25\%	19701	5043CX51R00J
A10R2277	315-0510-00		RES, FXD, FILM: 51 OHM, $5 \%, 0.25 \mathrm{~N}$	19701	5043CX51R00J
A10R2278	315-0510-00		RES, FXD, FILM: 51 OHM, $5 \mathrm{~K}, 0.25 \mathrm{~m}$	19701	$5043 \mathrm{CX51R00J}$
A10R2279	315-0220-00		RES, FXD, FIUM: 22 OHN, 5\%, 0.25M	19701	5043CX22R00」
A10R2281	315-0152-00		RES, FXD, FILM:1.5K OHN, $5 \%, 0.25 \mathrm{M}$	57668	NTR25J-E01K5
A10R2286	315-0101-00		RES, FXD, FIUM: 100 OHm, $5 \%, 0.25 \mathrm{~N}$	57668	NTR25J-E 100E
A10R2287	315-0101-00		RES, FXD, FIUM:100 OHN, 5\%, 0.25 N	57668	NTR25J-E 100E
A10R2289	315-0621-00		RES, FXD, FILH:620 0HM,52,0.25w	57668	NTR25J-E620E
A10R2290	315-0431-00		RES, FXO, FILH:430 OHN, 5\%,0.25N	19701	5043CX430ROJ
A10R2291	315-0470-00		RES, FXD, FILM:47 OHM, 5\%, 0.25 N	57668	NTR25J-E47E0
A10R2292	315-0101-00		RES, FXD, FILM: 100 OHM, 5\% , 0.25\%	57668	NTR25J-E 100E
A10R2293	315-0100-00		RES, FXD, FILM: 10 OHM, 5\% , 0. 25 M	19701	5043CX10RROOJ
A10R2295	307-0445-00		RES NTW, FXD, FI:4.7K OHM, 20\%, (9)RES	32997	4310R-101-472
A10R2296	315-0510-00		RES, FXD , FILM: 51 OHM, 5\% , 0.25N	19701	5043CX51R00,
A10R2297	315-0510-00		RES, FXD, FILM:51 014, $5 \%, 0.25 \%$	19701	5043CX51R00J
A10R3102	315-0103-00		RES, FXD, FILM: 10K OHN, 5\%, 0, 25\%	19701	$5043 \mathrm{CX10K00J}$
A10R3104	315-0103-00		RES, FXO, FILM: 10 K OHM, 5\%, 0.25 N	19701	$5043 \mathrm{CX10K00J}$
A10R3105	315-0103-00		RES , FXD, FILM 10 K OHMH,5\%,0.25N	19701	$5043 \mathrm{CX10K00J}$
A10R3232	315-0101-00		RES, FXD, FIUM:100 OHN, 5\% , 0.25w	57668	NTR25J-E 100E
A10R3234	315-0101-00		RES, FXD, FIUN: 100 OHM, 5\%, 0.25 M	57668	NTR25J-E 100E
A10R3301	315-0103-00		RES, FXD, FIUM: 10K OHM, 5\%,0.25\%	19701	$5043 C \times 10 \mathrm{KOOJ}$
A10R3307	315-0103-00		RES, FXD, FIUM: 10 K OHM, 5\%,0.25w	19701	$5043 \mathrm{CX10K00J}$
A10R3310	315-0101-00		RES, FXD, FILM: 100 OHN, 5\%, 0.25N	57668	NTR25J-E 100E
A10R3417	315-0103-00		RES, FXD, FILM: 10K OHNH,5\%,0.25N	19701	$5043 \mathrm{CX10K00J}$
A10R3423	315-0101-00		RES, FXD, FILM: 100 OHN, 5\%,0.25\%	57688	NTR25J-E 100E
A10R4 101	315-0103-00		RES, FXD, FILM: 10 K OHN, 5\%, 0.25 H	19701	$50430 \times 10 \times 00 \mathrm{~J}$
A10R4 102	315-0103-00		RES, FXD, FILM:10K OHN,5\%, 0.25 m	18701	$5043 C \times 10 \mathrm{KOOJ}$
A10R4103	315-0103-00		RES, FXD, FILH: 10K OHN,5\%,0.25m	19701	$5043 \mathrm{CX10K00J}$
A10R4 104	315-0103-00		RES , FXD, FILM: 10K OHM, 5\%, 0.25 M	19701	$5043 \mathrm{CX10K00J}$
A10R4 105	315-0103-00		RES, FXD, FILM: 10K OHM, 5\%, 0.25 N	18701	$50430 \times 10 \mathrm{~K} 00 \mathrm{~J}$
A10R4106	315-0103-00		RES , FXD, FILM: 10 K OHM, 5k, 0.25 N	19701	$5043 \mathrm{CX10K00J}$
A10R4107	315-0103-00		RES, FXD, FILM: 10K OFM, 5\%, 0.25 N	18701	5043C×10K00J
A10R4 108	315-0103-00		RES , FXD, FILM:10K OHM, 5\%,0.25m	18701	5043CX10K00J
A10R4110	315-0470-00		RES, FXD, FILM:47 OHM, 5\%, $0.25 \%$	57868	NTR25J-E47ED
A10R4115	315-0471-00		RES, FXD, FIL $: 470$ OHM, 5\% , 0, 25m	57688	NTR25J-E470E
A10R4119	315-0101-00		RES, FXD, FILM:100 0HM, 5\%,0.25m	57668	NTR25J-E 100E


Component No.	Tektronix Part No.	Serial/Ass Effective	embly No. Dscont	Name \& Description	Mtr. Code	Mifr. Part No.
A10R4201	315-0103-00			RES, FXD, FILM:10K OHM, 5\%, 0.25 K	19701	5043C×10k00J
A10R4202	315-0102-00			RES, FXD, FILM: 1 K OHM, $5 \mathrm{~K}, 0.25 \mathrm{H}$	57668	NTR25JE01K0
A10R4203	315-0470-00	8010100	B010199	RES, FXD, FILS:47 OHM, 5\%, 0.25	57668	NTR25J-E47E0
A10R4203	315-0100-00	B010200		RES, FXD, FILS: 10 OHM, 5\%,0.25	19701	5043CXIORROOJ
A10R4204	315-0102-00			RES, FXD, FILI:1K OHM, 5K,0.25\%	57668	NTR25JE01K0
A10R4205	321-0145-00			RES , FXD, FILM: 316 OHAM, 12, $0.125 \mathrm{~K}, \mathrm{TC}=$ TO	07716	CEAD316ROF
A10R4206	321-0183-00			RES, FXD, FILM: 787 OHAN, 12, $0.125 \mathrm{~N}, \mathrm{TC=T0}$	07716	CEAOT87ROF
A10R4207	321-0612-00			RES, FXO, FILM:500 OHM, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAO500ROF
A10R4208	315-0102-00			RES, FXD, FILS:1K OHM, 5K,0.25K	57668	NTR25JE01K0
A10R4209	315-0102-00			RES, FXD, FILS:1K OHM , 5\%,0.25N	57668	NTR25JE01K0
A10R4210	321-0161-00			RES, FXO, FILS:464 OHM, 12, 0.125 K , TC $=$ TO	07716	CEAD464ROF
A10R4211	321-0204-00			RES, FXD, FIUK: 1.30 K OHM, 12, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	19701	5033ED1K300F
A10R4212	321-0406-00			RES, FXO, FIUK: 165 K OHAN, 12, 0, 125\%, TC=TO	07716	CEAD16502F
A10R4213	311-2229-00			RES, VAR, NOMW: TRUR, 250 OHM, 20\% , 0.5 W LINEAR	TK1450	GFO6UT 250
A10R4214	321-0276-00			RES, FXD, FILK: ${ }^{\text {P }}$. 32 K OHW, $12,0.125 \mathrm{~K}, \mathrm{TC}=$ TO	19701	5043ED7K320F
A10R4215	321-0193-00			RES, FXO, FILS: 1 K OHW, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED1K00F
A10R4216	321-0318-00			RES, FXD, FILX:20.0K OHM, 12, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	19701	5033ED20K00F
A10R4217	315-0102-00			RES, FXO, FILH: 1 K OHAN, 5\%, 0.25 W	57668	NTR25JE01K0
A10R4220	315-0103-00			RES , FXD, FILM: 10 K OHH, $57,0.25 \mathrm{~N}$	19701	$50430 \times 10 \times 00 J$
A10R4227	315-0103-00			RES, FXD, FILM: 10 K OHHA $5 \mathbf{5 \%}, 0.25 \mathrm{~N}$	19701	5043CX10K00J
A10R9101	315-0330-00			RES, FXO, FILM:33 OHA , 5\%, 0.25 W	19701	5043CX33R00J
A10R9102	315-0472-00			RES, FXO, FILM:4.7K OHM, $5 \mathrm{~K}, 0.25 \mathrm{M}$	57668	NTR25J-E04K7
A10R9103	315-0472-00			RES, FXD, FILM:4.7K OHM, $5 \mathrm{LK}, 0.25 \mathrm{~K}$	57668	NTR25J-E04K7
A10R9104	315-0472-00			RES, FXD, FILM:4.7K OHM, $57,0.25 \mathrm{~W}$	57668	NTR25J-E04K7
A10R9105	315-0472-00			RES, FXD, FILM:4.7K OHM, 5\% , 0.25M	57668	NTR25J-E04K7
A10R9106	315-0472-00			RES, FXD, FILM:4.7K OHM, $5 \mathrm{~K}, 0.25 \mathrm{M}$	57668	NTR25J-E04K7
A10R9107	315-0274-00			RES, FXD, FILM:270K OHM, $57,0.25 \mathrm{~N}$	57668	NTR25J-E270K
A10R9108	315-0471-00			RES, FXD, FILS:470 OHM, 5\% , 0.25M	57668	NTR25J-E470E
A10R9109	315-0222-00			RES, FXD, FILM:2.2K OHM, $5 \%, 0.25 \mathrm{~N}$	57668	NTR25J-E02K2
A10R9140	315-0472-00			RES, FXD, FIL $: 4.7 \mathrm{~K}$ OHM, $5 \%, 0.25 \mathrm{~K}$	57668	NTR25N-E04K7
A10R9112	315-0472-00			RES, FXD, FILK:4.7K OHM, 57, 0.25 H	57668	NTR25J-E04K7
A10R9113	307-0445-00			RES NTWK, FXO, FI:4.7K OHHN, 20\%, (9)RES	32997	4310R-101-472
A10R9114	315-0472-00			RES, FXD, FILM:4.7K OHM , 5\%, 0.25 N	57668	NTR25J-E04K7
A10R9115	315-0472-00			RES, FXD, FILM:4.7K OHM, 5\%, 0.25 N	57668	NTR25J-E04K7
A10R9120	315-0222-00			RES, FXD, FILM:2.2K OHM, 5\%,0.251	57668	NTR25-E02K2
A10R9210	321-0251-00			RES, FXD, FILM:4.02K OHM, 12,0.125 $\mathrm{K}, \mathrm{TC}=$ TO	19701	5033E04K020F
A10R9211	321-0256-00			RES, FKD, FILM:4.53K OHM, 17, 0.125 M , TC $=$ T9	19701	5033ED4K530F
A10R9212	311-2236-00			RES, VAR, MDWWH: TRMR, 2OK OHM, 20\% , 0.5 K LINEAR	TK1450	GFO6UT 20K
A10R9213	321-0299-00	8040100	8011086	RES, FXD, FILM: 12.7 K OHM, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED12K70F
A10R9213	321-0289-00	8011087		RES, FXD, FIL $=10.0 \mathrm{~K}$ OHM, 12, 0.125 M . TC=T0	19701	5033ED10KOF
A10R9214	311-2234-00	B010100	8010499	RES, VAR, MOWW : TRMR, 5K OHM, 20\%, 0.5 H	TK1450	GFO6UT 5K
A10R9218	307-0540-00			RES NTWK, FXD, FI : (5) 1 K OHM, 107,0.7W	11236	750-61-R1KOHA
A1089220	321-0197-00			RES, FXD, FILM: 1.10 K OHM, 12,0.125N, TC=TO	07716	CEAD11000F
A10R9221	321-0256-00			RES, FKD, FILM:4.53K OHN, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ T9	19701	5033ED4K530F
A10R9222	311-2236-00			RES, VAR, MOHWH: TRMR, 2OK OHM, 20\%, 0.5 F LINEAR	TK1450	GFO6UT 20K
A10R9223	321-0299-00	B010100	8010549	RES, FXO, FILM: 12.7K OHM, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED12K70F
A10R9223	321-0289-00	B010550		RES, FXD, FILM: $10.0 \mathrm{~K} 0 \mathrm{HM}, 17,0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED10KOF
A10R9234	311-2234-00			RES, VAR, MONEW: TRMR,5K OHM, 20\% , 0.5 N	TK1450	GFO6UT 5K
A10R9230	315-0922-00			RES, FXD, FILM: 1.2 K OHW $, 5 \chi, 0.254$	57668	NTR25J-E01K2
A10R9304	307-0446-00			RES NTMK, FXD, FI: 10K OHM , 20\%, (9)RES	11236	750-101-R10K
A10R9302	307-0446-00			RES NTMK, FXD, FI: 10 K OHHM, 20\%, (9)RES	11236	750-101-R10K
A10R9401	315-0473-00			RES , FXD, FILH: 47 K OHM , 5\% , 0.25 N	57688	NTR25J-E47K0
A10R9402	315-0473-00			RES, FXD, FILM:47K OHM, 5X, 0.25 N	57668	NTR25N-E47K0
01089412	311-2285-00	8010100	8012598	RES,VAR, MOWW:CKT BD,10K OHA, 20\%, 0.25 H , MOMSN	12697	CW43480
A10RT2101	307-0124-00			RES, THERMAL: 5K OHM, 10\%, NTC	15454	10C502K-220-EC
A10RT2102	307-0751-00			RES, THERHAL:ZOK OHM, 5 K	56866	OTMC-19,
A10RT2103	307-0124-00			RES, THERMAL: 5 K OHM, 10\%, NTC	15454	10C502K-220-EC
A10RT2141	307-0124-00			RES, THERMAL:5K OiAn, 10\%, NTC	15454	10C502K-220-EC


Component No．	Tektronix Part No．	Serial／Assembly No． Effective Dscont	Name \＆Description	Mfr ． Code	Mfr．Part No．
A10RT2112	307－0751－00		RES，THERHAL：ZOK OHM， $5 \%$	56866	OTMC－1
A10RT2113	307－0124－00		RES，THERMAL： 5 K OHA，10\％，NTC	15454	10C502k－220－EC
A10RT2131	307－0751－00		RES，THERMAL：2OK OHM， $5 \%$	56866	OTMC－19J
A10RT2132	307－0124－00	8012600	RES，THERMAL：5K OHM，10\％，NTC	15454	10C502k－220－EC
A1059401	260－2254－00		SMITCH，PUSH：5 BUTTON， 2 POLE，MEMORY	80009	260－2254－00
A10S9402	260－2253－00		SWITCH，PUSH：5 BUTTON， 2 POLE，STORAGE	80009	260－2253－00
A1059403	260－1132－02		SWITCH，PUSH：OPOT，1A，28VOC， 1 BUTTON	31918	ORDER AY DESCR
A1059412	120－1681－00	$8010100 \quad 8012599$	（PART OF R9412）		
A10T2201	120－1681－00		TRANSFORUER，RF：7 TURNS，BIFILAR，COMMON MOOE	80009	120－1681－00
A10T2202	120－1680－00		TRANSFORMER，RF： 5 TURN，BIBILAR	80009	120－1680－00
A1012203	120－0444－00		XFAR，TOROIO：	80009	120－0444－00
A10U2101	155－0022－00		MICROCKT，DGTL：CHANEL SWITCH	80009	155－0022－00
A10U2202	156－0853－00		MICROCKT，LINEAR：OPNL AMPL，OUAL	04713	LIM58N
A10U2203	156－1642－00		MICROCKT，DGTL：ECL，TPL 2－3－2 INPUT	04713	MC10H105（L OR P）
A10U2204	156－2248－00		MICROCKT，DGTL：ECL，${ }^{\text {O BIT A／D HIGH SPEED }}$	80009	156－2248－00
A10U2205	156－0316－00		MICROCKT，DGTL：ECL，QUAD 2－INP ECL TO TIL	04713	MC10125L
A10U2206	156－0316－00		MICROCKT，OGTL：ECL，QUAD 2－INP ECL TO TTL	04713	MC10125L
A10U3104	156－1611－00		MICROCKT，DGTL：DUAL D TYPE EDGE－TRIGRO FF	07263	74F74（PC OR OC）
A10u3102	156－1611－00		MICROCKT，DGTL：OUAL 0 TYPE EDGE－TRIGRD FF	07263	74F74（PC OR OC）
A10U3103	156－1611－00		MICROCKT，DGTL：OUAL D TYPE EDGE－TRIGRO FF	07263	74F74（PC OR DC）
A10U3104	156－2091－00		MICROCKT，DGTL：QUAO 2－JNP POS MAND GATES	01295	SN74ALS00N／J
A10U3105	156－1611－00		MICROCKT，DGTL：DUAL 0 TYPE EDGE－TRIGRD FF	07263	74F74（PC OR OC）
A10u3106	156－1614－00		MICROCKT，DGIL：DUAL D TYPE EDGE－TRIGRO FF	07263	74F74（PC OR OC）
A10U3112	156－1707－00		HICROCKT，DGTL：QUAO 2－IMPUT NAND GATE	04713	MC7400（NOORJO）
A10U3229	156－1664－00		MICROCKT，OGTL：SCREENED	01295	SN74ALS574（NP3）
A10U3230	156－2326－00		MICROCKT，DGIL：4 日IT COUNTERS M／3 STATE OUTP UTS，SCRN	01295	SN74ALS561AN3J4
A10U3231	156－2326－00		MICROCKT，DGTL：4 BIT COUNTERS M／3 STATE OUTP UTS，SCRN	01295	SN74ALS561AN3J4
A10U3232	156－1664－00		MICROCKT，DGTL：SCREENED	01295	SN74ALS574（NP3）
A10U3233	156－2336－00		MICROCKT，DGTL：LSTTL， 8 日IT MAGTO COMPARATOR	01295	SM74LS684M3
A10U3234	156－1664－00		MICROCKT，DGIL：SCREENED	01295	SN74ALS574（NP3）
A10U3235	156－2336－00		MICROCKT，OGTL：LSTTL， 8 日IT MAGTO COMPARATOR	01295	SN74LS684N3
A10U3236	156－1664－00		MICROCKT ，DGTL：SCREENED	01295	SN74ALS574（NP3）
A10U3237	156－1664－00		MICROCKT，OGTL：SCREENED	01295	SM74ALS574（NP3）
A10U3238	156－1664－00		MICROCKT，DGTL：SCREENED	01295	SN74ALS574（NP3）
A10U3239	156－1664－00		MICROCKT ，OGTL：SCREENED	01295	SN74ALS574（NP3）
A10U3306	156－1611－00		MICROCKT ，DGTL：DUAL 0 TYPE EDGE－TRIGRD FF	07263	74F74（PC OR OC）
A10U3307	156－1611－00		MICROCKT，DGTL：DUAL D TYPE EDGE－TRIGRD FF	07263	74F74（PC OR OC）
A10u3308	156－1743－00		MICROCKT，DGTL：ASTTL，QUAD 2－IMPUT MOR GATE	18324	74FO2 M OR FB
A10U3309	156－1662－00		MICROCKT，O6TL：	04713	MC74F153 ND／JO
A10U3310	156－2357－00		MICROCKT，DGTL：CMOS ，OCTAL LATCH，MONINVERTIMG ，O TYPE FLIP－FLDP M／3 STATE DUT	01295	SNP4HCT574N3
A10U3313	156－1707－00		MICROCKT，DGTL：OUAD 2－IMPUT NAND GATE	04713	MC7400（NDORJO）
A10U3416	156－2094－00		MICROCKT， 0 OTL：HEX INVERTERS	01295	SN74ALSO4BN3／J4
A10U3417	156－1997－00		MICROCKT，DGTL：TTL，QUAD 2－INPUT MULTIPLEXER	04713	MC74F158 NO／JO
A10U3418	156－1993－00		MICROCKT，DGIL：MOS， $2048 \times 8$ SRAH M／3 ST－OUT	04713	MCL2016 HM－70
A10U3419	156－1993－00		MICRDCKT，DGTL：MOS， $2048 \times$ Q SRAW M／3 ST－OUT	04713	MCH2016HN－70
A10U3420	156－2093－00		HICROCKT，DGTL：QUAD 2－INP POSITIVE OR GATE	01295	SN74ALS3273／J4
A10u9421	156－1921－00		microckt ，DGTL：TTL，OCTAL BUS TROWSCEIVER M／3 －STATE DUTPUT	59640	74HCT245P
01003422	156－1921－00		MICROCKT，DGTL：TTL，OCTAL BUS TRAWSCEIVER M／3 －state output	59640	74HCT245P
$\begin{aligned} & \text { A10U3423 } \\ & \text { A10U3424 } \end{aligned}$	$\begin{aligned} & 156-2334-00 \\ & 156-2334-00 \end{aligned}$		MICRDCKT，DGTL：ALSTTL，SMC， 4 日IT UP／DN CNTR MICROCKT，DGTL：ALSTTL，SWNC， 4 BIT UP／DN CNTR	$\begin{aligned} & 01295 \\ & 01295 \end{aligned}$	SN74ALS191N3 SN74ALS191N3
A10U3425	156－2334－00		MICROCKT，OGTL：ALSTTL，SYMC， 4 BIT UP／ON CNTR	01295	SN74ALS191N3
A10U3426	156－2091－00		MICROCKT，DGTL：QUAD 2－INP POS NAMD GATES	01295	SN74ALSOON／J
A1013427	156－2369－00		MICROCKT，DGTL：CNOS ，OCTAL BUFFER \＆LINE ORIV ER M／3 STATE OUT	04713	MC74HCT541N


Component No .	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A10u3428	156-2369-00		MICROCKT, DGTL:CMOS, OCTAL BUFFER \& LINE DRIV ER M/3 STATE OUT	04713	MC74HCT541N
A1044 101	156-1723-00		MICROCKT, DGTL:DUAD 2 INPUT \& GATE	04713	MC74F08 ND OR JD
A10U4 102	156-1919-00		MICROCKT, DGTL:DUAL POS EDGE TRIGGERED FF	04713	MC74F109 ND/JD
A10U4 103	156-1652-00		MICROCKT, DGTL:	04713	MC74F153 ND/JD
A10U4 104	156-1919-00		MICROCKT, DGTL:DUAL POS EDGE TRIGgERED FF	04713	MC74F109 ND/JD
A1044 105	156-1611-00		MICROCKT, DGTL:DUAL $D$ TYPE EDGE-TRIGRD FF	07263	74F74(PC OR OC)
A10U4 106	156-1707-00		MICROCKT, DGTL: OUAD 2-INPUT NAND GATE	04713	MC7400 (NDORJD)
A10U4 107	156-2333-00		MICROCKT, DGTL:ALSTTL,SYMC, 4 BIT DECADE CNTR	01295	SN74ALS1628N3
A10U4 108	156-2333-00		MICROCKT, DGTL:ALSTTL,SYMC, 4 BIT DECADE CNTR	01295	SN74ALS1628N3
A10U4 109	156-2333-00		MICROCKT, DGTL:ALSTTL,SYNC, 4 BIT DECADE CNTR	01295	SN74ALS1628N3
A10u4110	156-2333-00		HICROCKT, DGTL:ALSTTL, SYNC, 4 BIT DECADE CNTR	01295	SN74ALS1628N3
A10u4119	156-2333-00		MICROCKT, DGTL:ALSTTL,SYNC, 4 BIT DECADE CNTR	01295	SN74alsi6z8n3
A10U4112	156-2333-00		MICROCKT, DGIL:ALSTTL, SYMC, 4 BIT DECADE CNTR	01295	SNT4ALS1628N3
A10U4113	156-2357-00		MICROCKT, DGIL:CHOS OCTAL LATCH, NONINVERTING D TYPE FLIP-FLOP W/3 STATE DUT	01295	5N74HCT574N3
Q10u4114	156-2093-00		MICROCKT, DGTL:QUAO 2-INP POSITIVE OR GATE	01295	SN74aLS32n3/J4
01004115	156-2326-00		MICROCKT, DGTL:4 BIT COUNTERS M/3 STATE OUTP UTS, SCRN	01295	SN74ALS561AN3J4
A10u4116	156-2326-00		MICROCKT,DGTL:4 BIT COUNTERS W/3 STATE OUTP UTS, SCRN	01295	SN74aLS561an3J4
A1004117	156-2326-00		MICROCKT,DGTL:4 日IT COUNTERS M/3 STATE DUTP UT5 SCRN	01295	SN74AL5561AN3J4
A10U4118	156-1611-00		MICROCKT, DGTL:DUAL D TYPE EDGE-TRIGRD FF	07263	74F74(PC OR DC)
A10U4119	156-2357-00		MICROCKT, DGTL:CMOS ,OCTAL LATCH, MONINVERTING ,D TYPE FLIP-FLOP M/3 STATE OUT	01295	5N74HCT574N3
A10us 120	156-2332-00		microckt,dgil:alsttl, ouad 2 in pos nand gat E OC	01295	SN74aLS01N3
A10v4 121	156-1611-00		MICROCKT, DGTL:DUAL D TYPE EDGE-TRIGRD FF	07263	74F74(PC OR OC)
A10U4 122	156-2093-00		MICROCKT, DGIL:OUAD 2-INP POSITIVE OR GATE	01295	SN74ALS32N3/J4
A1044 123	156-1664-00		MICROCKT, DGIL:SCREENED	01295	SN74AL5574 (NP3)
A10u4 124	156-1664-00		MICROCKT, DGTL:SCREENED	01295	SN74AL5574 (NP3)
Q1014 125	156-1611-00		MICROCKT, DGTL:DUAL D TYPE EDGE-TRIGRD FF	07263	74F74(PC OR DC)
A10u4126	156-1611-00		MICROCKT, DGTL:DUAL D TYPE EDGE-TRIGRD FF	07263	74F74(PC OR OC)
010U4127	156-1743-00		MICROCKT DGTL:ASTTL, OUAD 2-INPUT NOR GATE	18324	74FO2 NE OR FP
Q1004226	156-1619-00		MICROCKT,DGTL:OUAL D TYPE EDGE-TRIGRD FF	07263	74F74(PC OR OC)
A1004227	156-1662-00		MICROCKT, DGTL:	04713	MC74F153 ND/JO
A1014228	156-1611-00		MICROCKT, DGTL:DUAL D TYPE EDGE-TRIGRD FF	07263	74F74 (PC OR OC)
A10u4229	156-1126-00		MICROCKT, LINEAR:VOLTAGE COMPARATOR	01295	LM311P
A10U4230	156-2331-00		MICROCKT, DGTL:LSTTL, 8 BIT CNTR W/REGISTER	01295	5N74LS590N3
A10U4231	156-1614-00		MICROCKT, DGTL:DUAL D TYPE EDGE-TRIGRO FF	07263	74F74(PC OR DC)
a1014232	156-1611-00		MICROCKT, DGTL:DUAL D TYPE EDGE-TRIGRD FF	07263	74F74(PC OR DC)
A1019101	156-2113-00		MICROCKT, DGTL:OUAD 2-INP PSOITIVE-AND GATE	01295	SN74aLS08N3/J4
A10u9102	156-2093-00		MICROCKT, DGTL:QUAD 2-INP POSITIVE OR GATE	01295	SN74ALS32N3/J4
01019103	156-1753-00		MICROCKT, DGTL:OCTAL BUFFER \& LINE DRIVER	01295	74ALS240NP3
A1009104	156-2344-00		MICROCKT, DGTL:CHOS, CLOCK GEN $\%$ ORIVER	34371	IP82C84A/+
A1049105	156-2293-00		MICROCKT, DGTL:DUAL 2-LINE TO 4-LINE DECOOER /MULTIPLEXER	01295	5N74ALS139N3/J4
A1049106	156-2293-00		MICROCKT,DGTL:DUAL 2-LINE TO 4-LINE DECODER /MULTIPLEXER	01295	SN74ALS139N3/J4
A1049107	156-2093-00		MICROCKT DGGTL:QUAD 2-INP POSITIVE OR GATE	01295	SN74ALS32N3/J4
A1049108	156-2355-00		MICROCKT,DGTL:CNOS, 14 STAGE BIMARY RIPPLE C OUNTER	02735	CO74HCT4020EX
A10u9109	160-3633-01	80101008010753	MICROCKT, DGTL:64K $\times 8$ EPROM, PRGM	80009	160-3633-01
A1049109	160-3633-02	8010754 B011017	MICROCKT, DGTL: $64 \mathrm{~K} \times 8$ EPROM, PRGM	80009	160-3633-02
A1019109	160-3633-03	B011018	MICROCKT,DGTL:54K $x 8$ EPROH,PRGM N	80009	160-3633-03
A10u9110	160-3532-01	80101008010753	MICROCKT, DGTL: $64 \mathrm{~K} \times 8$ EPROM, PRGM	80009	160-3532-01
A1049110	160-3532-02	8010754 B011017	MICROCKT, DGTL: $64 K \times 8$ EPROM, PRGM	80009	160-3532-02


Component No．	Tektronix Part No．	Serial／Assembly No．   Effective Dscont	Name \＆Description	Mfr． Code	Mfr．Part No．
A10U9110	160－3532－03	8011018	MICROCKT，DGTL：64K X 日 EPROM，PRGM （U9109／U9110 MUST BE REPLACED AS A PAIR）	80009	160－3532－03
A10U9111	156－1609－01		MICROCKT，DKTL：HMOS，${ }^{\text {S BIT MICROPROCESSOR }}$	34649	08088－2
A10u9112	156－1858－00		MICROCKT，DGTL：TRANSPARENT D－TYPE LATCHES	01295	SN74LS573（NP3）
A10U9113	156－1748－02		MICROCKT，DGTL：OCTAL BUS XCVR H／3－STATE OUT	01295	SN74ALS245AN3／J4
A1049114	156－1858－00		HICROCKT，DGTL：TRANSPARENT D－TYPE LATCHES	01295	SN74LS573（NP3）
A10u9201	156－1859－00		MICROCKT，DGTL：MOS ，DYMANIC RAM，SCRN	01295	TMS4416－15
A10u9202	156－1859－00		MICROCKT，DGTL：WOS ，DYNAWIC RAN，SCRN	01295	TMS4416－15
A10U9203	156－1859－00		MICROCKT，DGTL：WOS，DYNAMIC RAN，SCRN	01295	TMS4416－15
A10U3204	156－2210－00		MICROCKT，DGTL：QUAD SEL／MUX	01295	SN74ALS25N3
A10u9205	156－2210－00		MICROCKT，DGTL：QUAD SEL／MUX	01295	SN74ALS257N3
A10u9206	156－1921－00		MICROCKT，DGTL：TTL，OCTAL BUS TRANSCEIVER W／3 －STATE OUTPUT	59640	74HCT245P
A10U9207	156－1921－00		MICROCKT，DGTL：TTL，OCTAL BUS TRANSCEIVER W／3 －STATE OUTPUT	59640	74HCT245P
A10u920B	156－2452－00		MICROCKT ，DGTL：HMOS ，SEMI－CUSTOM，STO CELL，OSP L CONT	80009	156－2452－00
A10u9210	156－1638－00		MICROCKT，LINEAR：10 日IT HS，MULTIPLYING，D／A C ONV	06665	DAC－106X
A10U9211	160－3586－00		MICROCKT ，DGTL：GATE ARRAY PPRGM	80009	160－3586－00
A10u9220	156－1638－00		MICROCKT，LINEAR： 10 BIT HS，MULTIPLYING，O／A C ONV	06665	DAC－106X
A10u9231	156－1859－00		MICROCKT，DGTLL：MOS ，ONNAMIC RON，SCRN	01295	TMS4416－15
A10U9232	156－1859－00		MICROCKT，DGTL：MOS ，OYMAMIC RAM，SCRN	01295	TMS4416－15
A10U9233	156－1859－00		MICROCKT，DGTL：MOS，DYMAMIC RAN，SCRN	01295	TMS4416－15
A10U9301	156－2369－00		MICROCKT，DGTL：CWOS ，OCTAL BUFFER \＆LINE DRIV ER W／3 STATE OUT	04713	MC74HCT541N
A10u9302	156－2369－00		MICROCKT ，DGTL：CMOS ，OCTAL BUFFER \＆LIME DRIV ER N／3 STATE OUT	04713	MC74HCT541M
A10n2101	131－0566－00		BUS，COMD：DUATY RES，0．094 $00 \times 0.225 \mathrm{~L}$	24546	0MA 07
A1042102	131－0566－00		BUS，CEND：DUAMY RES，0．094 OD X 0．225L	24546	014 07
A10，2103	131－0566－00		BUS，COMD：DUAMY RES， $0.09400 \times 0.225 \mathrm{~L}$	24546	040907
A10， 2104	131－0566－00		BUS，COMD：DUNY RES， $0.09400 \times 0.225 \mathrm{~L}$	24546	01407
A10， 2105	131－0566－00		BUS，CDAD：DLAMY RES，0．094 $00 \times 0.225 \mathrm{~L}$	24546	014 07
A10nz107	131－0566－00		BUS，COND：DUAFY RES， 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A10H2203	131－0566－00		BUS，COMD：DUAFY RES $0.09400 \times 0.225 \mathrm{~L}$	24546	014 07
A10n3234	131－0566－00		BUS，COWD：DUAM RES，0．094 OD X 0．225L	24546	040 07
A1044100	179－2950－00		WIRIMG HARNESS：STORAGE	80009	179－2950－00
A1044200	131－0566－00		BUS，COND：DUAMY RES，0．094 $00 \times 0.225 \mathrm{~L}$	24546	049 07
A1044201	131－0566－00		BUS，COMD：DUNYY RES ， 0.094 00 X 0．225L	24546	01407
A10w9012	131－0566－00		BUS，COND：DUAMY RES ， $0.09400 \times 0.225 \mathrm{~L}$	24546	01407
A1049013	131－0566－00		BUS，COMD：DLAMY RES $0.09400 \times 0.225 \mathrm{~L}$	24546	0407
A10 ${ }^{\text {a }} 9014$	131－0566－00		BUS，COMD：DUAFY RES， $0.09400 \times 0.225 \mathrm{~L}$	24546	01407
A1049015	131－0566－00		8US，COHD：DUAM RES $0.09400 \times 0.225 \mathrm{~L}$	24546	0407
A10＊9016	131－0566－00		BUS，COHD：DUAM RES $0.09400 \times 0.225 \mathrm{~L}$	24546	0 0w 07
A1049017	131－3299－00		BUS，CONDUCTOR：CKT 60，PONER DISTRIBUTION NET WORK	TK1884	1TEX0P032
A1049018   A10н9019	$\begin{aligned} & 131-0566-00 \\ & 131-3299-00 \end{aligned}$		BUS，COND：DUNMY RES， $0.09400 \times 0.225 \mathrm{~L}$ BUS，COADUCTOR：CKT BD，PONER DISTRIBUTION NET HORK	$\begin{aligned} & 24546 \\ & \text { TK1884 } \end{aligned}$	$\begin{aligned} & \text { O世А } 07 \\ & \text { 1TEx@PO3I } \end{aligned}$
A1049021	131－3299－00		BUS，COADUCTOR：CKT BO，PONER OISTRIBUTION NET MORK	TK1884	1TEx9P032
A10～9022	131－3299－00		BUS，CONDUCTOR：CKT 8D，PONER DISTRIBUTION NET MORK	TK1884	1TEx0po32
A10N9023	131－3299－00		BUS，CONDUCTOR：CKT BD，PONER DISTRIBUTION NET MORK	TK1884	1TEx0po32
A10w9024	131－3299－00		BUS，CONDUCTOR：CKT BD，PONER DISTRIBUTION NET HORK	TK1884	1TEx0p03I
410＊9025	131－0566－00		BUS，COND：DUAMY RES， $0.09400 \times 0.225 \mathrm{~L}$	24548	0404


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A10\%3026	131-0565-00		BUS , COND: OMAMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A10w9027	131-0565-00		BUS, COND:DUAMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A10w9028	131-0566-00		BUS, COND:DUAMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A10w9029	131-0566-00		BUS, COND: DUAMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1049208	136-0848-00		SKT, PL-IN ELEK:68 PIN 5162-2	00779	55162-2
A10 ${ }^{\text {a }} 211$	131-0566-00		BUS, COND:DIAMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A10Y4 100	149-1460-00		OSCILLATOR,RF:40.OMHZ	01537	K1114am 40 MHz
A11A1 A11A1	672-1193-00		CIRCUIT BD ASSY: INPUT/OUTPUT \& VECT GEN CKT BOARD ASSY: INPUT/OUTPUT (NOT AVAILABLE, USE A11)	80009	672-1193-00
A11A1C6101	281-0861-00		CAP, FXD, CER DI:270PF,5x,50V	54583	Ma12C0G1H279J
A11a1C6102	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A11a1c6103	281-0775-00		CAP, FXD, CER DI:0.1UF,202,50V	04222	MAZ05E104MAA
A11A1C6104	281-0775-01	8010100 B011043	CAP, FXD, PLASTIC:0.1UF,20\%,50V	04222	MAZO5E104MAA
A11a1C6105	281-0775-01	8010100 B011043	CAP, FXD, PLASTIC:0.1UF,20\%,50V	04222	MAZ25E104MAA
A11a1C6106	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\% , 50Y	04222	MAZ25E104MAA
A11A1C6107	281-0775-00		CAP, FXD, CER DI:0.1UF,207,50Y	04222	MaZ25E104MAA
A11A1C6108	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	Mazo5e104MAa
A11A1C6109	281-0775-00		CAP, FXD, CER DI:0.1UF,20\% , 50 V	04222	MAZ05E104MAA
A11A1c6110	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50Y	04222	Mazo5e104MaA
A11a1c6119	281-0775-00		CAP, FXD, CER DI:0.1UF,207,50V	04222	MAZ05E104MAA
A11a1C6112	281-0775-00		CAP, FXD, CER DI:0.1UF,207,50Y	04222	MA205E104MAA
A11a1C6113	281-0775-00		CAP, FXD, CER DI:0.1UF,207,50Y	04222	MA205E104MAA
A11A1C6114	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MAZ05E104MAA
A11A1C6115	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%, 50 V	04222	MA205E104MAA
A11a1C6146	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\% ,50Y	04222	MAZ05E1094aA
A11A1C6117	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%, 50V	04222	MAZ05E104MAA
A11a1C6118	281-0775-00		CAP, FXD, CER DI: 0.1 UF, 20\% , 50Y	04222	MA205E104MAA
A11a1C6130	281-0862-00		CAP, FXD, CER DI:0.001UF, +80-207, 100V	04222	MA101C10IMAA
A110166201	290-0246-00		CAP, FXD, ELCTLT:3.3UF,10\%, 15V	12954	D3R3EA15K1
A11A1c6202	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\%, 50V	04222	MAZ25E104MAA
A11a1C6203	281-0775-00		CAP, FXO, CER DI:0.1UF, 207, 50Y	04222	MA205E104MAA
A1141C6204	281-0775-00		CAP, FXD, CER DI:0.1UF,208,50Y	04222	MAZ05E104MAA
A11A1C6205	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\%, 50 V	04222	MAZ05E104MAA
A11A1C6206	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\%, 50 V	04222	MA205E104MAA
A11a1c6z0?	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\%, 50V	04222	MAZ05E104MAA
A11A1C6208	281-0775-00		CAP, FXD, CER DI:0.1UF,207,50V	04222	MA205E104MAA
A11a1c6210	290-0920-00		CAP, FXD, ELCTLT: 33UF, $+50-10 \%$, 35V	55680	ul8iv330teanna
A11A1C6211	290-0920-00		CAP, FXD, ELCTLT: 33UF, $450-10 \%, 35 \mathrm{~V}$	55680	uldivz30teana
A11a1C6212	290-0920-00		CAP, FXD, ELCTLT:33UF, $+50-102,35 \mathrm{~V}$	55680	ulbiv330teanna
A11a1c6220	281-0861-00		CAP, FXD, CER DI:270PF, 5\% ,50V	54583	MA12COG1H271J
A11a1c6221	281-0861-00		CAP, FXO, CER DI:270PF,5X,50V	54583	MA12COG1H271J
A11a1crat01	152-0141-02		SEMICOND DVC, $\mathrm{OI}: 5 \mathrm{SN}, 5 \mathrm{SI}, 30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	DA2527 (1N4 152)
A11aycri 102	152-0141-02		SEMICOND DVC, DI: ST, $51,30 \mathrm{~V}, 150 \mathrm{MA}$, 30V	03508	002527 (1N4152)
A11a1CP6103	152-0141-02		SEIICOND DVC, 01. :SH, $51,30 \mathrm{C}, 150 \mathrm{MA,30V}$	03508	042527 (1N4152)
A11aicprios	152-0141-02		SEIICOND DVC, $01: S M, 51,30 V, 1504 \mathrm{~A}, 30 \mathrm{~V}$	03508	DA2527 (1N4152)
A11A1CR6201	152-0141-02		SEIICOND DVC, $01:$ SM, SI, 30V, 1504A, 30V	03508	002527 (1N4152)
A11a1CR6202	152-0141-02		SEIICOND DVC, ${ }^{\text {dI }}$ :SH, $51,30 V, 150 \mathrm{~mA}, 30 \mathrm{~V}$	03508	DA2527 (1N4152)
A11a1cr6203	152-0141-02		SEIICOND DVC, DI:SH,SI, 30V, 150MA,30V	03508	DA2527 (1N4152)
A11aicr6204	152-0141-02		SEIICOMD OVC, OI: ST, SI, 30V , 150 MA , 30V	03508	Da2527 (1N4952)
A11a1J6110	131-0589-00		TERNINAL,PIN: 0.46 L $\times 0.025$ SO PH BRI (QuNWIITY OF 8)	22526	48283-029
A11A1J6120	131-0589-00		TERNIMAL,PIM: 0.46 L X 0.025 SO PH BRL (QUANTITY OF 9)	22526	48283-029
A11a1J6130	131-0589-00		TERWINAL,PIN: $0.46 \mathrm{~L} \times 0.025$ SO PH BRI (QUANTITY OF 8)	22526	48283-029
A1141J6140	131-0609-00		TERMINAL, PIN: $0.365 \mathrm{~L} \times 0.025$ BRL GLD PL	22526	48283-036
A11a9J6150	131-0606-00		TERNINAL,PIN: $0.365 \mathrm{~L} \times 0.025$ BRL GLD PL	22526	48283-036


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1101L6201	108-0240-00		COIL ,RF: FIXED, 820UH	76493	85147
A1101L6202	108-0240-00		COIL,RF: FIXED,820UH	76493	85147
A11A1L6203	120-0382-00		COIL,RF:210UH,+28\%-43\%,14 TURNS	80009	120-0382-00
A1191L6204	120-0382-00		COIL,RF:210UH,+28\%-43\%, 14 TURNS	80009	120-0382-00
A11A1L6205	120-0382-00		COIL,RF:210UH,+28\%-43\%, 14 TURNS	80009	120-0382-00
A11A1L6206	120-0382-00		COIL,RF:210UH,+28\%-43\%, 14 TURNS	80009	120-0382-00
A110106101	151-0190-00		TRANSISTOR:NPN, SI , TO-92	80009	151-0190-00
A110106201	151-0190-00		TRANSISTOR:NPN, SI , TO-92	80009	151-0190-00
A110106202	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A110106203	151-0188-00		TRANSISTOR:PNP, SI, TO-92	80009	151-0188-00
A1191R6101	307-0595-00		RES NTMK, FXO, FI:7,5.6K OHN, 2\%, 1.0H	11236	750-81-5.6K
A11A1R6102	315-0103-00		RES , FXD, FIU: 10K OHM , 5\% , 0.25N	19701	5043CX10K00」
A1191R6103	315-0472-00		RES, FXD, FILM: 4.7K OHM, 5\%,0.25M	57668	NTR25J-E04K7
A1101R6104	315-0472-00		RES , FXD, FILM: 4.7K OHM, 5\%, 0.25 N	57668	NTR25J-E04K7
A1101R6105	321-0405-00		RES, FXD, FILM:162K OHM, 1\%, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	07716	CEAD16202F
A1101R6106	321-0405-00		RES, FXD, FILM: 162K OHM, 1\%, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	07716	CEAD16202F
A1101R6107	321-0289-00		RES, FXD, FILM:10.0K OHM, 1\% ,0.125M, TC=T0	19701	5033ED10K0F
A1101R6108	321-0289-00		RES, FXD, FILM: 10.0K OHM, 1\%, 0.125 $\mathrm{H}, \mathrm{TC}=$ TO	19701	5033ED10KOF
A11A1R6109	321-0289-00		RES, FXD, FILM: 10.0K OHM, 1\% , 0.125\%, TC = TO	19701	5033ED10K0F
A11A1R6110	321-0289-00		RES, FXD, FILM: 10.0 K OHN, 1\%, $0.125 \mathrm{~N}, \mathrm{TC}=$ T0	19701	$5033 \text { ש10K0F }$
A11A1R6111	321-0414-00		RES, FXD, FILM: 200K OHM , 1\% , 0.125N,TC=T0	07716	CEA020002F
A11A1R6112	321-0414-00		RES, FXD, FILH:200K OHM, 1\% , 0.125N, T C $=$ TO	07716	CEAOZOOO2F
A1191R6113	321-0289-00		RES, FXD, FILM: 10.0 K OHM, 1\%, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED10K0F
A1101R6114	321-0289-00		RES, FXD, FILH: 10.OK OHM, 1\%, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED10KDF
A11A1R6115	321-0289-00		RES , FXD , FILM: 10.0K OHM, 1\%, $0.125 \mathrm{H}, \mathrm{TC}=$ T0	19701	5033ED10K0F
A1101R6116	321-0289-00		RES, FXD, FILM: 10.0K OHM, 1\%, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	19701	5033ED10K0F
A1101R6117	321-0289-00		RES, FXD, FILM: 10.0 K OHM, 1\% , 0.125 $\mathrm{N}, \mathrm{TC}=$ TO	19701	5033ED10K0F
A1101R6118	321-0289-00		RES, FXD, FILM: 10.0 K OHM, 1\%, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED10K0F
A1191R6119	311-2267-00		RES , VAR, MOHN: TRMR , 50K OHA , 20\% , 0.5 N	TK1450	GFO6VT 50 K OHM
A11A1R6120	321-0354-00		RES, FXD, FILM:47.5K OHM, 1\%, 0.125 , TC=T0	19701	5043ED47K50F
A11A1R6121	315-0223-00		RES , FXD, FI LM: 22K OHN, 5\%,0.25M	19701	5043CX22K00.192U
A11A1R6122	315-0223-00		RES, FXD, FILM:22K OHM, 5\%, 0.25 M	19701	5043CX22K00.192U
A1101R6123	315-0223-00		RES, FXD, FILM:22K OHM,5\%,0.25M	19701	5043CX22K00J92U
A11A1R6124	315-0223-00		RES, FXD, FILM:22K OHM ,5\%, 0.25 M	19701	5043CX22K00182U
A1101R6125	315-0223-00		RES, FXO, FILM:22K OHM ,5\% 0 , 25 N	19701	5043CX22K00.192U
A1101R6126	315-0223-00		RES , FXD, FILM:22K OHM,5\%,0.25M	19701	5043CX22K00, 92 U
A11A1R6127	315-0223-00		RES, FXD, FILM:22K OHM, 5\%,0.25M	19701	5043CX22K00, 92 U
A1101R6128	315-0472-00		RES , FXD, FILM:4.7K OHM, 5\%,0.25m	57668	NTR25J-E04K7
A11A1R6129	315-0472-00		RES, FXD, FILM:4.7K OHM, 5\%, 0.25 M	57668	NTR25J-E04K7
A11A1R6130	315-0472-00		RES, FXD, FILM: 4.7K OHM, 5\%, 0.25M	57668	NTR25J-E04K7
A11A1R6131	315-0472-00		RES, FXO, FILM: 4.7K OHM , 5\%, 0.25 N	57668	NTR25J-E04K7
A1191R6132	315-0472-00		RES , FXD, FILM: 4.7K OHM, 5\%, 0.25 H	57668	NTR25, -E04K7
$01101 R 6133$	315-0472-00		RES , FXD , FILM:4.7K OHM ,5K, 0.25 H	57668	NTR25.j-E04K7
A1101R6134	315-0472-00		RES , FXD, FILM:4.7K OHM, 5\% , 0.25\%	57668	NTR25J-E04K7
A1101R6135	315-0472-00		RES, FXD, FILM: 4.7K OHM, 5\%, 0.25 M	57668	NTR25j-ED4K7
A11A1R6136	315-0472-00		RES, FXD, FILM: 4.7K OHM, 5\%, 0.25 M	57868	NTR25J-ED4K7
A11A1R6137	315-0164-00		RES, FXO, FILM: 160K OHM, 5\%, 0.25 M	57668	NTR25J-E160K
A11A1R6138	315-0223-00		RES, FXO, FILH:22K OHM, 5\%,0.25M	19701	5043CX22K00, 92 U
A1101R6201	315-0470-00		RES, FXD , FILM: 47 OHM, 5\%, 0.25 N	57868	NTR25J-E47ED
A11A1R6202	315-0470-00		RES, FXD, FILM: 47 OHM, 5\%, 0.25 N	57668	NTR25J-E47E0
A1101R6203	315-0470-00		RES, FXD, FILM: 47 OHM, 5\% , 0.25M	57668	NTR25J-E47E0
A1191R6204	315-0472-00		RES, FXD, FILM: 4.7K OHM, 5\%, 0.25 M	57668	NTR25J-E04K7
A11A1R6205	315-0470-00		RES, FXD, FILM: 47 OHW , 5\%, 0.25 N	57668	NTR25J-E47E0
	315-0470-00		RES , FXD, FILM:47 OfHe, 5\%, 0.25 N	57668	NTR25J-E47E0
A1101R6207	315-0470-00		RES, FXD , FILM: 47 OHM, 5\%, 0.254	57668	NTR25J-E47E0
A1101R6208	315-0470-00		RES, FXD, FILM:47 OHM,5\%,0.25M	57668	NTR25J-E47E0
A11A1R6209	315-0472-00		RES, FXO, FILM: 4, 7K OHM , 5\%, 0. 25M	57668	NTR25J-E04K7
A11A1R6210	315-0470-00		RES , FXO, FILM:47 OHM, 5\% , 0.25 M	57668	NTR25J-E47E0
A11A1R6211	315-0470-00		RES, FXD, FILH:47 OHN, 5\%, 0.25 N	57668	NTR25J-E47E0


Component No,	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mr. Code	Mfr. Part No.
A11a1R6212	315-0470-00		RES, FXD, FILM:47 OHM, 57, 0.25 N	57668	NTR25J-E47E0
A11A1R6213	315-0470-00		RES, FXD, FILX:47 OHM, 57, 0.25 K	57668	NTR25J-E47E0
A11A1R6214	315-0470-00		RES, FXD, FILM:47 OHM, 57, 0.25 M	57668	NTR25J-E47E0
A11A1R6215	315-0470-00		RES, FXD, FILY:47 OHM, 5\%, 0.25\%	57668	NTR25J-E47E0
A11A1R6216	315-0470-00		RES, FXD, FILN:47 OHM , 5x, 0.25 M	57668	NTR25J-E47E0
A11A1R6217	315-0470-00		RES, FXO, FILM:47 OHM, 5\%, 0.25 M	57668	NTR25J-E47E0
A11A1R6218	315-0472-00		RES, FXO, FILM:4.7K OHM, 5\%, 0.25M	57668	NTR25J-E04K7
A11A1R6219	315-0242-00		RES, FXD, FILM: $2,4 \mathrm{~K}$ OHM, 5\%, 0.25 N	57668	NTR25J-E02K4
A11A1R6220	315-0102-00		RES, FXD, FILI: 1 K OHM , 5x, 0.25 M	57668	NTR25JE01K0
Q1141R6221	315-0333-00		RES , FXD, FILA 33 K OHM , 5K , 0.25 M	57668	NTR25N-E33K0
A11A1R6222	315-0184-00		RES, FXD, FILM: 180X OHM , 5\%, 0.25 M	19701	5043C×180KOJ
A11A1R6223	315-0202-00		RES, FXD, FILM:2K OHM, 5\%,0.25	57668	NTR251-E 2K
A11A1R6224	315-0152-00		RES, FXD, FILM: 1.5 K OHM , 5\%, 0.25M	57668	NTR25J-E01K5
A11A1R6225	315-0122-00		RES, FXD, FILM:1.2K OHM, 5\%,0.25N	57668	NTR25J-E01K2
A11A1R6226	321-0281-00		RES, FXD, FILU:8.25K OHM, 12, $0.125 \mathrm{~K}, \mathrm{TC}=$ TO	19701	5043E08K250F
A11A1R6227	321-0302-00		RES, FXD, FILM: 13.7 K OHWM, 14, $0.125 \mathrm{~K}, \mathrm{TC}=$ TO	07716	CEAD 13701F
A11A1R6228	315-0102-00		RES, FXD, FIL $: 1 \mathrm{~K}$ OHAN, 5X, 0.25 N	57668	NTR25JE01K0
A11A1R6229	315-0164-00		RES, FXD, FIL 160 K OHM, $52,0.25 \mathrm{~N}$	57668	NTR25J-E150K
A11A1R6230	315-0564-00		RES, FXO, FILM: 560X OHM , 5\%, 0.25\%	19701	5043C×560×0,
A11A1R6231	315-0102-00		RES, FXD, FILM:1K OHA , 5\%, 0.25 K	57668	NTR25JE01K0
A11a1R6232	315-0472-00		RES, FXD, FILM: 4.7X OHM , 5\% , 0.254	57668	NTR25J-E04K7
A11a1R6233	321-0302-00		RES, FXD, FILS:13.7X OHM, 17, $0.125 \mathrm{M}, \mathrm{TC}=$ TO	07716	CEAD 13701F
A1141R6234	321-0281-00		RES, FXD, FIL $: 8.25 \mathrm{~K}$ OHM, 17,0.125M, TC=TO	19701	5043ED8K250F
A11a1U6101	156-2026-00		MICROCKT, DGTL:OMOS, QUAD 2 INPUT HOR GATE	04713	MC74HCO2(N OR J)
A11A1U6102	156-2369-00		MICROCKT, DGTL:CMOS,OCTAL BUFFER \& LINE ORIV ER M/3 STATE OUT	04713	MC74HCT541N
A11a1u6103	156-2369-00		MICROCKT, DGTL:CMOS,OCTAL BUFFER \& LINE ORIV er m/3 State out	04713	MC74HCT541N
D11a1U6104	156-2357-00		MICROCKT, DGTL:CMOS ,OCTAL LATCH, NONINVERTING , D TYPE FLIP-FLOP M/3 STATE OUT	01295	SNP4HCT574N3
A11a1U6105	156-2347-00		MICROCKT, LINEAR:A/D CONVERTER,217 U5, $9081 T$ SUCCESSIVE APPROXIMATION	27014	AOC1001CCJA+
A11a1U6106	156-0513-02		MICROCKT, DGIL:CNOS, ANALOG MULTIPLEXER/DEM	02735	C040518FX
A11a1u6107	156-0495-00		MICROCKT, LINEAR:OPNL MMPL	01295	L3324N
A11A1U6108	156-0513-02		MICROCKT, DGTL:CNOS,ANALOG MULTIPLEXER/DEM	02735	C040518FX
A11a1U6201	156-0891-00		MICROCKT, LINEAR:VOLTAGE REGULATOR	04713	MС78L05ACP
A11A1U6202	156-1225-00		MICROCKT, LINEAR:DUAL COMPARATOR	01295	L4393P
A11a146000	259-0017-00		FLEX CIRCUIT:IO \& VG BOARD	80009	259-0017-00
A11a1相100	175-9853-00		CA ASSY, SP, ELEC:34,28 Ant , 5.125 L,RIBBON	80009	175-9853-00
A11A1m6119	131-0566-00		BUS, COND:OUNTY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A11A1*6201	131-0566-00		BUS, COND: DUANY RES,0.094 00 $\times 0.225 \mathrm{~L}$	24546	0 MA 07
A11a1m6202	131-0566-00		BUS, COND: DUAAY RES,0.094 $00 \times 0.225 \mathrm{~L}$	24546	OMA 07
$\begin{aligned} & A 11 A 2 \\ & A 11 A 2 \end{aligned}$	672-1193-00		CIRCUIT BO ASSY: INPUT/OUTPUT \& VECT GEN CKT BOARD ASSY:VECTOR GENERATOR (NOT AVAILABLE, USE A11)	80009	672-1193-00
A11arc6301	281-0775-00		CAP, FXD, CER DI:0.1UF,207,50V	04222	MAZ205E104MAA
A11a2C6302	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\% ,50V	04222	MAZ05E104MAA
A11azC5303	281-0775-00		CAP, FXD, CER DI: $0.14 \mathrm{~F}, 20 \mathrm{~K}, 50 \mathrm{~V}$	04222	MAZO5E104MAA
A11A2C6304	281-0775-00		CAP, FXD, CER DI:0.1UF,20\% ,50V	04222	MAZ05E104MAA
A11a2C6305	281-0775-00		CAP , FXD, CER DI: $0.14 \mathrm{~F}, 20 \%$,50Y	04222	MA205E104MAA
A11azC6306	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\% ,50V	04222	MA205E104MAA
A11A2C6307	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50Y	04222	Maz05E104maA
A11azcbsob	281-0775-00		CAP, FXD, CER DI:0.1UF,204,50V	04222	MAZ05E104MAA
A11A2C6309	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A11A2C6310	281-0759-00		CAP, FKD, CER 01:22PF, 10\%, 100 V	04222	MA101az20KAA
A11A2C6311 011 a2C6312	$\begin{array}{r} 281-0759-00 \\ 281-0759-00 \end{array}$		CAP, FXD, CER DI:22PF, 10\%, 100V CAP, FXD,CER DI:22PF, 10\%, 100V	04222	mA101az20KAA ma101azzokaa


Component No,	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mir. Code	Mir. Part $\mathrm{No}_{\text {, }}$
A11a2C6314	283-0594-00		CAP, FXO, MICA DI:0.001UF, 17, 100V	00853	0151F102F0
A11a2C6315	283-0594-00		CAP, FXD, MICA DI: $0.001 \mathrm{UF}, 17,100 \mathrm{~V}$	00853	0151F102F0
A11a2C6316	281-0759-00		CAP, FXD, CER 01:22PF, 10\%, 100 V	04222	ma101azzokaa
A11A2C6317	281-0759-00		CAP, FXD, CER DI:22PF, 10\%, 100 V	04222	MA101A220KAA
A11A2C6401	281-0861-00		CAP, FXO, CER DI:270PF,5\%,50V	54583	MA12C061H271J
A11A2C6402	290-0920-00		CAP, FXO, ELCTLT: 33UF, $+50-10 \%$, 35V	55680	ULB1Y330TEAaNA
A11A2C6403	281-0775-00		CAP, FXO, CER DI:0.14F, 20\% , 50V	04222	Mazose104MAA
A11A2C6404	281-0775-00		CAP, FXD, CER DI:0.14F, 20\% ,50V	04222	MAZ05E104MAA
A11a2C8407	281-0759-00		CAP, FXD, CER OI:22PF, 10\%, 100 V	04222	MA101A220KAA
A11A2C6408	281-0759-00		CAP, FXD, CER DI:22PF, 10\%, 100 V	04222	MA101A220kAA
A11A2C6409	281-0775-00		CAP, FXD, CER DI:0.1UF,20\% ,50V	04222	MAZO5E104MAA
A1142C6421	281-0775-00		CAP, FXD, CER DI:0.14F,20\%,50V	04222	Mazose104MAA
A1142C6422	281-0775-00		CAP, FXO, CER DI:0.14F, 20\% , 50V	04222	MA205E1094AA
A1142C6440	281-0775-00		CAP, FXD, CER DI:0.14F, 20\%, 50V	04222	MA205E104MAA
A11A2C6441	281-0775-00		CAP, FXD, CER DI:0.14F, 20\% , 50V	04222	MAZO5E104MAA
A11142C6442	281-0775-00		CAP, FXO, CER DI: $0.14 \mathrm{~F}, 203,50 \mathrm{Y}$	04222	MAZ205E104MAA
A11A2CR6301	152-0141-02		SENICOND DVC, DI: SN, SI , 30V , 150MA , 30V	03508	DA2527 (1N4152)
A11A2CR6302	152-0141-02		SENICOND DVC, DI:SH, SI, 30V,1504P,30V	03508	Da2527 (1N4152)
A11A2CR6303	152-0141-02		SEIICONO DVC, DI: SH , SI , 30V, 150MA, 30V	03508	DA2527 (1N4152)
A11A2CR6304	152-0141-02		SENICONO DVC, DI: SH, SI , 30V, 1504A,30V	03508	DA2527 (1N4152)
A11A2CR6305	152-0141-02		SEIICONO DVC, DI:SH,SI , 30V, 15014, 30V	03508	0a2527 (1N4152)
A11A2CR6306	152-0141-02		SEIICOND DVC, DI:SN, SI, 30V, 150MA, 30V	03508	Da2527 (1N4152)
A11A2CR6307	152-0141-02		SENICOND DVC, DI: SM, SI , 30V, $150 \mathrm{MA}, 30 \mathrm{O}$	03508	DA2527 (1N4152)
A11A2CR6308	152-0141-02		SENICOND DVC, DI: SH, SI, 30V, 150MA,30V	03508	DA2527 (1N4152)
A11A2CR6401	152-0141-02		SEIICOND DVC, DI:SH, SI , 30V , 150MA , 30V	03508	Da2527 (1 144152 )
A11A2CR6403	152-0141-02		SEIICOND OVC, DI:SH, SI, 30V, 150MA, 30V	03508	DA2527 (1 144152 )
A11A2CR6405	152-0141-02		SEIICOND OVC, DI:SH, SI, 30V, 150MA, 30V	03508	Da2527 (104152)
A11a2J6410	131-0589-00		TERMINAL,PIN: $0.46 \mathrm{~L} \times 0.025 \mathrm{SQ}$ PH BRI (QUANTITY OF 10)	22526	48283-029
A1102J6420	131-0589-00		TERMIMAL,PIN:0.46 L X 0.025 SO PH BRZ (QUANTITY OF 9)	22526	48283-029
A114206301	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A11A2R6301	315-0751-00		RES , FXD, FILM: 750 OHM, $57,0.254$	57668	NTR25J-E750E
A11A2R6303	321-0932-00		RES, FXD, FILM: 2.5 K OHM, 17, $0.125 \mathrm{M}, \mathrm{TC}=\mathrm{T} 2$	24546	NA5502501F
A1142R6304	321-0932-00		RES, FXO, FILM 2.5 K OHM, 17, $0.125 \mathrm{~N}, \mathrm{TC}=\mathrm{T} 2$	24546	Na5502501F
A11A2R6305	321-0932-00		RES, FXO, FILM:2.5K OHEN, 17, $0.125 \mathrm{~N}, \mathrm{TC}=\mathrm{T} 2$	24546	MA5502501F
A1142R6306	321-0932-00		RES, FXO, FILM: 2.5 K OHN, 17, $0.125 \mathrm{~N}, \mathrm{TC}=12$	24546	MAS502501F
A1142R6307	321-0202-00		RES, FXO, FILM: $1.24 \mathrm{~K} 0 \mathrm{HH}, 1 \mathrm{t}, 0.1251, \mathrm{TC}=$ TO	24546	Na5501241F
A1142R6308	321-0202-00		RES, FXD, FILM 1.24 K OHM, 1\%, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	24546	Ma5501241F
A11A2R6309	321-0816-07		RES, FXD, FILM:5K OHM , 0.17, $0.125 \mathrm{M}, \mathrm{TC}=$ T9	19701	5033RE5K0008
A11A2R6310	321-0816-07		RES, FXO, FILM:5K OHN, 0.17, 0.125n, TC=T9	19701	5033RE5K0000
A1142R6311	321-0926-07		RES, FXO, FILM: 4K OHN, 0.12,0.125N, TC=T9	19701	5033RE4K008
A11A2R6312	311-2227-00		RES, VAR, NONWH: TRUR, 100 OHM, 20\%, 0.5 M LINEAR	TK1450	GFO6UT 100
A11A2R6315	315-0101-00		RES, FXO, FILM: 100 OHM, $5 \%, 0.25 \mathrm{~N}$	57668	NTR25J-E 100E
A1142R6316	315-0101-00		RES , FXD, FILM: 100 OHM , 5\% , 0.25\%	57668	NTR25J-E 100E
A1142R6317	321-0211-00		RES, FXD, FILM: 1.54 K OHM, 12, $0.125 \mathrm{M}, \mathrm{TC}=$ TO	07716	CEAD15400F
A11A2R6318	321-0207-00		RES, FXO, FILI: 1.40 K OHM, $12,0.125 \mathrm{H}, \mathrm{TC}=$ T0	19701	5033@1K400F
A11A2R6320	315-0272-00		RES, FXD, FILM: 2.7 K OHM, 5\%, 0.25 N	57668	NTR25N-E02K7
A11A2R6321	311-2227-00		RES, VAR, NONEH: TRMR, 100 OHM, 202, 0.5 H LINEAR	TK1450	GF06UT 100
A1142R6322	321-0816-07		RES, FXO, FILM: 5K Ofw, $0.1 \%, 0.1251, T C=T 9$	19701	5033RE5K0009
A11A2R6323	315-0682-00		RES, FXD, FILM:6.8K OHM, 5x, 0.25 M	57668	NTR25J-E06K8
A11A2R6330	315-0122-00		RES, FXD, FILM: 1.2 KK OHN, $5 \mathrm{LK}, 0.25 \mathrm{~N}$	57868	NTR25J-E0112
A11A2R6331	315-0682-00		RES, FXD, FILM: 6.8 KK OHN, 5K, 0.25 N	57868	NTR25N-E06KB
A11A2R6401	321-0189-00		RES, FXD, FILL 909 OHM, 17, 0.125N, TC= 12	19701	5033£口909R0F
A11A2R6402	321-0199-00		RES, FXO, FILL: 909 OHM, 17, $0.125 \mathrm{~N}, \mathrm{TC}=12$	19701	5033ED909ROF
A11-2R6403	321-0183-00		RES, FXD, FILH:787 OHM, 17, $0.125 \mathrm{H}, \mathrm{TC}=$ T0	07718	CEAOP87ROF
0114286404	321-0201-00			19701	5043E11K210F
A11a2R6405	321-0201-00		RES, FXD, FILM 1.21 K DHW, 12, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	19701	5043戊1K210F
A11A2R6406	321-0212-00		RES, FXD, FILM: 1.58 K OHW, 1\%, $0.125 \mathrm{~m}, \mathrm{TC}=70$	19701	5033E1K58F


Comoonent No	Tektronix Part No.	Serial/Assembly No. Effective Dacont	Name \& Description	Mfr. Code	Mir, Part $\mathrm{NO}_{2}$
A11a286407	315-0472-00	8010339	RES, FXD, FILM:4.7K OHM, 5\%, 0.25 K	57868	NTR25J-E04K7
A11a2R64 10	315-0152-00		RES, FXD, FIL 1 : 1.5 K OHM, $5 \times, 0.25 \mathrm{~K}$	57888	NTR25J-E01K5
A11A286411	315-0472-00		RES, FXD, FIL $: 4.7 \mathrm{KK}$ OH, $5 \mathrm{5K}, 0.25 \mathrm{~N}$	57868	NTR25J-E04K7
A11a286412	315-0103-00		RES, FXD, FIL $: 10 \mathrm{~K} 01 \mathrm{HN}, 5 \%, 0.25 \mathrm{~N}$	19701	5043CX10K00J
A11az86443	315-0223-00		RES, FXD, FILM: $22 \mathrm{~K} 01 \mathrm{H}, 5 \mathrm{~L}, 0.25 \mathrm{~N}$	19701	$5043 \mathrm{C} \times 22 \mathrm{K00J92U}$
A11azR6414	315-0223-00		RES, FXD, FILM: 22K OHM , 5K, 0.25 W	19701	5043CX22K00J92U
A11azR69 15	315-0222-00		RES, FXD , FILM:2.2K OHM, $5 \mathrm{~K}, 0.25 \mathrm{M}$	57668	NTR25J-E02K2
A19A296416	315-0472-00		RES, FXD, FILM:4.7K OHM,5\%,0.25M	57668	NTR25J-E04K7
A19A2R6417	315-0472-00		RES, FXD, FILM:4.7K OHM, $5 \%, 0.25 \mathrm{H}$	57668	NTR25N-E04K7
A11A2R6418	321-0269-00		RES, FXD, FILM:6.19K OHM, 1\%,0.125m, $\mathrm{TC}=$ T0	07716	CER061900F
A11azR6919	315-0222-00		RES, FXD, FIL $=2.2 \mathrm{~K}$ OHN, $5 \mathrm{~L}, 0.25 \mathrm{~K}$	57688	NTR25J-E02K2
A11A286420	315-0102-00		RES, FXD, FIUS:1K OHM, 5\%, 0.25 H	57688	NTR25JE01k0
A11a286421	315-0164-00		RES, FXD, FILM: 160K OHM, 5\%, 0.25 K	57688	NTR25J-E160K
A11A286422	315-0473-00		RES, FXD, FIL M: 47 K OHM , $5 \mathrm{~K}, 0.25 \mathrm{~N}$	57668	NTR25J-E47K0
A11a2R6423	315-0473-00		RES, FXD, FILM $47 \mathrm{KK} 0 \mathrm{HM}, 5 \mathrm{~K}, 0.25 \mathrm{M}$	57688	NTR25J-E47K0
A11a286424	321-0344-00		RES, FXD, FILM: 37.4 K OHM, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED 37K40F
A11a286425	321-0344-00		RES, FXD, FILA 37.4 K OHM, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED 37K40F
A11A296426	315-0363-00		RES, FXD,FILM:36K OHM , 5\%, 0.25 N	57688	NTR25J-E36K0
A11a296427	315-0513-00		RES , FXO, FILM: 51K OHM , 5\%, 0.25 M	57668	NTR25J-E51K0
A11A2R6428	315-0104-00		RES, FXD, FILM: 100K OHM, $5 \chi, 0.25 \mathrm{~N}$	57668	NTR25J-E100K
A11A2R6429	321-0354-00		RES, FXD, FILS:47.5K OHM, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5043ED47K50F
A11A2R6432	321-0289-00		RES, FXO, FILS: 10.0 K OHM, 17, $0.125 \mathrm{~N}, \mathrm{TC}=$ T0	19701	5033ED10KOF
A11a2R6433	315-0103-00		RES, FXO, FILM: 10 K OHM, $5 \%, 0.25 \mathrm{~K}$	19701	$5043 \mathrm{Cx10KOOJ}$
A11A286434	315-0103-00		RES, FXD, FILM: 10 K OHM , 5\% , 0.25 M	19701	5043Cx10K00J
A11a2R6440	321-0243-00		RES, FXD, FILM:3.32K OHM, 1\%, $0.125 \mathrm{~N}, \mathrm{TC}=$ T0	19701	5033ED3K32F
A11a2R6441	321-0243-00		RES, FXD, FILM: 3.32 K OHM, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ T0	19701	5033ED3K32F
A11a2R6442	321-0229-00		RES, FXD, FILA: 1.96 K OHM, 12, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	19701	5043ED1K960F
A11azR6443	315-0102-00		RES, FXD, FILS:1K DHM, $5 \mathrm{~K}, 0.25 \mathrm{~N}$	57688	NTR25JE01K0
A11A2R6444	315-0102-00		RES, FXD, FILS: 1 K OHM, $5 \mathrm{~K}, 0.25 \mathrm{M}$	57668	NTR25JE01K0
A11A2R6445	315-0102-00		RES, FXD, FILIM: 1 K OHM, $5 \mathrm{~K}, 0.25 \mathrm{~K}$	57688	NTR25JE01K0
A1142U6301	156-0515-02		MICROCKT, DGTL: TRIPLE 3-CHAN MUX, SEL	80009	156-0515-02
A11A2U6302	156-1437-00		MICROCKT, LINEAR:VOLTAGE REF	04713	MC1404AU50S
A11azU6303	156-1156-00		MICROCKT, LINEAR:OPERATIONAL AMPLIFIER	27014	LF356N
A11azu6304	156-1156-00		MICROCKT, LINEAR:OPERATIONAL MUPLIFIER	27014	LF356N
A11A2U6305	156-2348-00		MICROCKT, LINEAR:HIGH PERFORMANCE OIFFERENTI AL INPUT SAMPLE \& HOLD AMPL	80009	156-2348-00
A11A2U6306	156-2348-00		MICROCKT , LIMEAR:HIGH PERFORMANCE DIFFERENTI AL INPUT SAMPLE \& HOLD AMPL	80009	156-2348-00
A11A2U6307	156-1158-00		MICROCKT LIMEAR:OPERATIONAL AMPLIFIER	27014	LF356N
A11a2U6308	156-1156-00		MICROCKT, LIMEAR:OPERATIONAL AMPLIFIER	27014	LF356N
A11azU6401	156-0048-00		MICROCKT, LINEAR:5 XSTR ARRAY	02735	Са3045
a11azU6402	156-0048-00		MICROCKT, LINEAR:5 XSTR ARRAY	02735	CA3046
A11AZU6403 A11A2U6404	$\begin{aligned} & 156-1381-00 \\ & 156-0901-00 \end{aligned}$		MICROCKT, LINEAR:3 NPN, 2 PNP, XSTR ARRAY MICROCKT, LINEAR:OPNL TRANSCONDUCTANCE AMPL arRay	$\begin{aligned} & 02735 \\ & 02735 \end{aligned}$	$\begin{aligned} & \text { CC3096AE-17 } \\ & \text { CA3060E } \end{aligned}$
A11A2U6405	156-0853-00		MICROCKT, LIMEAR:OPNL AMPL, DUAL	04713	L4358N
A11A2N6310	131-0586-00		BUS , CONO:DMAM RES , 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A11A2*6320	131-0566-00		BUS , COND: DUAMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A13	670-8705-00		CIRCUIT BD ASSY:SMEEP INTFC	80009	670-8705-00
A13C786	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\% , 50Y	04222	MAZ05E104MAA
A13C787	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\% , 50 V	04222	MA205E104MAA
A13C788	281-0775-00		CAP, FXO, CER DI:0.1UF, 20\% , 50 V	04222	MAZ05E104MAA
А13С6393	290-0920-00	8010338	CAP, FXO, ELCTLT: 33UF, $+50-102$, 35V	55680	ulbiv330teanna
A13J1304	131-0589-00		TERNINAL,PIN: 0.46 L $\times 0.025$ SD PH BRZ (QUANTITY OF 22)	22526	48283-029
A13J6421	131-0600-00		TERNINAL,PIN:0.365 L X 0.025 BRZ GLD PL (QUANTITY OF 5)	22526	48283-036


Component No.	Tektronix Part No.	Serial/Assembly No.   Effective Dscont	Name ${ }^{\text {a }}$ Description	Mfr. Code	Mfr. Part No.
a13R723	321-0273-00		RES, FXD, FILM:6.81K OHM, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAD68100F
A13R725	321-0258-00		RES, FXD, FILM:4.75K Of⿴囗	19701	5033ED4K750F
A13R729	321-0273-00		RES, FXO, FILM:6.81K OHM, 1\%, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	07716	CEAD68100F
913R734	307-0730-00		RES NTWK,FXD,FI:7,47K OHm, 2\%,0.18N EA	11236	750-81-R47K
A13R735	307-0730-00		RES NTHK, FXD,FI:7,47K OHM,24,0.18N EA	11236	750-81-R47K
A13R736	307-0730-00		RES NTMK, FXD,FI:7,47K OHN,2K,0.18* EA	11236	750-81-R47K
A13R791	315-0822-00		RES, FXD, FILM:8.2K OHM, 5\%,0.25M	19701	5043CX8X200J
-13R794	315-0331-00	B010100 8010338	RES, FXO, FILM:330 OHM,5\%,0.254	57668	NTR25J-E330E
A13R794	315-0271-00	B010339	RES, FXD, FILM:270 OHN, 5\%, 0.25\%	57668	NTR25J-E270E
913 P 795	315-0153-00		RES , FXD, FI LM: 15K OHM, 5\%,0.25\%	19701	5043C×15K00J
A13R798	315-0682-00		RES , FXD, FI Ma 6. BK OHM, 5\%, 0.25 M	57668	NTR25J-E06K8
A13U780	156-2466-00		MICROCKT, LINEAR:CMOS, QUAD DIFFERENTIAL VOLT age COMPARTOR	01295	TLC374CP
0130781	156-2466-00		MICROCKT, LIMEAR:CMOS , OUAD DIFFERENTIAL VOLT age coapartor	01295	TLC374CP
A13U782	156-2466-00		MICROCKT LIMEAR:CMOS, QUAD OIFFERENTIAL VOLT age compartor	01295	TLC374CP
A13U783	156-2467-00		MICROCKT, LINEAR:CMOS ,DUAL DIFFERENTIAL VOLT age compartor	01295	TLC372CP


014	670-8698-00
A14C5301	281-0775-00
A14C5302	281-0775-00
A14J6111	131-0589-00
A14R5301	321-0292-00
A14R5302	321-0318-00
A14R5303	321-1713-07
A14R5304	321-0373-00
A14R5305	321-0292-00
A14R5306	321-0318-00
A14R5307	321-1713-07
A14*5311	131-0566-00
A14*5312	131-0566-00
A15	670-8698-00
A15C5321	281-0775-00
A15C5322	281-0775-00
A15, 6112	131-0589-00
Q15R5321	321-0292-00
A15R5322	321-0318-00
A15R5323	321-1713-07
A15R5324	329-0373-00
A15R5325	321-0292-00
A15R5326	321-0318-00
A15R5327	321-1713-07
$\begin{aligned} & \text { A15 } 25321 \\ & \text { A15N5322 } \end{aligned}$	$\begin{aligned} & 131-0566-00 \\ & 131-0566-00 \end{aligned}$
016	670-8706-00
A16C7501	281-0775-00
A16, 5201	131-0608-00
A16, 99410	131-0608-00


CIRCUIT BO ASSY:LOGIC CH1 \& CH2   (CH 1 LOGIC BOARD)	80009	670-8698-00
CAP , FXO, CER DI:0.1UF, 20\% ,50Y	04222	MA205E104MAA
CAP , FXD, CER DI:0.1UF,20\%,50Y	04222	MA205E104MAA
TERMIMAL,PIM: $0.46 \mathrm{~L} \times 0.025$ SD PH BRI (RUPNTITY OF 3)	22526	48283-029
RES, FKD, FILIM: 10.7 K OHM, 12, 0.125 M , TC=TO	07716	CEAD10701F
RES, FXD, FILM:20.OK OHN, 1\%, 0. 125m, TC=TO	19701	5033ED20K00F
RES, FXO, FILM: 36 K OHM 0.12,0.1254, TC=T9	19701	5033RE36K008
RES, FKD, FILM:75.0K OHM, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ T0	19701	5033ED75K00F
RES, FXO, FILM:10.7K OHM, 12, $0.125 \mathrm{M}, \mathrm{TC}=$ T0	07716	CEA010701F
RES, FXO, FILM:20.0K OHM, 12, $0.125 \mathrm{~m}, \mathrm{TC}=$ T0	19701	5033E20K00F
RES, FXD, FILM: 36K OHM 0.12,0.125 $\mathrm{H}, \mathrm{TC=T9}$	19701	5033RE36K008
BUS, COND: DUANY RES, $0.09400 \times 0.2251$	24546	OMA 07
BUS, COND: DUAAM RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
CIRCUIT BO ASSY:LOGIC CH1 \& CH2   (CH 2 LOGIC BOARD)	80009	670-0698-00
CAP, FXO, CER DI:0.1UF,20\%,50Y	04222	MA205E104MAA
CAP, FXO, CER DI:0.1UF,20\%,50Y	04222	MAZ05E104MAA
TERMIMAL,PIN: $0.46 \mathrm{~L} \times 0.02550 \mathrm{PH}$ BRL (OUDNTITY OF 3)	22526	48283-029
RES, FKO, FI LM: 10.7 KK OHM, 12, $0.125 \mathrm{~m}, \mathrm{TC}=$ T0	07716	CEAD10701F
RES, FXD, FILM:20.0K OHN, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ T0	19701	5033 $020 \mathrm{O} 00 \%$
RES, FXO, FILW:36K OHM 0.12,0.125N, TC=T9	19701	5033RE36K008
RES, FXO, FILM: $75.0 \mathrm{~K} 0 \mathrm{HN}, 12,0.125 \mathrm{H}, \mathrm{TC}=$ TO	19701	5033E075K00F
RES, FXD, FIU: 10.7 K OHM, 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ T0	07716	CEAD10701F
RES, FXO, FILM:20.0K OHW, 12, $0.125 \mathrm{M}, \mathrm{TC}=$ T0	19701	5033E020K00F
RES, FXO, FILM: 36 K OHW $0.12,0.125 \mathrm{~N}, \mathrm{TC}=\mathrm{T} 9$	19701	5033RE36K008
BUS, COND: DUAMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
BUS , COND: DUANY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
CIRCUIT B0 ASSY:SMEEP REF	80009	670-8706-00
CAP, FXO, CER DI:0.1UF,20\%,50V	04222	MAZ05E104MAA
TERMINAL, PIN: $0.365 \mathrm{~L} \times 0.025$ BRI GLD PL (RUPNTITY OF 3)	22526	48283-036
TERMINAL,PIN: $0.365 \mathrm{~L} \times 0.025$ ERI GLD PL (QUANTITY OF 7)	22526	48283-036


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1607501	151-0188-00		TRANSISTOR:PNP, S1, T0-92	80009	151-0188-00
A1607502	151-0736-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0736-00
A16R721	311-2219-00		RES , VAR, NONWM: PNL, 500 OHM, 202, 0.5M, SPDT	12697	(AOVISE)
A16R7501	321-0222-00		RES, FXD, FILM:2.00K OHM , 12, $0.125 \mathrm{M}, \mathrm{TC}=$ TO	19701	5033EDZK00F
A16R7502	321-0269-00		RES, FXD, FIL : $6.19 \mathrm{~K} 0 \mathrm{MM}, 12,0.125 \mathrm{H}, \mathrm{TC}=$ TO	07716	CEA061900F
A16R7504	315-0120-00		RES, FXD, FILS: 12 OHM , 5\%, 0.25 K	57668	NTR25J-R12
A16R7505	321-0099-00		RES, FXD, FILM: 105 OHM , 12, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CER日105ROF
A16R7505	321-0085-00		RES, FXD, FIL : 75 OHM, 1\%, 0.125 m , TC=TO	57668	CRB14FXE 750 OHM
A16R7506	315-0181-00		RES, FXD, FIL $: 180$ OHM $, 5 \%, 0.25 \mathrm{~K}$	57668	NTR25J-E180E
A16R7507	311-2229-00		RES, VAR, NOMW: TRMR, $250 \mathrm{OHM}, 20 \%, 0.5 \mathrm{M}$ LINEAR	TK1450	GFO6UT 250
A16R7507	311-2231-00		RES, VAR,NOMNH: TRMR, 1 K OHM, 20\% , 0.5 K	TK1450	GFO6UT 1K
0165721	---------		(PART OF R721)		
A16M5201	175-9849-00		CA ASSY, SP , ELEC: 3 , 22 ATHT, 2.5 L,RIB8ON	80009	175-9849-00
A17	670-8780-00		CIRCUIT 80 ASSY:POSITION INTERFACE	80009	670-8780-00
A17J6113	131-0608-00		TERNINAL, PIN: 0.365 L $X 0.025$ BRL GLD PL (RUANTITY OF 4)	22526	48283-036
A17R120	321-0123-00		RES, FXD, FILM: 187 0¢m, 17, 0.125M, TC=T0	07716	CEAD187ROF
A17R121	321-0123-00		RES, FXO, FILM: 187 OHM, 12, $0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEA0187ROF
A17R170	321-0123-00		RES, FXD, FILK: 187 OHM, 12, 0.125 M , TC=TO	07716	CEA0187ROF
A17R171	321-0123-00		RES, FXO, FILK: 187 OHM, 14, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	07716	CEAD187ROF
A17R7320	307-0706-00		RES NTMK, FXD, FI: 4 , 10K OHM , 2\%, 0.2 K EA	01121	2088103
A17R7325	311-2238-00		RES, VAR, NOM	TK1450	GFO6UT 50 K
A17R7330	307-0706-00		RES NTWK, FXD, FI: $4,10 \mathrm{~K}$ OHM , 22, 0.2 Z EA	01121	2088103
A17R7335	311-2238-00			TK1450	GFO8UT 50 K
018	670-8998-00		CIRCUIT BD ASSY:THERMAL SHUTDONN	80009	670-8998-00
A18CR950	152-0141-02		SEMICOND DVC, DI:SN, SI, 30V , 150MA,30V	03508	DA2527 (1N4152)
A18CR951	152-0141-02		SEMICOND DVC, DI:SN, SI, 30V,150MA,30V	03508	DA2527 (1N9152)
A18, 1	131-0608-00		TERNINAL, PIN: $0.365 \mathrm{~L} \times 0.025$ BRL GLD PL	22526	48283-036
A180950	151-0503-00		SCR:SI, TO-92	04713	SCR5138
A18R956	315-0752-00		RES, FXO, FILH: 7.5 K OHM , 5\%,0.25	57668	NTR25.-E07k5
A18R957	315-0752-00		RES, FXD, FILH:7.5K OHM, 5K, 0.25 K	57668	NTR25J-E07K5
A18R958	315-0104-00		RES, FXD, FIUM: 100 K OHM , 5\%, 0.25 K	57668	NTR25J-E100K
A18R959	301-0103-00		RES, FXD,FILN: 10 K OHM, $5 \mathrm{~K}, 0.50 \mathrm{~N}$	19701	5053Cx10K00」
A18RT950	307-0662-00		RES, THERHAL: 1 K OHM, 40\%	50157	180010216
A18\%950	131-0589-00		TERNINAL,PIN:0.46 L X 0.025 SD PH BRZ (DUANTITY OF 3)	22526	48283-029
A20	670-6898-00		CIRCUIT BO ASSY:X-Y PLOTTER	80009	670-8898-00
A20C1001	281-0775-00		CAP, FXD, CER DI: $0.14 \mathrm{~F}, 20 \%$,50V	04222	MA205E104MAA
AZOC1002	281-0775-00		CAP, FXD, CER 01:0.1UF, 20\% ,50V	04222	Maz05E104MAA
A20C1003	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%, 50V	04222	MAZ05E104MAA
AZOC1004	281-0773-00		CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	MA201C103KAA
A22C1005	281-0773-00		CAP, FXO, CER DI:0.01UF, 10\%, 100V	04222	mazo1c103kaa
a $20 C 1006$	281-0773-00		CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	MA201C 103KAa
a20C1006	281-0775-01		CAP,FXO, PLASTIC:0.1UF, 20\%, 50 V	04222	MAZ05E104MAA
azOC1007	290-0297-00		CAP, FXD, ELCTLT: 39UF, 10\%, 10V	05397	T1108396K010as
A2OC1011	290-0246-00		CAP, FXD, ELCTLT:3.3UF, 107, 15V	12954	03R3EA15K1
AZOC1012	290-0246-00		CAP, FXD, ELCTLT:3.3UF, 107, 15V	12954	03R3EA15K1
A20C1013	290-0246-00		CAP, FXD, ELCTLT:3.3UF, 10\%, 15V	12954	D3R3EA15K1
a $20 C 1014$	290-0246-00		CAP, FXD, ELCTLT:3.3UF, 10\%, 15V	12954	D3R3EA15K1
A2OC1015	290-0246-00		CAP, FXD, ELCTLT:3.3UF, 10\%, 15V	12954	03R3EA15K1
A20CR1001	152-0141-02		SEMICOND OVC, DI:SN, SI, 30V , 150MA, 30V	03508	DA2527 (1N4152)
A2OCR1002	152-0141-02		SEMICOND OVC, ${ }^{\text {d }}$ :SM, $51,30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	DA2527 ( 1 N4152)
A20CR1003	152-0141-02		SEMICOND OVC, ${ }^{\text {d }}$ :SN, $51,30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	DA2527 (1N4152)
A2OCR1011	152-0141-02		SEMICOND OVC, DI:SN, $51,30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	DA2527 (1N4152)


Component No,	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr, Part No.
A20CR1012	152-0141-02		SEAICOMD DVC, DI: SM, SI, 30V, 150MA, 30V	03508	DA2527 (1N4 452)
A20CR1014	152-0141-02		SEIICOND DVC, DI:SM, SI , 30V, 150Ma,30V	03508	DA2527 (1N4152)
AZOCR1016	152-0141-02		SEMICOND DVC, DI: SM, SI , 30V, 150MA, 30V	03508	002527 (1N4152)
A20F1001	159-0090-00		FUSE, MIRE LEAD:0.25A,125V,0.085SEC	TK0946	SP1-0.25 A
A20J1011	131-3390-00		COWN, RCPT, ELEC:D SUBMIN, CKT BO, 9 CONTACT	13556	DE-9SV
A20, 4110	131-0589-00		TERNIMAL,PIN: $0.46 \mathrm{~L} \times 0.025$ SO PH BRZ (DUANTITY OF 2)	22526	48283-029
A20J6423	131-0599-00		TERNINAL,PIN:0.46 L X 0.025 SQ PH 日RZ (QUANTITY OF 4)	22526	48283-029
A20J9301	131-0589-00		TERMINAL,PIN: $0.46 \mathrm{~L} \times 0.025$ SO PH BRZ (QUANTITY OF 5)	22526	48283-029
A20K1001	148-0086-00		RELAY, REED: FORM $\mathrm{C}, 100 \mathrm{MA}, 100 \mathrm{VOC}, 150$ OHM	15636	R8149-1
A20L1001	108-0443-00		COIL, RF:FIXED, 23.5UH	80009	108-0443-00
A20L1002	108-0443-00		COIL,RF: FIXED, 23.5UH	80009	108-0443-00
A20L1003	108-0422-00		COIL,RF:FIXED,80LH	80003	108-0422-00
A2001011	151-0188-00		TRANSISTOR: PNP, SI, T0-92	80009	151-0188-00
42001012	151-0188-00		TRANSISTOR: PNP, SI, T0-92	80009	151-0188-00
A20R1001	301-0202-00		RES, FXD, FILH:2K OHm, $5 \%, 0.5 \mathrm{~N}$	19701	5053CX2K000J
A20R1002	301-0202-00		RES,FXO,FILH:2K OHM ,5\%,0.5N	19701	5053CX2K000J
A20R1005	315-0332-00		RES, FXD, FILH:3.3K OHM, 5\%, 0.25 N	57668	NTR25J-E03K3
A20R1011	315-0473-00		RES, FXD, FILH: 47 K OHM, $5 \%, 0.25 \mathrm{~N}$	57668	NTR25J-E47K0
A20R1012	315-0681-00		RES, FXD, FILM:680 OHM , 5\%, 0.25 N	57668	NTR25N-E680E
A20R1013	301-0202-00		RES, FXD, FILM: 2 K OHM, $5 \%, 0.5 \mathrm{H}$	19704	5053CX2K000J
A20R1014	315-0473-00		RES, FXD, FILM:47X OHM , 5\%, 0.25	57668	NTR25J-E47K0
A20R1015	315-0134-00		RES, FXD, FILH:130K OHM, 5\%, 0.25 M	57668	NTR25J-E130K
A20R1016	315-0105-00		RES, FXD, FILM: 1M OHM, 5\%, 0.25\%	19701	$5043 \mathrm{CX14000J}$
A20R1017	315-0112-00		RES, FXD, FILA: 1. 1K OfM, $5 \%, 0.25 \mathrm{~m}$	19701	5043CX1K100」
A20v1001	156-2667-00		MICROCKT, LINEAR: QUAD LOA P PNR,OPERATIOMAL AM PLIFIERS MC3403,14 DIP,MI	80009	156-2667-00
AZOVR1011	152-0195-00		SEMICOND DVC, OI: $2 E N, S I, 5.1 \mathrm{~V}, 5 \%, 0.4 \mathrm{~N}, 00-7$	04713	S111755RL
azovR1012	152-0195-00		SEMICOND OVC, DI : $2 \mathrm{EN}, \mathrm{SI}, 5.1 \mathrm{~V}, 5 \%, 0.4 \mathrm{~N}, 00-7$	04713	S111755RL
A20~1001	131-0566-00		BUS,COMD: DUANY RES $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A20 1002	139-0566-00		BUS, COND: dunay RES, 0.094 OD X 0.225L	24546	01407
A21	670-8899-00		CIRCUST BD ASSY:RS232   (OPTION 12 ONLY)	80009	670-8899-00
A2181	146-0056-00		BATTERY, DRY:3.0V, 1200 MAH,LITHIUM, ASSY, 7 IN CH LEAOS, 5 PIN HARIONICA CONECTOR	TK0196	8431381
A21C1001	281-0775-00		CAP, FXO, CER OI:0.1UF,20\%,50Y	04222	MAZ05E1044AA
A21C1002	281-0775-00		CAP, FXQ, CER DI:0.1UF, 20\%,50V	04222	MAZ25E104MAA
A21C1003	281-0775-00		CAP, FXD, CER DI:0.1UF,20X,50V	04222	MAZ05E104MAA
A21C1004	281-0773-00		CAP, FXD, CER DI:0.04UF, 10\%, 100Y	04222	MA201C103KAA
A21C1005	281-0773-00		CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	MA201C103KAA
A21C1006	281-0773-00		CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	Maz01C103KAA
A21C1007	290-0297-00		CAP, FXD, ELCTLT:39UF, 10\%,10V	- 05397	T1108396K010AS
A21C1011	230-0246-00		CAP, FXD, ELCTLT:3.3UF, 10\%, 15V	12954	03R3EA15K1
A21C4012	290-0246-00		CAP, FXD, ELCTLT:3.3UF, 10\%, 15V	12954	03R3EA15K1
A21C1013	290-0246-00		CAP, FXD, ELCTLT:3.3UF, 10\%, 15V	12954	03R3EASKK1
A21C1014	290-0246-00		CAP, FXO, ELCTLT:3.3UF, 10\%, 15V	12954	03R3EA15K1
A21C1015	290-0246-00		CAP, FXD, ELCTLT: 3.3UF, 107,15Y	12954	D3R3EA15K1
A21C1221	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50Y	04222	MA205E104MAA
A21C1222	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MAZ05E1044AA
a21C1223	281-0775-00		CAP, FXD, CER D1:0.1UF,20\%,50V	04222	MA205E104MAD
A21C1224	281-0775-00		CAP, FXD, CER 01:0,1JF, 20\%,50Y	04222	MAZ205E104máa
A21C1225	283-0197-00		CAP, FXD, CER DI:470PF,5\%,50V	04222	SR2054471JAA
A21C1226	283-0197-00		CAP, FXO, CER DI:470PF,5\%,50V	04222	SR205A471JAA
A21C1227	283-0197-00		CAP, FXD, CER DI:470PF,5\%,50V	04222	SR205a471JAA
A21C1228	283-0197-00		CAP,FXD, CER DI:470PF,5\%,50V	04222	SRZ05A471JAA
A21C1229	283-0197-00		CAP, FXO,CER DI:470PF,5\%,50V	04222	SR205A471JAA


Component No,	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A21C1232	281-0773-00		CAP , FXD , CER DI:0.01UF, 10\% , 100V	04222	MA201C103kan
A21C1233	281-0773-00		CAP, FXD, CER OI:0.01UF,10\%, 100V	04222	MA201C103KAA
A21C1234	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A21C1235	281-0775-00		CAP, FXD, CER OI:0.1UF,20\%,50V	04222	MA205E104MAA
A21C1236	283-0197-00		CAP, FXD, CER 0I:470PF,5\%,50V	04222	SR205A471JAA
A21C1237	281-0775-00		CAP, FXO,CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A21C1238	283-0197-00		CAP , FXO, CER DI:470PF, 5L, 50V	04222	SR205a471JAA
A21C1239	283-0197-00		CAP, FXD, CER DI:470PF,5\%,50V	04222	SR205A471JAA
A21C1240	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A21C1242	281-0773-00		CAP, FXD, CER DI:0.01UF,10\%,100V	04222	MA201C103KAA
A21C1243	281-0773-00		CAP, FXD, CER DI:0.01UF,10\%,100V	04222	MA201C103KAD
A21C1244	281-0773-00		CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	Mazo1ctiozkan
A21C1251	281-0773-00		CAP, FXD, CER DI:0.01UF, 10\%, 100V	04222	MA201C103kan
A21C1252	283-0639-00		CAP, FXD, MICA DI:56PF,1\%,100V	00853	D155E560F0
A21C1253	283-0639-00		CAP , FXD, MICA DI:56PF,1\%,100V	00853	D155E560F0
A21CR1001	152-0141-02		SEIICONO DVC, DI:SN, SI, 30V, 150MA,30V	03508	DA2527 (1N4152)
A21CR1002	152-0144-02		SEIICOND DVC, DI:SN,SI , 30V, 150MA,30V	03508	DA2527 (1N4152)
A21CR1003	152-0141-02		SEIICOND DVC, DI:SN, SI, 30V, 150MA,30V	03508	DA2527 (1N4 452)
A21CR1011	152-0141-02		SEIICOND DVC, DI:SN,SI, 30V,150MA,30V	03508	DA2527 ( 1 +4 452)
A21CR1012	152-0141-02		SEMICOND DVC, DI:SN,SI, 30V, 150MA,30V	03508	DA2527 (1N4152)
A21CR1014	152-0141-02		SEMICOND DVC, DI:SN,SI, 30V, 150MA,30V	03508	DA2527 (1N4152)
A21CR1016	152-0141-02		SEMICOND DVC, DI:SN, SI, 30V, 150MA, 30V	03508	DA2527 ( 1 N4 452)
A21CR1221	152-0834-01		SEMICOND DVC, DI: 16 DIODE ARRAY, COMMON AMADE $, 35 \mathrm{~V}, 4 \mathrm{NS}$	80009	152-0834-01
A21CR1222	152-0835-01		SEIICOND DVC, DI: 16 DIODE ARRAY, COMNON CATHO DE, 35 V ,4NS	80009	152-0835-01
A21CR1223	152-0141-02		SEMICOMD OVC, OI:SH, SI , 30V, 150MA,30V	03508	002527 ( 1N4152)
A21CR1224	152-0141-02		SEIICOND DVC, DI:SM, SI, 30V, 150mA,30V	03508	DA2527 (1N4152)
A21E1011	315-0681-00		RES , FXD, FILM: 6800 OHM , 54, 0.25 M	57668	NTR25J-E680E
A21F1001	159-0090-00		FUSE, MIRE LEAO:0.25A, 125V , 0.085SEC	TK0946	SP1-0.25 A
A21J1011	131-3390-00		CONW,RCPT, ELEC:O SUAMIN,CKT BD, 9 CONTACT	13556	DE-9SV
A21J1212	131-0813-00		CONW,RCPT, ELEC:CKT 80 MT, 25 CONT, MALE	13511	177-08-25P-T
A21J1214	131-0974-00		CONN, RCPT, ELEC:CKT 80 MT, 25 CONTACT, FEMALE	71468	0825-SH
A21J1216	131-0589-00		TERHINAL, PIN: $0.46 \mathrm{~L} \times 0.025$ SO PH BRZ	22526	48283-029
A21J1217	131-0589-00		TERHIMAL, PIN: $0.46 \mathrm{~L} \times 0.025$ SO PH 8RZ	22526	48283-029
A21J1272	131-0589-00		TERNINAL,PIN: $0.46 \mathrm{~L} \times 0.025$ SO PH BRZ (QUANTITY OF 20)	22526	48283-029
A21J1231	131-0589-00		TERHINAL, PIN: $0.46 \mathrm{~L} \times 0.025$ SO PH 8RZ	22526	48283-029
A21J1242	131-0589-00		TERUINAL, PIN: $0.46 \mathrm{~L} \times 0.025$ SO PH BRL	22526	48283-029
A21J1251	131-0589-00		TERNINAL,PIN: $0.46 \mathrm{~L} \times 0.025$ SO PH BRZ (QUANTITY OF 20)	22526	48283-029
A21J4110	131-0589-00		TERMINAL,PIN: 0.46 L X 0.025 SO PH BRL (QUANTITY OF 2)	22526	48283-029
A21J6423	131-0569-00		TERNINAL, PIN: $0.46 \mathrm{~L} \times 0.025$ SO PH BRI (QUANTITY OF 4)	22526	48283-029
A21J9301	131-0589-00		TERNINAL,PIN:0.46 L X 0.025 SO PH BRZ (QUANTITY OF 5)	22526	48283-029
A21K1001	148-0086-00		RELAY, REED: FORM C, 100MA, 100VDC, 150 OHM	15636	R8149-1
A21L1001	108-0443-00		COIL,RF:FIXED, 23.5UH	80009	108-0443-00
A21L1002	108-0443-00		COIL, RF: FIXED, 23.5UH	80009	108-0443-00
A21L1003	108-0422-00		COIL, RF: FIXED, 80UH	80009	108-0422-00
A2101011	151-0188-00		TRANSISTOR: PNP, SI, T0-92	80009	151-0188-00
A2101012	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
02101221	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A21R1001	301-0202-00		RES, FXD, FILM:2K OWM, 5K, 0.5 M	19701	5053CX2K000J
A21R1002	301-0202-00		RES, FXD, FILM:2K OHM , 5K, 0.5 N	19701	5053CX2K000J
A21R1005	315-0332-00		RES, FXD, FILM:3, 3K OHM, $5 \%, 0.25 \mathrm{M}$	57868	NTR25J-E03K3
A21R1014	315-0473-00			57668	NTR25J-E47K0
A21R1012	315-0681-00		RES , FXD, FILM: 680 OHM , 5\% , 0.25 N	57668	NTR25J-E680E


Component No，	Tektronix Part No．	Serial／Assembly No．   Effective Dscont	Name \＆Description	Mtr． Code	Mfr，Part No．
A21R1013	301－0202－00		RES，FXO，FILM：2K OHM ，5\％， 0.5 N	19701	5053CX2K000」
A21R1014	315－0473－00		RES，FXD，FILM：47K OHM，5\％， 0.25 N	57668	NTR25J－E47K0
A21R1015	315－0134－00		RES，FXO，FILM：130K OHM，5\％，0，25N	57668	NTR25，－E130K
Q21R1016	315－0105－00		RES，FXO，FILM：1M OHM ， $5 \%, 0.25 \mathrm{H}$	19701	$5043 C \times 11000 \mathrm{~J}$
A21R1017	315－0112－00		RES，FXO，FILM：1．1K OHM，5\％， 0.25 H	19701	5043CX1K100」
A21R1212	315－0103－00		RES，FXO，FILM： 10 K OHM， $5 \%, 0.25 \mathrm{~K}$	19701	$5043 \mathrm{CX10K00J}$
A21R1213	315－0103－00		RES，FXD，FILM： 10 K OHM， $5 \%, 0.25 \mathrm{~K}$	19701	5043C×10K00」
A21R1214	315－0103－00		RES，FXO，FILM：10K OHM，5\％，0．25K	19701	5043CX10K00J
A21R1221	315－0472－00		RES ，FXO，FIUM：4．7K OHM，5\％，0．25\％	57668	NTR25J－E04K7
a21R1222	307－0445－00		RES NTWK，FXO，FI：4．7K OHM，20\％，（9）RES	32997	4310R－101－472
A21R1223	315－0472－00		RES，FXD，FILM：4．7K OHM ，5\％，0．25N	57668	NTR25．－E04K7
A21R1224	315－0103－00		RES，FXD，FIUM：10K OHM， $5 \%, 0.25 \mathrm{~N}$	19701	$5043 \mathrm{CX10K00J}$
Q21R1234	315－0472－00		RES，FXD，FILM：4．7K OHM ，5\％， 0.25 M	57668	NTR25，－E04K7
A21R1235	315－0272－00		RES，FXD，FILM：2．7K OHM，5\％，0．25M	57668	NTR25J－E02X7
A21R1243	315－0472－00		RES，FXD，FI M：4．7K OHM ，5\％， 0.25 M	57668	NTR25J－E04K7
A21R1244	315－0472－00		RES，FXD，FILM：4．7K OHM，5\％，0．25K	57668	NTR25，E04K7
A21R1245	315－0472－00		RES，FXO，FILM：4．7K OHM，5\％， 0.25 W	57668	NTR25J－E04K7
A21R1246	315－0472－00		RES，FXD，FIUM：4．7K OHM，5\％， 0.25 M	57668	NTR25J－E04K7
A21R1248	315－0472－00		RES ，FXD，FILM：4．7K OHM ，5\％， 0.25 M	57668	NTR25J－E04K7
A21R1251	315－0472－00		RES，FXD，FILM：4．7K OHM，5\％，0．25M	57668	NTR25，－604K7
A21R1252	315－0472－00		RES，FXD，FJLM：4．7K OHM ，5\％， 0.25 N	57668	NTR25，－E04K7
A21R1253	315－0472－00		RES，FXD，FILM：4．7K OHM，5\％， 0.25 K	57668	NTR25，E04K7
Q2181255	315－0106－00		RES，FXD，FIU 10 M OHM， $5 \%, 0.25 \mathrm{~N}$	01121	CB1065
A2151221	260－2272－00		SNITCH，ROCKER：SPST ，2．54，28V	97525	240010GP
A21U1001	156－2667－00		MICROCKT，LIMEAR：QUAD LON PHR，OPERATIONAL AM PLIFIERS MC3403，14 OIP，MI	80009	156－2667－00
A21U1222	156－2391－00		MICROCKT，OGTL：ALSTTL，OCTAL BUFFER \＆DRIVER h／3 STATE OUT	01295	SM74ALS54143
02101223	156－2391－00		MICROCKT，DGTL：ALSTTL，OCTAL BUFFER \＆DRIVER W／3 STATE DUT	01295	SM74ALS541N3
A21U1224	156－0878－01		MICROCKT，DGTL：QUAD LINE RCYR	04713	MC1489LDS
A21J1225	156－0879－01		MICROCKT，DGTL：QUAD LINE DRIVER	04713	MC1488LD
A21U1231	156－1748－02		MICROCKT，DGTL：OCTAL BUS XCYR M／3－STATE OUT	01295	SN74ALS245AN3／J4
A21U1232	156－0875－02		MICROCKT，DGTL：DUAL 2－n／2 INP AOI GATES	04713	SM74LS51M0S
A21U1233	156－2391－00		MICROCKT，DGTL：ALSTTL，OCTAL BUFFER $\%$ DRIVER h／3 STATE OUT	01295	SN74ALS541N3
Q21U1234	156－2093－00		MICROCKT，OGTL：QUAD 2－INP POSITIVE OR GATE	01295	SN74ALS32N3／J4
A21J1235	156－1432－02		MICROCKT，DGTL：DUAL 2／4 LINE DECOOER／DEHXX	01295	SNT4LS156 NP3
A21U1236	156－2603－00		MICROCKT，DGTL：CHOS ，ADORESSABLE LATCH， 8 EIT	02735	CO74HCT259E
A21U1241	156－2391－00		MICROCKT，DGTL：ALSTIL，OCTAL BUFFER \＆ORIVER W／3 STATE OUT	01295	SM74ALS54 1N3
A2101242	156－2012－00		MICROCKT ，DGTL：MOS ，2048 X E SRAM，SCREENED	80009	156－2012－00
A21U1243	156－2447－00		MICROCKT，DGIL：256K UN ERASABLE PROM	80009	156－2447－00
A21U1243	160－2998－00		MICROCKT，DGTL： $16384 \times 8$ EPROM，PREM	80009	160－2998 00
921U1244	156－2094－00		MICROCKT，DGTL：HEX INVERTERS	01295	SN74ALS04BN3／J4
A21U1245	156－2488－00		MICROCKT，DGTL：ASTTL，DECODE／DEMUX，OCTAL	07263	74 F548 PCDR
A21U1251	156－2438－00		MICROCKT，DGTL：CMOS ，SERIAL COMN INTERFACE	34371	C082C52／8
A21U1343	160－2998－00		MICROCKT，DGTL：16384 X 8 EPROM，PRGM	80009	160－2998 00
A21VR1011	152－0195－00		SEAICOMD OVC，DI： 2 N, SI ，5．1V，5\％，0．4N，00－7	04713	S211755RL
A21VR1012	152－0195－00		SEMICOMD DVC，DI： $2 \mathrm{EN}, \mathrm{SI}, 5.1 \mathrm{~V}, 5 \mathrm{~K}, 0.4 \mathrm{~N}, 00-7$	04713	S211755RL
A21VR1221	152－0520－00		SEMICOAD OVC，DI： $2 \mathrm{EN}, \mathrm{SI}, 12 \mathrm{~V}, 5 \%, 1 \mathrm{~N}, 00-41$	15238	26033
a21VR1222	152－0520－00		SEAICOMD DVC，DI：2EN，SI，12V，5\％，1h，00－41	15238	26033
a21VR1223	152－0520－00		SEMICOMD DVC，DI： $2 E N, S I, 12 \mathrm{~V}, 5 \%, 1 \mathrm{~N}, 00-41$	15238	16033
a21VR1224	152－0520－00		SEMICOMD OVC，DI： $2 \mathrm{E}, \mathrm{SI}, 12 \mathrm{~V}, 5 \%, 1 \mathrm{~N}, 00-41$	15238	26033
A21VR1232	152－0667－00		SEMICOND DVC，DI：2EN，SI，3．0 V 22 at 2HA	04713	S2630025RL
A21＊1001	131－0566－00		BUS，COMD：DLAMY RES， $0.09400 \times 0.225 \mathrm{~L}$	24546	0 0wa 07
a21n1002	131－0566－00		BUS，COMD：DUMAY RES， $0.09400 \times 0.225 \mathrm{~L}$	24546	OMa 07
a21M1216	131－0566－00		BUS，COMD：DUMEY RES， $0.09400 \times 0.225 \mathrm{~L}$	24546	$0 \times 107$
a21N1217	196－3137－00		LEAD，ELECTRICAL：26 ANG，5．6 L	80009	196－3137－00



Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr, Part No.
a22k1001	148-0086-00		RELAY , REED: FORN C, $100 \mathrm{MA}, 100 \mathrm{VOC}, 150$ OHM	15636	R8149-1
A22L1001	108-0443-00		COIL, RF: FIXE0,23.5UH	80009	108-0443-00
A22L1002	109-0443-00		COIL, RF: FIXE0, 23.5UH	80009	108-0443-00
A22L1003	108-0422-00		COIL,RF:FIXED, 80UH	80009	108-0422-00
A2201011	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A2201012	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A22R1001	301-0202-00		RES, FXO, FILM:2K OHM, 5K, 0.5 M	19701	5053CX2K000」
A22R1002	301-0202-00		RES, FXO, FILM:2K OHM, 5X, 0.5 N	19701	5053CX2K000J
A22R1005	315-0332-00		RES, FXO, FILM: 3.3 K OHN, $5 \mathrm{~L}, 0.25 \%$	57668	NTR25J-E03K3
A22R1011	315-0473-00		RES, FXO,FILM: 47 K OHHN, $5 \mathrm{~K}, 0.25 \mathrm{~N}$	57668	NTR25J-E47K0
A22R1012	315-0681-00		RES, FXO, FILM: 680 OHMN, 5X, 0.25 M	57668	NTR25J-E680E
A22R1013	301-0202-00		RES, FXO, FILM: 2 Z OHM, $5 \mathrm{LK}, 0.5 \mathrm{M}$	19701	5053CX2K000J
A22R1014	315-0473-00		RES , FXO, FILM:47K OHM , 5K , 0.25\%	57668	NTR25J-E47K0
A22R1015	315-0134-00		RES, FXD, FILM: 130K OHM, 5x, 0.25 M	57668	NTR25J-E130K
A22R1016	315-0105-00		RES, FXD, FIUM: 1 M OHM, $5 \mathrm{~L}, 0.25 \mathrm{M}$	19701	5043CX14000J
A22R1017	315-0112-00		RES, FXO, FILM: 1.1K OHM, $5 \mathrm{~L}, 0.25 \mathrm{M}$	19701	5043CX1K100J
A22R1321	315-0472-00		RES, FXO, FILM:4.7K OHM,5\%,0.25	57668	NTR25J-E04K7
A22R1322	307-0445-00		RES NTMK, FXO, FI:4.7K OHM, 20\%, (9)RES	32997	4310R-101-472
A22R1323	315-0472-00		RES, FXO, FILM:4.7K OHM, 5\%, 0.25 M	57668	NTR25J-E04K7
A22R1335	315-0272-00		RES, FXO, FILM:2.7K OHW, 5\%, 0.25 W	57668	NTR25j-E02K7
A22R1341	315-0472-00		RES, FXO, FILM: 4.7 K OHHN, 5\%, 0.25 M	57668	NTR25J-E04K7
A22R1342	315-0472-00		RES, FXO, FILM:4.7K OHN, 5K, 0.25 M	57668	NTR25J-E04K7
A22R1343	315-0472-00		RES, FXO, FILM:4.7K OHM, 5K, 0.25 W	57668	NTR25J-E04K7
A22R1344	315-0472-00		RES, FXD, FILM:4.7K OHEN,5\%,0.25M	57668	NTR25J-E04K7
A22R1345	315-0472-00		RES, FXO, FILM:4.7K OHM, 52, 0.25 M	57668	NTR25J-E04K7
A22R1346	315-0472-00		RES, FXO, FILM: 4.7 K OHM, 5K, 0.25 N	57668	NTR25J-E04K7
A22R1348	315-0472-00		RES, FXO, FILM: 4.7K OHM, 5K, 0.25 N	57668	NTR25J-E04K7
A22R1351	315-0472-00		RES, FXO, FILM:4.7K OHW, 5K, 0.25 M	57668	NTR25J-E04K7
A22R1352	315-0472-00		RES, FXO, FILM:4.7K OHN, 5K, 0.25 N	57668	NTR25J-E04K7
A22R1353	315-0472-00		RES , FXD, FILM: 4.7 K OHM, $5 \mathrm{5K}, 0.25 \mathrm{~N}$	57668	NTR25N-E04K7
A2251321	260-2272-00		SWITCH, ROCKER:SPST , 2.5A, 28V	97525	2400106P
A22U1001	156-2667-00		MICROCKT, LINEAR:QUAO LOW PNR,OPERATIONAL AM PLIFIERS MC3403,14 OIP, MI	80009	156-2667-00
A22J1243	160-2998-00		MICROCKT, DGTL:16384 $\times 8$ E EPROM, PRGM	80009	160-2998-00
A22U1322	156-2391-00		MICROCKT, DGTL: ALSTTL,OCTAL BUFFER \& DRIVER h/3 STATE OUT	01295	5N749L5541N3
A22U1323	156-2391-00		MICROCKT, DGTL:ALSTTL,OCTAL BUFFER \& ORIVER h/3 state out	01295	SN74ALS541N3
A22J1324	156-1415-01		MICROCKT, DGTL:OCTAL GPIE XCVR-MAMMGEMENT	27014	OS75161A Na+
A22U1325	156-1414-02		MICROCKT, DGTL:OCTAL GPIB BUS XCVR, SCRN	27014	DS75160A N
A22U1331	156-1740-02		MICROCKT , DGTL:OCTAL BUS XCVR M/3-STATE OUT	01295	SN74ALS245AN3/J4
A22U1332	156-0875-02		MICROCKT, DGTL:DUAL 2-W/2 INP MOI GATES	04713	SNT4LS51NOS
A22U1333	156-2391-00		MICROCKT,DGTL:ALSTTL,OCTAL BUFFER $\&$ ORIVER W/3 STATE OUT	01295	SW74ALS541N3
A2211334	156-2093-00		MICROCKT, DGIL:QUAD 2-INP POSITIVE OR GATE	01295	SN74ALS32N3/J4
22211335	156-1919-00		MICROCKT, DGTL: DUAL POS EDGE TRIGGERED FF	04713	MC74F103 MD/JD
22201336	156-2095-00		MICROCKT, DGTL:QUAORUPLE 2-INPUT EXCLUSIVE	01295	5N74ALS86N3/J4
A22U1341	156-2391-00		MICROCKT, OGTL:ALSTTL,OCTAL BUFFER $\&$ ORIVER m/3 STATE OUT	01295	SNT4ALS541M3
A22U1342	156-2012-00		MICROCKT, DGTL:MOS , $2048 \times 8$ SRAM, SCREENED	80009	156-2012-00
A22U1343	156-2447-00		MICROCKT , 06TL:256K UV ERASARLE PROM	80009	156-2447-00
A22U1343	160-2998-00		WICROCKT, DGTL: $16384 \times$ X EPROW , PRGM	80009	160-2998-00
02213344	156-2094-00		MICROCKT , DGTL:HEX INVERTERS	04295	SN74ALSO4BN3/J4
A22U1345	156-2488-00		MICROCKT, DGTL:ASTTL, OECOOE/DENXX, DCTAL	07283	74F548 PCOR
A2213351	156-1444-01		MICROCKT, DGTL:MOS, GPIB INTFC CONTROLLER	01295	TMS9914A (NL
A22VR1011	152-0195-00			04713	S211755RL
A22VR 1012	152-0195-00			04713	S214755RL
A22VR1321	152-0757-00			04713	1)4735A
A22N1001	131-0566-00		BUS,COAD:OUMEY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07


Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mir. Part No.-
a $22 \times 1002$	131-0566-00		BUS , COND: OUAMY RES $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A22*1316	131-0566-00		BUS, COND: DUANY RES $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A22*1324	131-0566-00		BUS, COND: DUAMY RES $0.09400 \times 0.225 L$	24546	OMA 07
A22N1341	131-0566-00		BUS, COND: OUAEYY RES , $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A2248101	175-9847-00		CA ASSY, SP, ELEC:50,28 ALC, 2.5 L,RIABON	80009	175-9847-00
A23	670-8952-00		CIRCUIT BD ASSY:OPT MEMORY   (OPTION 12,10 ONLY)	80009	670-8952-00
A23C1406	290-0983-00		CAP, FXD, ELCTLT: 4.7 PUF, 5x, 10VDC	56289	1500475×5010A2
A23C1112	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\% , 50Y	04222	MAZO5E104MAA
A23C1118	285-0674-00		CAP, FXD, PLASTIC:0.01UF , 10\%, 100V	84411	TEX270-10391
A23C1120	290-0920-00		CAP, FXD, ELCTLT: $33 \mathrm{OF},+50-10 \%$,35V	55680	ULB1V330TEAANA
A23C1128	285-0808-00		CAP, FXD, PLASTIC: $0.10 \mathrm{~F}, 102$, 50 V	04099	EK13-16
A23C1132	283-0108-02		CAP, FXD, CER DI:220PF, 10\%,200V	56289	ORDER BY DESCR
A23C1134	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\% , 50V	04222	MAZ25E104MAA
A23C1138	285-0674-00		CAP, FXO, PLASTIC: $0.014 \mathrm{~F}, 10 \%$, 100V	84411	TEK270-10391
A23C1142	283-0059-00		CAP, FXD, CER DI:1UF,+80-20\%,50V	31433	C330C105m5R5CA
A23C1143	281-0775-00		CAP, FXD, CER DI:0.1UF, 20\%, 50 Y	04222	Mazose 104ma
A23C1148	285-0808-00		CAP, FXD, PLASTIC: $0.14 \mathrm{~F}, 10 \%$,50V	04099	EK13-16
A23C1154	283-0341-00		CAP, FXD, CER DI:0.047UF, 10\%, 100V	04222	SR301C473KAA
A23C1156	281-0775-00		CAP , FXD, CER DI: $0.14 \mathrm{~F}, 20 \%$, 50 Y	04222	Maz05E104MaA
A23CR1102	152-0864-00		SEMICOND DVC, DI:SCHOTTKY, SH, $51,7 \mathrm{OV}, \mathrm{DO-35}$	80009	152-0664-00
A23CR1104	152-0664-00		SEMICOND DVC,DI:SCHOTTKY, SH, $51,70 \mathrm{~V}, \mathrm{DO-35}$	80009	152-0664-00
A23J1152	131-0589-00		TERNINAL, PIN: 0.46 L $\times 0.025$ SO PH BRL ( QUANTITY OF 3)	22526	48283-029
A23L1104	108-0109-00		COIL,RF:FIXED, 63UH	80009	108-0109-00
A23P1122	131-2515-00		CONN,RCPT, ELEC:CKT $80,2 \times 10$, FEMALE	00779	86418-1
A23P1151	131-2515-00		CONN,RCPT,ELEC:CKT B0, $2 \times 10$, FEMALE	00779	86418-1
A23R1112	321-0277-03		RES, FXD, FIM 7 7.50K OHM, $0.25 \%, 0.125 \mathrm{~N}, \mathrm{~T}=\mathrm{T} 2$	01121	ORDER BY OESCR
A23R1114	321-0652-00		RES, FXD, FIUM: 145 K OHM, $0.25 \%, 0.125 \mathrm{~N}, \mathrm{TC}=$ T9	07716	CEAE14502C
A23R1116	321-1693-07		RES, FXD, FILM:46.67K OHM , 0.1\% , 0.125\%, T-9	07716	CEAE466718
A23R1132	315-0101-00		RES, FXD, FILH:100 OHM , 5\%, 0.25 N	57668	NTR25J-E 100E
AZ3R1134	321-0883-00		RES, FXD, FILS:4.5 MEG OHM, 1\%, 0.125 , TC= TO	91637	CMF55116-G45003F
A23R1144	315-0102-00		RES, FXD, FILM: 1 K OHM, $5 \mathrm{~K}, 0.25 \mathrm{~N}$	57668	NTR25JE01K0
A23R1150	315-0103-00			19701	5043CX10K00 J
A23R1452	315-0103-00		RES, FXO, FILM: 10 K OHM , 5\% 0.0 .25 N	19701	5043CX10K00J
A23R1154	315-0102-00		RES, FXD, FIUM: 1 K OHM $, 5 \chi, 0.25 \mathrm{M}$	57668	NTR25JE01K0
A23R1156	315-0101-00		RES, FXD, FILM: 100 OHM , 5\% , 0.25 N	57668	NTR25J-E 100E
A23RT1102	307-1211-00		RES,THERUAL:400 OHM, 30\%,28VOC	50157	$\mathrm{P}-58188$
A23U1118	156-2483-00		MICROCKT, DGTL:CMOS, $8192 \times 8,150 \mathrm{NS}$	TK0961	UPD4464C-15
A23U1122	156-2445-00		MICROCKT,LINEAR: PROGRAMMABLE VOLTAGE REF	32293	ICL8212CPA
A23U1128	156-2483-00		MICROCKT, DGTL:CMOS ,8192 X B, 150NS	TK0961	uPD4464C-15
A23U1132	156-2392-00		MICROCKT,DGIL: CNOS, HEX SCHMITT TRIGGER INVE RTER	04713	MC74HC14ND
A23U1138	156-2483-00		MICROCKT, DGTL:CNOS, $8192 \times 8,150 N \mathrm{~S}$	TK0961	UP04464C-15
A23U1142	156-0411-02		MICROCKT, LINEAR: QUAD COMPARATOR, SCREENED	04743	LI339.JDS
A23U1148	156-2483-00		MICROCKT, DGTL:CMOS ,8192 $\times 8$, 150W	TK0961	uPD4464C-15
A23V1162	156-2293-00		MICROCKT,DGTL:DUAL 2-LINE TO 4-LINE DECOOER multiplexer	01295	SN74ALS139N3/J4
A23 101	131-0566-00		BUS,COND: OUAFY RES, $0.094 \mathrm{DO} \times 0.225 \mathrm{~L}$	24546	0 MA 07
A24	670-9701-00	8012600	CIRCUIT BD ASSY:CURSOR CONTROL	80009	670-9701-00
A24J9430	131-3050-00	8012600	COWW,RCPT, ELEC:HEADER,RTANG, $2 \times 3,0.1$ CTR	00779	1-86479-5
A24R9412	311-2285-01	B012600	RES, VAR, NOVWH:CKT BD, 10K DHW, 20\%,0.25\%	12697	MODEL388(AOVISE)
A2459412		B012600	(PART OF R9412)		
A24M9430	174-0260-00	B012800	CA ASSY,SP,ELEC:6,26 AMO,3.0 L,RIBPON	80009	174-0260-00


	Tektronix   Component No.   Part No.	Serial/Assembly No.   Effective Dscont$\quad$ Name \& Description	Mfr.


89965	119-0830-10
C7401	283-0003-00
C7402	283-0003-00
C9272	281-0534-00
C9273	281-0534-00
CR970	152-0600-00
0 02210	119-1515-00
05518	150-1029-00
DS9150	150-1071-00
F1001	159-0253-00
F9001	159-0023-00
Fl9001	119-1788-00
J9100	131-0679-02
J9376	131-0955-00
J9510	131-0679-02
J9800	131-0955-00
P9900	136-0628-00
0946	151-0476-02
0947	151-0476-02
09070	151-1141-00
R5202	315-0300-00
R5203	315-0300-00
R9272	301-0121-00
R9273	301-0121-00
R9376	315-0430-00
R9521	311-2148-00
R9644	311-2158-01
R9802	311-2177-02
V9870	154-0861-00
W9150	175-2546-01
W9272	119-1505-01
W9273	119-1506-01


FAN, TLPEAXIAL: 12VDC , 2.4M, 6500RPN, 37CFM	80009	119-0830-10
CAP, FXD, CER DI:0.01UF, +80-207, 150V	59821	010324025wDCEX
CAP, FXD, CER DI:0.01UF, +80-20\%, 150V	59821	0103240251NDCEX
CAP, FXD, CER 01:3.3PF, +/-0.25PF,500V	52763	2RDPLI007 3P30CC
CAP, FXO, CER DI:3.3PF,+/-0.25PF,500V	52763	2ROPLIO07 3P30CC
SEIICONO OVC,DI:SCHOTTKY,RECTIFIER,SI,35V, 1   5A, $\mathbf{T 0}$-220	04713	MBR1535CT
DELAY LINE, ELEC:93NS, 150 OHM,ASSEMBLY	80009	119-1515-00
LT EIITTIMG DIO:GREEN,565w,354A	58361	06480/MV5274C
LT EIITTING DIO:GREEN,565N, 20 Ma Max	50434	HLLP3910
FUSE,CARTRIDGE:0.2500, 125V, FAST, SLBMINIATUR E	75915	251.250 T \& R T1
(NeEd effective serial mumer) FUSE, CARTRIDGE: 3AG, 2A, 25OV ,SLOM BLOM	71400	MDX2
LINE FLTR ASSY:	80009	119-1788-00
CONN,RCPT, ELEC: BNC, MALE, 3 CONTACT	24931	281R270-1
CONN,RCPT, ELEC: BNC, FEMALE	13511	31-279
CONW,RCPT, ELEC:BMC, MALE, 3 CONTACT	24931	28, 1270 -1
CONW, RCPT, ELEC:8NC, FEMALE	13511	31-279
JACK, TIP:M/MIRE	80009	136-0628-00
TRANSISTOR:SELECTED	04713	SJE389
TRANSISTOR:SELECTED	04713	SJE389
TRANSISTOR:FE,N-CHANEL, SI , T0-220	04713	STP3000
RES, FXD, FILM: 30 OHM , 5x, 0.25 M	19701	5043CX30R00J
RES, FXO, FILH:30 OHW, $5 \mathrm{x}, 0.25 \mathrm{H}$	19701	5043CX30R00J
RES, FXD, FILIM: 120 OHM, $52,0.5 \mathrm{~N}$	19701	5053CX120k0
RES, FXD, FILM: 120 OHA , 5x, 0.5 M	19701	5053CX120k0
RES, FXO, FILM:43 OHM, $5 \mathbf{5}, 0.25 \mathrm{~N}$	19701	$5043 \mathrm{CX43R00J}$
	01121	Ma16040S503MZ
	80009	311-2158-01
RES, VAR, NOWW: M/PLATE \& CABLE	80009	311-2177-02
electron tuae:	80009	154-0861-00
CA ASSY, SP, ELEC:2,26 ANG, 3.0 L,RIBBON W/STR	80009	175-2546-01
AIN RELIEF		
DEFL LEAD ASSY:CAP/RES/ELEC LEAD, 2.0 L.	80009	119-1505-01
DEFL LEAD ASSY:CAP/RES/ELEC LEAD,2.5 L	80009	119-1506-01

## DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

## Symbols

Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975.

Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.

The overline on a signal name indicates that the signal performs its intended function when it is in the low state.

Abbreviations are based on ANSI Y1.1-1972.

Other ANSI standards that are used in the preparation of diagrams by Tektronix, Inc. are:

Y14.15, 1966 Drafting Practices.
Y14.2, 1973 Line Conventions and Lettering.
Y10.5, 1968 Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering.

American National Standard Institute 1430 Broadway
New York, New York 10018

## Component Values

Electrical components shown on the diagrams are in the following units unless noted otherwise:

Capacitors $=$ Values one or greater are in picofarads ( pF ) . Values less than one are in microfarads ( $\mu \mathrm{F}$ ).
Resistors $=$ Ohms ( $\Omega$ ).

## The information and special symbols below may appear in this manual.

## Assembly Numbers and Grid Coordinates

Each assembly in the instrument is assigned an assembly number (e.g., A20). The assembly number appears on the circuit board outline on the diagram, in the title for the circuit board component location illustration, and in the lookup table for the schematic diagram and corresponding component locator illustration. The Replaceable Electrical Parts list is arranged by assemblies in numerical sequence; the components are listed by component number * (see following illustration for constructing a component number).

The schematic diagram and circuit board component location illustration have grids. A lookup table with the grid coordinates is provided for ease of locating the component. Only the components illustrated on the facing diagram are listed in the lookup table. When more than one schematic diagram is used to illustrate the circuitry on a circuit board, the circuit board illustration may only appear opposite the first diagram on which it was illustrated; the lookup table will list the diagram number of other diagrams that the circuitry of the circuit board appears on.


## COLOR CODE



COLOR	SIGNIFICANT FIGURES	RESISTORS		CAPACITORS			$\begin{aligned} & \text { DIPPED } \\ & \text { TANTALUM } \\ & \text { VOLTAGE } \\ & \text { RATING } \end{aligned}$
		MULTIPLIER	TOLERANCE	MULTIPLIER	TOLERANCE		
					over 10 pF	under 10 pF	
BLACK	0	1	---	1	$\pm 20 \%$	$\pm 2 \mathrm{pF}$	4 VDC
BROWN	1	10	$\pm 1 \%$	10	$\pm 1 \%$	$\pm 0.1 \mathrm{pF}$	6 VDC
RED	2	$10^{2}$ or 100	$\pm 2 \%$	$10^{2}$ or 100	$\pm 2 \%$	---	10 VDC
ORANGE	3	$10^{3}$ or 1 K	$\pm 3 \%$	$10^{3}$ or 1000	$\pm 3 \%$	---	15 VDC
YELLOW	4	$10^{4}$ or 10 K	$\pm 4 \%$	$10^{4}$ or 10,000	+100\% -9\%	---	20 VDC
GREEN	5	$10^{5}$ or 100 K	$\pm 1 / 2 \%$	$10^{5}$ or 100,000	+5\%	$\pm 0.5 \mathrm{pF}$	25 VDC
blue	6	$10^{6}$ or 1 M	$\pm 1 / 4$	$10^{6}$ or $1,000,000$	---	---	35 VDC
VIolet	7	---	$\pm 1 / 10 \%$	---	---	---	50 VDC
GRAY	8	---	---	$10^{-2}$ or 0.01	+80\% - $20 \%$	$\pm 0.25 \mathrm{pF}$	---
WHITE	9	---	-	$10^{-1}$ or 0.1	$\pm 10 \%$	$\pm 1 \mathrm{pF}$	3 VDC
GOLD	-	$10^{-1}$ or 0.1	+5\%	---	---	---	---
SILVER	-	$10^{-2}$ or 0.01	$\pm 10 \%$	---	---	---	---
NONE	-	---	$\pm 20 \%$	---	$\pm 10 \%$	$\pm 1 \mathrm{pF}$	---

(1861-20A) 2662.48
Figure 9-1. Color codes for resistors and capacitors.


Figure 9-2. Semiconductor lead configurations.







# TEST WAVEFORM AND VOLTAGE SETUPS 

## WAVEFORM MEASUREMENTS

On the left-hand pages preceding the schematic diagrams are test waveform illustrations that are intended to aid in troubleshooting the instrument. To test the instrument for these waveforms, make the initial control settings as follows:

Vertical (Both Channels)	
POSITION	Midrange
VERTICAL MODE	CH 1
X-Y	Off (button out)
BW LIMIT	On (button in)
VOLTS/DIV	1 V
VOLTS/DIV Variable	CAL detent
INVERT	Off (button out)
AC-GND-DC	DC

Horizontal
POSITION
horizontal mode
A SEC/DIV
SEC/DIV Variable
X10 Magnifier
(Midrange)
A
0.5 ms

CAL detent
Off (knob in)

A TRIGGER

VAR HOLDOFF	NORM
MOde	P-P AUTO
SLOPE	OUT
LEVEL	Midrange
HF REJECT	OFF
A\&B INT	VERT MODE
A SOURCE	INT
A EXT COUPLING	AC

## Storage

STORE/NON STORE
SAVE/CONTINUE PRETRIG/POST TRIG
ROLL/SCAN
$1 \mathrm{~K} / 4 \mathrm{~K}$
POSITION CURS/
SELECT WAVEFORM
WAVEFORM
REFERENCE

NON STORE (button out) CONTINUE (button out)
POST TRIG (button out)
SCAN (button out)
4 K (button out)
POSITION CURS
(button in)
WAVEFORM
REFERENCE (button in)

Changes to the control settings for specific waveforms are noted at the beginning of each set of waveforms. Input signals and hookups required are also indicated, if needed, for each set of waveforms. Voltage measurements are made with a 1 X probe unless otherwise noted.

## DC VOLTAGE MEASUREMENTS

Typical voltage measurements, located on the schematic diagram, were obtained with the instrument operating under the conditions specified in the Waveforms Measurements setup. Control-setting changes required for specific voltages are indicated on each waveforms page. Measurements are referenced to chassis ground with the exception of the Preregulator and Inverter voltages on Diagram 8. These voltages are referenced as indicated on the schematic diagram.

## RECOMMENDED TEST EQUIPMENT

Test equipment in Table 4-1 meets the required specifications for testing this instrument.

## POWER SUPPLY ISOLATION PROCEDURE

Each regulated supply has numerous feed points to external loads throughout the instrument. The power distribution diagrams are used in conjunction with the schematic diagrams to determine those loads that can be isolated by removing service jumpers and those that cannot.

The power distribution and circuit board interconnections diagrams are divided into circuit boards. Each power supply feed to a circuit board is indicated by the schematic diagram number on which the voltage appears. The schematic diagram grid location of a service jumper or component is given adjacent to the component number on the power distribution and circuit board interconnect diagrams.

If a power supply comes up after lifting one of the main jumpers from the power supply to isolate that supply, it is very probable that a short exists in the circuitry on that supply line. By lifting jumpers farther down the line, the circuit in which a short exists may be located.

Always set the POWER switch to OFF before soldering or unsoldering service jumpers or other components and before attempting to measure component resistance values.

## AC Waveforms

## WARNING

Instrument must be connected to the ac-power source using a 1:1 isolation transformer. Do not connect the test oscilloscope probe ground lead to the inverter circuit test points if the instrument is not isolated. AC-source voltage exists on reference points TP950 and T906 pin 5.

## DC Voltages

Preregulator and Inverter voltages are referenced to test point noted adjacent to the voltage. Power supply output voltages are referenced to chassis ground.

CHASSIS MOUNTED PARTS

CIRCUIT NUMBER	SCHEM NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT   NUMBER	SCHEM NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$
B9965	9	6L	P7393	2	4 F
8T1101	25	2A	$\begin{aligned} & \text { P8100 } \\ & \text { P8 } 100 \end{aligned}$	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	1 A
C7401	1	2A	P9010	12	7 B
C7402	1	5A	P9050	12	5B
			P9060	12	4 B
DS9150	8	1 C	P9070	8	4 J
			P9105C	14	8 E
F9001	8	2A	P9200	1	68
			P9210	12	2B
FL9001	8	2A	P9250	4	18
			P9250	7	70
J9100	1	2A	P9272	3	7M
J9376	4	6A	P9273	3	3M
J9510	1	5A	P9320	12	38
J9800	9	4A	P9410	12	5 B
			P9430	14	1 M
P1 152	25	2A	P9700	5	2 L
P4104	18	1A	P9700	5	7 C
P4110	12	1 B	P9700	6	2L
P4210	12	68	P9700	7	5 C
P4220	12	6 B	P9705	10	3 J
P6100	19	7A	P9705	7	4G
P6100	20	1 B	P9705	7	60
P6100	21	3A	P9778	7	6 M
P6110	13	5 L	P9788	7	4 M
P6111	13	7 E	P9802	9	58
P6112	13	8 E	P9965	9	6K
P6113	13	7E	P9991	10	1 J
P6120	13	6L			
P6130	13	7L	R5202	7	2 E
P6410	13	3L	R5203	7	3 E
P6420	13	2L	R9521	5	7A
P6421	13	1 E			
P6423	13	5 E	V9870	9	11
P7390	2	3 F			
P7391	2	3 F	W9272	3	7M
P7392	2	4 F			



Figure 9-6. A2—Attenuator board.



Scans by ARTEK MEDLA $\Rightarrow$

A2-ATTENUATOR BOARD

CIRCUIT NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM NUMBER	CIRCUIT   NUMBER	SCHEM NUMBER	CIRCUIT   NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT nUMBER	SCHEM NUMBER
AT1	1	L91	10	R52	1	C56	1	R17	1	R84	1
AT2	1	L93	10	R53	1	C57	1	R18	1	R85	1
AT51	1	L96	10	R54	1	C59	1	R19	1	R87	1
AT52	1	P9200	1	R55	1	C60	1	R21	1	R88	1
C2	1	013	1	R56	1	C61	1	R22	1	R91	
C3	1	015	1	R57	1	C63	1	R23	1	R93	1
C4	1	018	1	R58	1	C67	1	R25	1	R96	1
C5	1	063	1	R59	1	C71	1	R26	1	R97	1
C6	1	065	1	R60	1	C76	1	R27	1	R98	1
C6	1	O68	,	R61	1	C77	1	R29	1	S1	1
C7	1	R1	,	R62	1	C80	1	R30	1	S10	1
C9	1	R1	1	R63	1	C85	1	R30	1	S43	1
c9	1	R2	1	R64	1	C88	1	R31	1	S51	1
C10	1	R3	1	R65	1	C90	10	R33	1	S60	1
C11	,	R4	1	R66	1	C91	10	R34	1	S93	1
C13	1	R5	1	R67	1	C93	10	R35	1	U10	1
C17	1	R6	1	R68	1	C94	10	R37	1	U10	10
C21	1	R6	1	R69	1	C96	10	R38	1	U30	1
C26	1	R7	1	R71	1	C97	10	R39	1	U60	1
C27	1	R8	1	R72	1	CR7	1	R41	1	U60	10
C30	1	R9	1	R73	1	CR18	1	R42	1	U80	1
C30	1	R10	1	R75	1	CR57	1	R43	1	VR10	10
C35	1	R11	1	R76	1	CR68	1	R46	1	VR60	10
C38	1	R12	1	R77	1	$J 9103$	1	R47	1	W43	1
C52	1	R13	1	R79	1	J9108	1	R48	1	W93	1
C53	1	R14	1	R80	1	J9991	10	R51	1	W94	10
C54	1	R15	1	R81	1	L90	10	R51	1	W96	10
C55	1	R16	1	R83	1						

A14-CH 1 LOGIC BOARD

CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER
C5301	1	R5302	1	R5306	1
C5302	1	R5303	1	R5307	1
J6111	1	R5304	1	W5311	1
R5301	1	R5305	1	W5312	1

A15-CH 2 LOGIC BOARD

CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER
C5321	1	R5322	1	$R 5326$	1
C5322	1	$R 5323$	1	R5327	1
J6112	1	$R 5324$	1	W5321	1
R5321	1	$R 5325$	1	W5322	1

WAVEFORMS FOR DIAGRAM 1


CH1 AND CH2 ATTENUATORS DIAGRAM 1

ASSEMBLY A2											
CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	SCHEM   LOCATION	BOARD LOCATION	CIRCUIT   NUMBER	SCHEM LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
AT00001	2 C	1B	C85	7 L	3 E	R19	2 H	2 D	R67	5G	3 D
AT2	2D	1 C	C88	7M	3E	R29	3 J	1 E	R68	5 G	3D
AT51	5 C	38				R22	3K	1 E	869	5H	4D
AT52	5D	3 C	CR7	2 F	2 C	R23	3K	1E	R71	$6 . J$	3 E
			CR18	2G	1 C	R25	3K	1 E	R72	6K	$3 E$
C2	2B	1 B	CR57	5 F	4 C	R26	3K	1D	R73	5K	3 E
C3	2 F	1 C	CR68	5G	3 C	R27	2L	2E	R75	6K	3E
C4	2 C	1 B				R29	3L	2 E	R76	6K	3D
C5	2 C	1B	J9103	2M	2 E	R30	3 K	2E	R77	5 L	4 E
C6	2E	1 C	J9108	5L	4E	R30	3K	2E	R79	6L	4 E
C6	2E	1 C				R31	3L	2E	R80	6 K	4E
C7	2F	1 C	P9200	68	3 A	R33	3K	2E	R81	6L	4E
C9	3 F	10				R34	4L	2E	R83	6K	4 E
C9	3F	10	Q13	2F	2C	R35	4L	$1 E$	R84	6L	4E
C10	3 F	1D	015	3 F	10	R37	4L	2E	R85	71	3E
C11	2D	1B	018	2G	1 C	R38	4M	1 E	R87	6L	4 E
C13	2 F	2 C	Q63	5 F	4 C	R39	4M	1 F	R88	7M	3 E
C17	2G	1 C	Q65	6 F	3 D	R41	4M	1E	R91	7K	3 E
C21	3」	1 E	068	5G	3 C	R42	4M	1 F	R93	7K	4F
C26	3 K	10				R43	4 M	2 F	R96	6G	30
C27	3 L	2 E	R1	2A	2A	R46	3G	1 D	R97	6G	3D
C30	3K	$2 E$	R1	2A	2 A	R47	3G	1D	R98	6G	3 D
C30	3K	$2 E$	R2	2A	2A	R48	3 G	10			
C35	4L	15	R3	2 E	1 C	R51	5A	4A	S1	4A	2 A
C38	4M	1 E	R4	2B	2A	R51	5A	4A	510	4 K	2C
C52	58	3B	R5	3E	1 B	R52	5 A	3A	S43	2F	2F
C53	5F	3 C	R6	2 E	2 C	R53	5 E	3 C	S51	4A	4 A
C54	5 C	3 B	R6	2 E	2 C	854	5B	3A	S60	4 C	4 B
C55	5 C	3B	R7	3 C	1 B	R55	65	3 C	S93	8 L	4F
C56	5 E	4 C	R8	2B	2A	R56	5 E	4 C			
C57	$5 F$	3 C	R9	$3 F$	1 C	R57	5 C	3B	U10	3 E	1 C
C59	6 F	3D	R10	3E	1 D	R58	5B	4A	U30	2L	2E
C60	6 F	30	R11	2 F	1 C	R59	5 F	3 C	460	5 E	3C
C61	5D	3B	R12	3 D	18	R60	65	30	U80	5L	4E
C63	5 F	4 C	R13	2 F	2 D	R61	5 F	3 C			
C67	5G	3 C	R14	2 F	1 C	R62	5D	3B			
C71	5 J	3 E	R15	3 F	10	R63	5 F	4 D	W43	4M	1 E
C76	6K	3D	R16	3F	1 C	R64	5 F	3 C	W93	7K	3E
C77	6L	4 E	R17	2G	1 D	R65	6 F	3 D			
C80	6K	4 E	R18	2G	1 D	R66	6 F	3 C			
Partial A2 also shown on diagram 10.											
ASSEMBLY A3											
$J 9200$	78	3C	R89	78	2 C	R7401	6 B	3 C	590	7A	2 C
			R92	78	3 C	R7402	6A	2D			
07410	6 A	2D	$\begin{aligned} & \text { R951 } \\ & \text { R952 } \end{aligned}$	$\begin{aligned} & 6 A \\ & 6 A \end{aligned}$	$\begin{aligned} & 48 \\ & 40 \end{aligned}$	R7403	6 A	20	W7457	78	2C
Partial A3 also shown on diagrams 2, 3, 4, 5, 6, 7, 9, 10 and 73.											
ASSEMBLY A14											
C5301	1 K	1 B	R5301	1K	1 B	R5305	1 M	1 C	W5311	1 M	1 A
C5302	1 M	1B	R5302	1 J	18	R5306	1L	1 B	W5312	1L	1 A
			R5303	1 K	18	R5307	1 M	18			
J6111	1M	1B	R5304	1 J	1B						
ASSEMBLY A15											
-	二-_					-					
C5321	8K	18	R5321	8 K	18	R5325	8M	1 C	W5321	8M	1 A
C5322	8M	1B	R5322	8 J	1B	R5326	8L	18	W5322	8L	1A
			R5323	8 K	1 B	R5327	8M	1B			
J6112	8M	1B	R5324	8 J	1 B						
CHASSIS MOUNTED PARTS											
C 7401	2 A	CHASSIS	J9100	2A	CHASSIS	P9200	68	CHASSIS			
C7402	5A	CHASSIS	J9510	5A	CHASSIS						




CIRCUIT   NUMBER	SCHEM NUMBER	CIRCUIT   NuMber	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM   NUMBER	CIRCUIT NUMBER	SCHEM   NUMBER						
C114	2	C531	10	C7260	10	CR7201	9	0474	4	R164	2	R271	3
C115	2	C537	10	C7320	7	CR7202	9	0487	4	R165	2	R278	3
C116	10	C538	2	C7361	4	CR7203	9	Q509	5	R172	2	R278	3
C125	2	C539	2	C 7362	4	CR7301	7	0511	5	R175	2	R279	3
C126	2	C540	10	C9272	3	CR7302	7	0521	5	R176	2	R281	3
C130	2	C544	4	C9273	3	CR7303	7	0522	5	R180	2	R282	
C133	2	C545	2	CR133	2	CR7304	7	0523	5	R181	2	R283	3
C164	2	C547	9	CR183	2	CR7305	7	0524	4	R182	2	R283	3
C165	2	C553	10	CR200	2	CR7306	7	0525	5	R183	2	R284	3
C175	2	C561	1	CR201	2	CR7307	7	0527	5	R185	2	R285	3
C176	2	C562	10	CR202	2	CR7308	7	0541	4	R186	2	R286	3
C180	2	C563	5	CR203	2	DL9210	3	0542	4	R188	2	R287	3
C200	10	C565	4	CR224	3	DL9210	3	0543	4	R189	2	R288	3
C201	10	C590	10	CR224	3	DS856	9	0544	4	R192	2	R289	3
C202	3	C603	6	CR225	3	DS858	9	0576	5	R193	2	R292	3
C210	3	C635	6	CR225	3	DS870	9	0578	5	R194	2	R293	3
C215	10	C647	6	CR226	3	E200	10	0583	9	R195	2	R301	4
C220	10	C648	6	CR226	3	E201	10	$\bigcirc 586$	9	R200	2	R302	4
C225	3	C649	6	CR227	3	E272	10	Q756	7	R202	3	R303	4
C226	3	C764	7	CR227	3	5590	10	0770	7	R202	3	R304	4
C228	3	C770	7	CR228	3	E907	8	0775	7	R203	3	R305	4
C229	3	C 775	7	CR228	3	J4210	5	0779	7	R203	3	R306	4
C229	3	C 777	7	CR229	3	J9010	6	0780	7	R204	3	R307	4
C237	3	C779	7	CR229	3	J9010	10	0785	7	R204	3	R309	4
C239	3	C780	7	CR372	4	J9050	10	Q789	7	R206	3	R310	4
C240	3	C782	7	CR381	4	J9060	10	0804	9	R206	3	R311	4
C241	3	C785	7	CR393	4	J9210	2	0814	9	R207	3	R312	4
C241	3	C787	7	CR399	4	J9210	9	0825	9	R210	3	R314	4
C242	3	C789	7	CR414	4	J9300	10	0829	9	R212	3	R315	4
C242	3	c796	10	CR415	4	J9320	4	0835	9	R213	3	R317	4
C250	3	C797	10	CR467	4	J9644	6	Q840	9	R215	3	R318	4
C251	3	C799	10	CR476	4	J9802	9	0845	9	R215	3	R319	4
C251	3	C824		CR477	4	J9965	9	0908	8	R216	3	R321	4
C255	10	C825	9	CR501	5	L142	2	0928	8	R216	3	R322	4
C262	3	C828	9	CR504	5	$\llcorner 143$	2	0930	8	R217	3	R324	4
C262	3	C832	10	CR505	5	L192	2	0935	8	R218	3	R326	4
C274	10	C835	9	CR508	5	L193	2	$\bigcirc 938$	8	R218	3	R327	4
C281	3	C845	9	CR509	5	L960	9	0939	8	R219	3	R328	4
C282	3	C847	9	CR514	5	L961	9	0944	8	R220	10	R329	4
C282	3	C849	10	CR527	5	L962	9	0946	8	R222	3	R330	4
C292	3	C849	10	CR531	4	L968	9	0947	8	R222	3	R331	,
C312	4	C851	9	CR532	4	P9070	8	07201	9	R223	3	R332	4
C337	4	C853	9	CR541	4	Q102	2	07202	9	R223	3	R335	4
C337	4	C854	9	CR551	9	Q103	2	07203	9	R225	3	R336	4
C350	4	C855	9	CR556	4	0114	2	07204	9	R226	3	R337	4
C351	4	C871	9	CR590	9	Q115	2	07362	4	R226	3	R339	4
C363	4	C873	9	CR712	6	0152	2	07420	5	R227	3	R340	4
C369	4	C875	9	CR764	7	Q153	2	07440	5	R227	3	R342	4
C381	4	C877	9	CR765	7	Q164	2	07470	5	R230	3	R343	4
C389	4	C893	9	CR768	7	0165	2	07471	5	R231	3	R344	4
C390	4	C904	8	CR770	7	0202	3	07472	5	R233	3	R346	4
C392	4	C906	8	CR780	7	0202	3	09070	8	R233	3	R347	4
C396	8	C907	8	CR805	9	0203	3	R100	2	R234	3	R349	4
C397	4	C908	8	CR818	9	Q206	3	R101	2	R235	3	R350	4
C400	4	C917	8	CR820	9	0206	3	R102	2	R236	3	R351	4
C414	4	C919	8	CR823	9	0207	3	R103	2	R239	3	R352	4
C415	4	C922	8	CR824	9	0230	,	R104	2	R240	3	R353	4
C418	4	C925	8	CR825	9	0231	3	R105	2	R241	3	R354	4
C419	4	C940	8	CR829	9	0231	3	R106		R241	3	R355	4
C420	10	C94 1	8	CR840	9	Q254	3	R108	2	R242	3	R356	4
C421	10	C942	8	CR845	9	0255	3	R109	2	R242	3	R357	4
C440	2	C943	8	CR851	9	0255	3	R114	2	R244	3	R358	4
C453	4	C944	8	CR853	9	0256	3	R115	2	R244	3	R359	4
C454	4	C945	8	CR854	9	0257	3	R122	2	R245	3	R360	4
C459	4	C95 1	13	CR855	9	0257	3	R125	2	R245	3	R361	4
C460	10	C954	9	CR901	8	Q282	3	R126	2	R250	3	R363	4
C467	4	C956	9	CR902	8	0282	3	R130	2	R251	3	R365	4
C469	4	C958	9	CR903	8	0283	3	R131	2	R251	3	R366	4
C473	4	C959	9	CR904	8	0284	3	R132	2	R254	3	R367	4
C480	10	C960	9	CR907	8	0285	3	R133	2	R255	3	R369	4
C494	10	C961	9	CR908	8	Q302	4	R135	2	R255	3	R372	4
C499	10	C962	9	CR920	8	Q303	4	R136	2	R256	3	R374	4
C500	5	C963	9	CR946	8	Q327	4	R138	2	R257	3	R381	4
C501	5	C964	9	CR947	8	0328	4	R139	2	R258	3	ค382	4
C502	10	C965	9	CR948	8	$\bigcirc 382$	4	R142	2	R259	3	R384	4
C503	10	C968	9	CR954	9	Q382	4	R143	2	R259	3	R385	4
C504	5	C970	9	CR955	9	Q384	4	R144	2	R261	3	R386	4
C505	5	C975	9	CR956	9	Q397	4	R145	2	R261	3	R389	4
C506	10	C976	9	CR957	9	0413	4	R150	2	R262	3	R390	4
C507	10	C979	9	CR960	9	0419	4	R151	2	R262	3	R392	4
C518	5	C61 21	5	CR961	9	0420	4	R152	2	R266	3	R393	4
C519	5	C6122	5	CR962	9	0421	4	R 153	2	R267	3	R395	4
C520	5	C6123	5	CR963	9	0422	4	R154	2	R267	3	R397	8
C521	5	C6131	2	CR965	9	$\bigcirc 423$	4	R155	2	R268	3	R398	8
C525	5	C7101	6	CR967	9	Q428	4	R156	2	R269	3	R399	4
C527	5	C7201	9	CR980	9	0429	4	R158	2	R269	3	R411	4
C528	5	C7203	10	CR981	9	0473	4	R159	2	R270	3	R412	4


CIRCUIT NUMBER	SCHEM   NUMBER	CIRCUIT NUM8ER	SCHEM NUMBER	CIRCUIT NUM8ER	SCHEM NUM8ER	CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT NUMBER	SCHEM NUMBER
R413	4	R542	4	R830	9	R7213	3	U975	9	W6123	13
$R 414$	4	R543	4	R832	9	R7214	2	U7201	2	W6130	13
R415	4	R544	2	R834	9	R7215	2	U7201	10	W6411	13
R416	4	R545	2	R835	9	R7216	2	U7202	2	W6412	13
R417	4	R546	4	R836	9	R7260	9	U7202	2	W6413	13
R419	4	R547	9	R840	9	R7261	9	U7202	10	W6422	13
R420	4	R548	9	R84 1	9	R7262	9	VR645	6	W7120	6
R421	4	R549	9	R842	9	R7263	9	VR712	6	W7121	4
R422	4	R550	4	R844	9	R7301	7	VR764	7	W7122	5
R423	4	R551	4	R845	9	R7360	4	VR782	7	W7143	6
R424	4	R552	4	R849	9	R7361	4	VR828	9	W7202	9
R426	4	R553	4	R85 1	9	R7420	5	VR925	8	W7220	2
R427	4	R554	6	R852	9	R7421	5	VR935	8	W7250	9
R428	4	R555	4	R853	9	R7430	5	VR943	8	W7320	7
R429	4	R556	4	R854	9	R7431	5	VR943	8	W7420	5
R432	4	R558	4	R858	9	R7440	5	VR953	13	W7440	5
R433	4	R560	4	R860	9	R7441	5	VR954	13	W9000	2
R433	4	R561	4	R870	9	R7442	5	W282	3	W9000	2
R434	4	R562	4	R871	9	R7470	5	W2 83	3	W9000	2
R435	4	R564	4	R872	9	R7471	5	W284	3	W9000	2
R446	4	R565	4	R873	9	R9272	3	W284	3	W9000	2
R448	2	R566	7	R874	9	R9273	3	W335	4	W9000	3
R449	2	R568	5	R875	9	RT236	3	W400	10	W9000	3
R452	4	R569	5	R877	9	RT236	3	W408	10	W9000	4
R453	4	R571	5	R886	9	S901	8	W4 10	4	W9000	4
R454	4	R572	5	R888	9	T350	4	W419	4	W9000	4
R455	4	R573	5	R889	9	T390	8	W428	4	W9000	4
R457	4	R574	5	R890	9	T906	8	W429	4	w9000	4
R458	4	R576	5	R891	9	T944	8	W453	4	W9000	4
R459	4	R577	5	R892	9	T948	9	W459	4	W9000	4
R460	4	R578	5	R893	9	TP397	4	W494	10	W9000	4
R461	4	R580	5	R894	9	TP460	4	W501	6	W9000	5
R462	4	R581	9	R905	8	TP537	2	W502	5	W9000	5
R463	4	R582	5	R906	8	TP842	9	W503	5	W9000	5
R464	4	R583	9	R907	8	TP940	8	W531	4	W9000	5
R465	4	R584	5	R908	8	TP950	8	W532	4	W9000	5
R467	4	R585	5	R909	8	U 130	2	W535	2	W9000	6
R468	4	R586	9	R910	8	U180	2	W537	2	W9000	6
R469	4	R590	9	R912	8	U225	3	W538	2	W9000	6
R470	4	R595	9	R913	8	U225	10	W541	4	W9000	6
R471	4	R645	6	R914	8	4310	4	W542	10	W9000	7
R473	4	R646	6	R915	8	U335	4	W543	4	W9000	9
R474	4	R648	6	R916	8	4350	4	W544	10	W9000	10
R476	4	R649	6	R917	8	U350	4	W555	4	W9000	10
R477	4	R675	6	R919	8	U350	4	W556	10	W9000	13
R478	4	R676	7	R921	8	U350	4	W558	4	W9000	13
R486	4	R756	7	R922	8	U350	4	W560	4	W9020	10
R487	4	R757	7	R925	8	U426	4	W565	9	W9035	10
R494	10	R758	7	R926	8	U426	4	W570	7	W9040	8
R499	10	R759	7	R927	8	U426	10	W575	9	W9068	10
R500	5	R760	7	R928	8	4460	4	W591	10	W9070-1	8
R501	5	R761	7	R929	8	U460	10	W592	10	W9070. 2	8
R502	5	R764	7	R930	8	U501	4	W602	6	W9070-3	8
R503	5	R766	7	R934	8	U501	4	W603	6	W9080	9
R504	5	R768	7	R935	8	U501	10	W635	6	W9103	2
R505	5	R770	7	R937	8	U502	5	W649	6	W9108	2
R507	5	R773	7	R938	8	U502	10	W732	7	W9150	8
R509	5	R775	7	R939	8	4504	5	W770	7	W9190	8
R510	5	R776	7	R940	8	4504	5	W780	7	W9400	3
R511	5	R777	7	R941	8	U504	10	W885	10	W9400	6
R512	5	R778	7	R942	8	U506	5	W950	8	W9400	6
R513	5	R779	7	R943	8	U506	10	W954	10	W9400	6
R514	5	R780	7	R944	8	U532	5	W955	10	W9400	6
R515	5	R782	7	R945	8	U532	5	W956	10	W9400	6
R516	5	R783	7	R946	8	U532	5	W959	10	W9400	6
R517	5	R785	7	R947	8	U532	5	W960	10	W9400	6
R518	5	R786	7	R948	8	U532	10	W961	10	W9400	6
R521	5	R787	7	R949	8	U537	2	W964	10	W9400	6
R522	5	R788	7	R953	13	U537	2	W965	10	W9400	7
R523	5	R789	7	R954	13	U537	2	W968	10	W9400	9
R524	5	R789	7	R964	10	U537	9	W971	10	W9400	9
R525	5	R792	7	R965	9	U537	10	W972	10	W9400	10
R526	5	R793	7	R966	10	U540	2	W974	10	W9400	10
R527	5	R796	10	R976	9	U540	2	W975	10	W9700	5
R528	5	R797	10	R978	9	U540	10	W976	10	W9700	6
R529	5	R799	10	R7111	6	U555	4	W977	10	W9700	7
R530	4	R800	9	R7117	5	U555	4	W979	10	W9705	7
R531	4	R804	9	R7203	9	U555	4	W991	10	W9705	7
R532	4	R805	9	R7204	9	U555	4	W992	4	W9705	10
R533	4	R810	9	R7205	9	U555	10	W993	10	W9778	7
R534	4	R814	9	R7206	9	U565	4	W995	10	W9788	7
R535	4	R818	9	R7207	9	U565	4	W997	10	W9800	9
R536	4	R820	9	R7208	9	U565	4	W998	10	W9870	9
R537	4	R822	9	R7209	9	U565	4	W999	10	W9991	10
R538	2	R823	9	R7210	2	U565	10	W2111	2		
R539	2	R825	9	R7211	2	U758	7	W2112	2		
R540	2	R826	9	R7212	2	U758	10	W6121	13		
R54 1	2	R828	9	R 7213	3	U930	8	W6122	13		



Figure 9-10. Circuit view of A1-Main board.


Figure 9-11. A17—Position Interface board.

COMPONENT NUMBER EXAMPLE

$\overbrace{\text { A23 A2 R1234 }}^{\text {Component Number }}$		
Assembly Number	Subassembly Number (it used)	Schematic   Circuit   Number


CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER
J6113	2	$R 7320$	2	W7310	2
R120	2	$R 7325$	2	W7314	2
R121	2	$R 7330$	2	$W 7315$	2
R170	2	$R 7330$	2	$W 7360$	2
R171	2	$R 7330$	2	W7364	2
R7320	2	$R 7330$	2	W7365	2
R7320	2	$R 7335$	2		

WAVEFORMS FOR DIAGRAM 2


SET VERTICAL MODE SWITCH TO BOTH-CHOP.


VERTICAL PREAMPLIFIERS AND CHANNEL SWITCHING DIAGRAM 2

ASSEMBLY A1								
CIRCUIT   NUMBER	SCHEM   LOCATION	BOARD LOCATION	CIRCUIT   NUMBER	SCHEM   LOCATION	BOARD LOCATION	CIRCUIT   NUMBER	SCHEM LOCATION	BOARD LOCATION
C114	1D	4C	R105	2 C	3 D	R194	5M	25
C115	2D	4D	R106	2 C	2D	R195	5M	25
C125	2 J	3 D	R108	2 B	3 D	R200	4L	2.1
C126	2 J	3D	R109	2 B	3 D	R448	4M	25
c130	2K	3D	R114	1 E	4 C	R449	3M	2D
C133	7.5	2 J	R115	2 E	4D	R538	8 F	7 A
C164	5D	4 E	R122	2 E	3D	R539	8 F	7A
C165	5D	45	R125	2.1	3 C	R540	8 H	3K
C175	5.	3 E	R126	1 J	3 C	R541	7 H	2 K
C176	5 J	3 E	R130	1 K	3 C	R544	7 F	2M
C180	5 K	35	R131	2 K	3D	R545	7 F	1 M
C440	3M	25	R132	7H	1 J	R 7210	6G	2 L
C538	8 F	4.	R133	7.	2 C	R7211	4 H	2 J
C539	8 F	4J	R135	3 K	2 C	R7212	6 H	3 J
C545	7 F	1 M	R136	3K	2D	R7214	3 K	3F
C6131	75	8 B	R138	3L	2 C	R7215	6 K	3F
			R139	3 L	2 C	R 7216	6.	2 J
CR133	3 K	2 C	R142	1M	2D			
CR183	8K	2 F	R143	2M	2D	TP537	6 F	1M
CR200	3L	2D	R144	1 M	2D			
CR201	4 L	2 E	R145	2 M	2D	U130	1 K	3D
CR202	3M	2D	R150	5 B	3F	U180	4 K	3 E
CR203	4M	2 E	R151	6 A	3F	U537A	7G	1 M
			R152	4B	3 F	U537C	7 F	1M
J9210	6 F	2K	R153	6A	3 F	U5370	7 F	1 M
			R154	5 C	3 E	U540A	8G	2 L
L142	1L	2D	R155	5 C	3 E	U540B	75	2 L
L143	2L	2D	R156	5 C	2F	U7201	7 H	2 J
L192	4L	2 E	R158	58	3 F	U7202A	4 H	3 J
L193	6 L	2 E	R159	5 B	3 F	U7202B	6 H	3.
			R164	55	4E			
Q102	1 B	30	R165	5 E	4E	W535	7 F	8G
0103	2B	3D	R172	5 E	35	W537	7 F	3L
0114	15	3 C	R175	5J	35	W538	7G	2 L
0115	2 E	30	R176	5 J	$3 E$	W2111	1L	20
0152	5 B	3 F	R180	5 K	35	W2112	4L	25
Q153	6 A	3 F	R181	5 K	3 E	W7220	6G	2 K
Q164	55	. 3E	R182	8 H	2 J	W9000	1 D	8A
0165	55	- 35	R183	8 J	2 F	W9000	2D	8A
			R185	6 K	2 F	W9000	5D	8A
R100	1 B	3D	R186	6 K	25	W9000	7 D	8A
R101	2 B	30	R188	8L	35	W9000	8 D	8A
R102	18	3 D	R189	8L	2 F	W9103	2A	4D
R103	2B	3 D	R192	4M	2 E	W9108	6 A	4 F
R104	1 C	3D	R193	6M	2 E			
Partial A1 also shown on diagrams 3, 4, 5, 6, 7, 8, 9, 10 and 13.								
ASSEMBLY A3								
C901	7 D	4 C	R111	2 C	1 B	S545	78	2 D
			R112	2 D	1 B	S550	8 B	2B
$\begin{aligned} & \text { CR534 } \\ & \text { CR537 } \end{aligned}$	78	2 B	R161	5 C	1 C			
	7 C	2 B	R162	50	10	W534	8 D	3 C
CR538	8 C	2A						
Partial A3 also shown on diagrams $1,3,4,5,6,7,9,10$ and 13.								
ASSEMBLY A17								
J6113	2G	1 C	R7320DR7325	3 F	18	W7310	3 F	1A
				3 F	1 A	W7314	2 F	1A
R120	3 F	1 A	R7330A	4 F	1 B	W7315	3 F	1 A
R121R170	3 F	1A	R73308	3 F	1 B	W7360	4 F	1 C
	4 F	1 C	R7330C	4 F	18	W7364	3 F	18
R171	4 F	1 C	R73300	4F	1 B	W7365	4F	1 C
R7320B	3 F	1B	R7335	4 F	1 C			
R7320C	3 F	18						
CHASSIS MOUNTED PARTS								
$\begin{aligned} & \text { P7390 } \\ & \text { P7391 } \end{aligned}$	$3 F$	CHASSIS	P7392	4 F	CHASSIS			
	3 F	CHASSIS	P7393	4F	CHASSIS			



## WAVEFORMS FOR DIAGRAM 3

SET THE STORE/NON STORE SWITCH TO STORE FOR WAVEFORMS 9 THROUGH 11.


SET HORIZONTAL MODE SWITCH TO BOTH AND STORE/NON STORE SWITCH TO STORE.


VERTICAL OUTPUT AMPLIFIER DIAGRAM 3

ASSEMBLY A1								
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	SCHEM   LOCATION	BOARD LOCATION	CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C202	5D	10	Q257	4L	1H	R251	4」	1 G
C210	5D	$1 E$	0257	4L	1 H	R251	$4 J$	1 G
C225	7D	2D	Q282	4 H	2G	R254	6 J	2G
C226	3F	10	Q282	4H	2G	R255	4 J	1G
C228	6G	2 E	0283	3 J	2G	R255	4 J	1G
C229	5G	1 E	0284	2K	2G	R256	7K	2 H
C229	5G	$1 E$	0285	2 K	2G	R257	3K	1H
C237	5 J	1F				R258	6 K	2G
C239	5 H	2 F	R202	5 C	2D	R259	4 K	1G
C240	5 J	1 F	R202	5 C	2D	R259	4L	1 G
C241	5 H	1 F	R203	5 C	2D	R261	5 L	1 H
C241	5 H	1 F	R203	5 C	2D	R261	5L	1H
C242	5 H	2 F	R204	5 C	2D	R262	5L	1 J
C242	5 H	2 F	R204	5 C	2D	R262	5L	1 J
C250	6 J	2G	R206	4 C	20	R266	7 K	2 H
C251	4 J	1G	R206	4 C	2D	R267	3L	1 H
C251	4 J	1G	R207	6 C	25	R267	5L	1 H
C262	5L	2J	R210	50	1D	R268	7K	2 J
C262	5 L	2 J	R212	50	10	R269	3L	1 J
C281	2 F	1 G	R213	50	1E	R269	5L	1 J
C282	3 H	7G	R215	5D	1D	R270	7K	2 J
C282	5 H	7G	R215	5D	1D	R271	3 L	1 J
C292	2K	3 F	R216	4D	20	R278	4 H	2 H
C 9272	3L	2 H	R216	4D	2D	R278	4 H	2 H
C9273	7L	1 H	R217	6D	2 E	R279	3 J	2F
			R218	40	10	R281	2F	1G
CR224	4F	10	R218	4D	10	R282	2F	1 G
CR224	4F	1D	R219	6D	1 E	R283	3H	2G
CR225	4G	2F	R222	5E	1 D	R283	5 H	2G
CR225	4G	2F	R222	55	1 D	R284	2 J	2G
CR226	5 F	$1 E$	R223	55	1E	R285	2K	2F
CR226	5 F	$1 E$	R223	5 E	1 E	R286	2K	2G
CR227	5 F	$1 E$	R225	7 D	1 C	R287	2K	2G
CR227	5 F	1 E	R226	5 F	15	R288	3K	1G
CR228	5G	1E	R226	5 F	1 E	R289	3K	2 G
CR228	5G	$1 E$	R227	5G	1 F	R292	2K	3 F
CR229	5G	$1 E$	R227	5G	1 F	R293	2K	3F
CR229	5G	1E	R230	6 J	2 F	R7213	4H	2G
			R231	4 J	1 F	R7213	4 H	2 G
DL9210	$5 \pm$	$1 E$	R233	5 H	1 F	R9272	7L	2 H
DL9210	55	$1 E$	R233	5 J	1 F	R9273	3L	1H
			R234	6 J	2 F			
0202	4 C	2D	R235	5 J	1 F	RT236	5H	2 F
0202	4 C	2D	R236	5J	1 F	RT236	5 J	2F
0203	6 C	25	R239	5 H	2 F			
0206	4D	10	R240	5J	1 F	U225	7 D	1 D
0206	40	1D	R241	5 H	2 F			
0207	6 D	$1 E$	R241	5 H	2 F	W282	3 H	5G
Q230	6 J	2 F	R242	5 H	2 E	W283	3 H	4G
0231	$4 J$	1F	R242	5 H	2 E	W284	3H	2G
0231	4 J	1F	R244	5 H	2 F	W284	5 H	2G
0254	6L	2G	R244	5 H	2 F	W9000	2F	8 A
0255	4L	1G	R245	5 H	2 F	W9000	3F	8A
Q255	4L	1G	R245	5 H	2 F	W9400	3G	9G
0256	7K	2 H	R250	6 J	2G			
Partial At also shown on diagrams 2, 4, 5, 6, 7, 8, 9, 10 and 13.								
ASSEMBLY A3								
R224	35	2 B	\$226	3 E	2C			
R280	2 E	1 C						
Partial A.3 also shown on diagrams 1, 2, 4, 5, 6, 7, 9, 10 and 13.								
CHASSIS MOUNTED PARTS								
P9272	7 M	CHASSIS	W9272	7M	CHASSIS			
P9273	3M	CHASSIS	W9273	3M	CHASSIS			



(3) Static Sensitive Devices

COMPONENT NUMBER EXAMPLE

	$\overbrace{\text { A23 A2 R1234 }}^{\text {Component }}$
Assembly Number	$\rightarrow \underset{\substack{\text { Subassembly } \\ \text { Number (if used) }}}{ } \rightarrow \substack{\text { Schemalic } \\ \text { Cicumt } \\ \text { Number }}$

Chassis-mounted components have no Assembly Number


Scans by ARTEK MEDLA $=>$

## A3-FRONT PANEL BOARD

CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT   NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER
C376	4	R377	4	S3BO	4
C377	4	R378	4	S390	9
C379	4	R379	4	S392	
C380	4	R380	4	S401	5
C901	2	R401	5	S401	5
C905	10	R438	4	S401	5
C987	7	R519	5	S438	4
CR534	2	R520	5	S460	4
CR537	2	R602	6	S545	2
CR538	2	R726	7	S550	2
CR539	4	R951	1	S555	4
CR648	4	R952	1	S602	6
CR988	7	R960	13	S648	6
CR989	7	R961	13	S7401	5
OS518	5	R982	9	U985	7
J9006	9	R983	9	U985	10
J9200	1	R985	7	W515	5
J9250	4	R986	7	W534	2
J9250	5	R987	7	W539	4
J9250	7	R988	7	W630	4
J9900	7	R989	7	W901	6
07410	1	R990	7	W902	5
R89	1	R7362	4	W903	5
R92	1	R7401	1	W904	6
R111	2	R7402	1	W7457	1
R112	2	R7403	1	W7458	5
R161	2	R9376	4	W9520	5
R162	2	S90	1	W9521	5
R224	3	S200	4	W9900	7
R280	3	S226	3		



Figure 9-13. Circuit view of A3—Front Panel board.



SET HORIZONTAL MODE SWITCH TO B AND A TRIGGER SWITCH TO SGL SWP.


TRIGGERING DIAGRAM 4

ASSEMBLY A1											
CIRCUIT NUMBER	SCHEM   LOCATION	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD   LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C312	4E	50	0542	2 C	6 B	R389	6 G	108	R551	2 C	78
C337	75	5 E	0543	2 D	6B	R390	5 G	10 B	R552	2 C	6 B
C337	75	55	0544	2 D	6 B	R392	7H	10A	R553	2 C	6B
C350	4 F	50	07362	8 J	7 D	R393	6 H	10B	R555	$1 E$	78
C351	4G	60				R395	7H	6 E	R556	3 C	4F
C363	4 H	6D	R301	4 C	40	R399	7H	70	R558	2D	78
C369	5 H	70	R302	5 C	3 D	R411	$3 J$	98	R560	3 C	78
C381	6G	10A	R303	4 C	3D	R412	3 J	88	R561	20	7A
C389	6 G	10B	R304	50	4 D	R413	3k	9 C	R562	2 E	3 K
C390	6 H	10A	R305	40	4D	R414	1K	8 B	R564	2 F	2k
C392	7H	10A	R306	5 D	4 D	R415	3 K	8 C	R565	2 F	4 K
C397	7H	65	R307	4 D	4 D	R416	1 K	8 C	R7360	8 H	6A
C400	5K	8 D	R309	4D	5 C	R417	3 K	8 C	R7361	8 H	75
C414	1 L	7 B	R310	5 D	5D	R419	8 J	${ }^{6 C}$			
C415	3L	8 B	R311	4D	5D	R420	4K	8 C	T350	4G	5D
C418	8 J	6 C	R312	4 E	50	R421	4L	8 C			
C419	8 J	70	R314	5 E	5 D	R422	1L	8 C	TP397	7G	5 E
C453	4 L	8 D	R315	4 E	4D	R423	3 L	8 C	TP460	6K	8 D
C454	4 M	8 D	R317	3F	4 D	R424	1 L	7 C			
C459	5L	8 D	R318	4 F	4D	R426	1L	8 C	4310	$4 E$	5 D
C467	7 L	9 D	R319	5 F	4D	R427	3 L	8 C	4335	6 E	5 E
C469	7M	9 C	R321	5 F	50	R428	1 M	7 B	U350A	4 H	6 D
C473	6 M	9 C	R322	5 F	4 D	R429	3 L	8 B	U3508	4H	6 D
C544	10	6B	R324	5 E	5D	R432	12	88	U350C	5G	6 D
C561	2D	4J	R326	6 C	4 F	R433	3M	8 B	U3500	5G	6 D
C565	2 F	8 F	R327	7 C	3 E	R433	3M	8 B	U350E	4G	6 D
C7361	8 H	75	R328	6C	35	R434	1 L	98	U426A	1L	8 B
C7362	8 J	7 D	R329	7 D	4 E	R435	1L	9 B	U426B	3 L	8 B
			R330	6 D	45	R446	4L	8 C	U460	5 K	8D
CR372	4 J	60	R331	70	45	R452	6K	8 C	U501A	3H	6C
CR381	6 G	10A	R332	6D	$4 E$	R453	4L	8D	U501B	1 H	6C
CR393	6.	7 D	R335	70	55	R454	4M	8 C	U555A	3 C	4 F
CR399	7 J	70	R336	6D	55	R455	8 K	8 C	U555B	3 E	4 F
CR414	1 k	8B	R337	75	55	R457	5K	9 D	U555C	2 E	4F
CR415	3K	8 C	R339	7 F	5 E	R458	5K	9 C	U555D	3 E	4 F
CR467	6L	9 D	R340	6 F	4 E	R459	5 L	8 D	U565A	1E	2 K
CR476	6 M	9 C	R342	2 F	4F	R460	5 K	8 C	U565C	2 E	2 K
CR477	6 M	9 D	R343	6 F	4 E	R461	4K	8 D	U565C	3 E	2 K
CR531	4 C	5A	R344	7 F	4 E	R462	5 K	8 D	U5650	2 E	2K
CR532	3 C	6C	R346	7F	5 E	R463	7 K	80			
CR54 1	3 C	6 C	R347	8 F	5 E	R464	7	8 D	W335	65	4 E
CR556	15	5 F	R349	7E	4E	R465	6L	8 D	W410	$6 J$	70
			R350	4G	6 E	R467	61	9 D	W4 19	8 H	6A
J9320	1 H	4 C	R351	5 G	6 D	R468	71	90	W428	1M	8 B
			R352	4G	$6 E$	R469	6 L	90	W429	3 M	88
Q302	5 D	3D	R353	5 G	6D	R470	71	9 D	W453	4 L	8 C
0303	40	3 D	R354	4 F	5 E	R471	7K	9 D	W459	51	8 C
0327	7 D	3 E	R355	5 F	5 E	R473	7M	9 C	W531	4G	6 C
0328	6 D	3 E	R356	4 G	6 E	R474	8M	9 D	W532	2 C	60
0382A	6 G	10A	R357	5G	7 D	R476	6M	9 D	W541	3 C	78
0382B	6G	108	R358	4 G	6 D	R477	6M	9 D	W543	3D	78
0384	6 H	10A	R359	4 H	6 D	R478	7 K	9 D	W555	3 C	5 F
0397	7H	6 F	R360	5G	75	R486	6 M	100	W558	2D	5 G
0413	3 K	8 B	R361	4G	6 D	R487	7M	9 D	W560	3 D	5 F
0419	8	7 C	R363	4H	6 E	R530	1H	5 C	W992	1 C	6A
0420	1 L	7 C	R365	4 J	6 E	R531	3 H	5 C	W7121	6 M	9 C
0421	3L	8 C	R366	4 H	60	R532	3 F	5 C	W9000	1 B	8A
0422	1 L	7 C	R367	4 H	6 D	R533	2 F	5D	W9000	1 M	8 A
0423	4L	8 C	R369	5 J	7 D	R534	1 H	7 C	W9000	28	8A
0428	1L	8B	R372	4 J	70	R535	3G	6 C	W9000	3 B	8A
0429	3 L	8B	R374	$4 J$	7 D	R536	3G	6 C	W9000	3 M	8A
0473	7 M	9 C	R381	6G	10A	R537	3G	6 C	W9000	4M	8 A
0474	7M	9 D	R382	6G	10A	R542	4 G	6 C	W9000	5 B	8A
0487	8 M	9 D	R384	6 G	10A	R543	3 D	6 C	w9000	5M	8A
0524	3 G	6 C	R385	6 H	10A	R546	3D	6 B			
0541	3D	7 C	R386	6 H	10 B	R550	2 D	4F			

Partial A1 also shown on diagrams 2, 3, 5, 6, 7, 8, 9, 10 and 13.

ASSEMBLY A3

C376
C377
C379
C380
CR539
CR648




Figure 9-14. A4-Timing board.



Figure 9-15. A13-Sweep Interface board.

## A13-SWEEP INTERFACE BOARD



CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER
C766	5	$R 795$	5	$U 782$	6
$C 767$	10	$R 798$	5	$U 782$	6
$C 768$	10	$U 780$	5	$U 782$	6
J6421	6	$U 780$	5	$U 782$	6
$R 723$	6	$U 780$	5	$U 782$	10
$R 725$	6	$U 780$	5	$U 783$	6
$R 729$	6	$U 780$	10	$U 783$	6
$R 734$	5	$U 781$	5	$U 783$	10
$R 735$	5	$U 781$	5	$W 1304$	5
$R 736$	6	$U 781$	5	$W 1304$	6
$R 791$	5	$U 781$	5	$W 1304$	6
$R 794$	5	$U 781$	10	$W 1304$	10



WAVEFORMS FOR DIAGRAM 5


TEST SCOPE TRIGGERED ON U506 PIN 3 FOR WAVEFORMS 21 THROUGH 24.


22


ASSEMBLY A1								
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD   location
C500	$1{ }^{1}$	100	07470	8 D	9 F	R577	1 K	85
C501	3 C	10 C	07471	8 D	8 F	R578	1K	95
C504	3 C	75	07472	8 E	8 F	R580	2k	95
C505	3B	7 C				R582	1 K	85
C518	75	8 F	R500	1 C	100	R584	2 L	10 F
C519	7 C	8 F	R501	2 C	10 C	R585	2L	9 G
C520	7 C	8 F	R502	2 C	100	R7117	2K	75
C521	60	75	R503	3 C	10D	R7420	4 E	10 B
C525	6 F	8 F	R504	3 C	7 E	R7421	4 E	10 B
C527	2 L	8G	R505	3 B	70	R7430	4 C	98
C528	2 K	10 F	R507	2D	10 C	R7431	5 C	108
C563	10	10 D	R509	3D	10 C	R7440	4D	10 C
C6121	55	8 B	R510	2 D	10 C	R7441	4D	10 C
C6122	55	9 B	R511	2 H	95	R7442	4D	10 C
C6123	4 E	9 B	R512	2 H	95	R7470	80	9 F
			R513	2 H	95	R7471	80	9 F
CR501	6 D	75	R514	1 J	9 F			
CR504	3 D	8 E	R515	2 G	10 F	U502	20	10 C
CR505	2K	85	R516	2 J	10 E	U504A	3 D	85
CR508	1 C	10 C	R517	2 J	10 E	U504B	75	85
CR509	2 D	10 C	R518	30	9 E	$\cup 506$	1 H	95
CR514	2 J	9 E	R521	7 F	85	U532A	$1 J$	105
CR527	2K	9 F	R522	6 E	65	U532B	1G	$10 E$
			R523	7 F	8 F	U532C	1G	105
J4210	14	85	R524	7 F	8 F	U532D	1 D	10 E
			R525	6 F	8 F			
0509	3 D	10 C	R526	2F	10F	W502	$6 E$	7 F
Q511	2 J	9 E	R527	2 K	9 F	W503	65	55
0521	7 F	8 E	R528	1 F	105	W7122	1 C	10 C
0522	5 E	75	R529	$5 E$	7 F	W7420	45	10 C
0523	65	$6 E$	R568	1 D	100	W7440	4 D	10 B
0525	7 F	75	R569	1 D	100	W9000	1 B	8A
0527	2 L	10F	R571	15	95	W9000	2B	8A
0576	1 K	8 E	R572	1 G	9 F	W9000	2 E	8A
0578	1 K	85	R573	1 J	105	W9000	38	8A
07420	45	108	R574	2 G	105	W9000	5 B	8A
07440	40	10 C	R576	1K	95	W9700	8 C	9 F
Partial A1 also shown on diagrams 2, 3, 4, 6, 7, 8, 9, 10 and 13.								
ASSEMBLY A3								
DS518	3 F	2 F	$\begin{aligned} & \text { S401A } \\ & \text { S401B } \\ & \text { S401C } \\ & \text { S7401 } \end{aligned}$	3 A1 A	2 F2 F	W903   W7458   W9520   W9521	$\begin{aligned} & 7 B \\ & 5 B \\ & 7 A \\ & 7 A \end{aligned}$	$\begin{aligned} & 2 E \\ & 30 \\ & 1 F \\ & 1 F \end{aligned}$
J9250	78	3 D		$\begin{aligned} & 2 A \\ & 5 A \end{aligned}$	$\begin{aligned} & 2 F \\ & 3 E \end{aligned}$			
$\begin{aligned} & \text { R401 } \\ & \text { R519 } \end{aligned}$	2A7 A	1 F						
			W515	2 A	1 F			
R520	7A	2 E	W902	7A	$1 E$			
Partial A3 also shown on diagrams 1, 2, 3, 4, 6, 7, 9, 10 and 13.								
ASSEMBLY A4								
	3 L	1A	Q7010704A	$3 M$$4 M$	3 A3 A	$R 707$$R 790$	$\begin{aligned} & 3 \mathrm{~N} \\ & 4 \mathrm{~L} \end{aligned}$	$\begin{aligned} & 3 B \\ & 1 A \end{aligned}$
	3L	2A						
$\begin{aligned} & \text { C7018 } \\ & \text { C702 } \end{aligned}$		2A	070480706	4 M4 N	3 B3 A			
$\begin{aligned} & \mathrm{C} 703 \\ & \mathrm{C} 708 \end{aligned}$	3 L4 M	3 A				$\begin{aligned} & \text { S701A } \\ & \text { S701B } \\ & \text { S7018 } \end{aligned}$	3 K	1 A
			0706	4 N	3A		4K	1 A
			R701	3 H	2 A		8 C	1A
19700	7 C	3 C	R702	3H	2A			
			R703	3L	2A			
P9250	7B	1A	R705	4M	3B			
Partial A4 also shown on diagrams 6, 7 and 10.								

## A SWEEP GENERATOR AND LOGIC DIAGRAM 5 (CONT)

ASSEMBLY 413								
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD   location	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C766	6 K	1 C	R798	7 L	18	U781B U781 C	$\begin{aligned} & \text { 8L } \\ & 8 \mathrm{~L} \end{aligned}$	$\begin{aligned} & 18 \\ & 1 B \end{aligned}$
R734	72	1 A	U780A	71	1A	U7810	8L	18
R735	8L	1A	U780B	7	1A			
R791	6K	18	U780C	8L	1A	W1304	7K	2A
R794	6K	1 C	U7800	7 L	1A			
R795	7 L	1 B	U781A	7L	18			
Partial A13 also shown on diagrams 6 and 10.								
CHASSIS MOUNTED PARTS								
P9700 P9700	$\begin{aligned} & 2 \mathrm{~L} \\ & 7 \mathrm{C} \end{aligned}$	CHASSIS   CHASSIS	R9521	7A	CHASSIS			




Figure 9-16. A5-Alternate Sweep board.

Static Sensitive Devices
See Maintenance Section

## COMPONENT NUMBER EXAMPLE



Chassis-mounted components have no Assembly Number
pretix-see end of Replaceabie Electrical Parts List


A5-ALTERNATE SWEEP BOARD

CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER
C605	10	R621	6	R689	6
C606	10	R623	6	R816	9
C610	6	R624	6	R817	9
C643	6	R625	6	U605	6
C646	6	R626	6	U605	10
C655	10	R627	6	U655	6
C657	6	R628	6	U660	6
C659	10	R630	6	U660	6
C665	6	R631	6	U660	6
C667	6	R632	6	U660	6
C672	6	R633	6	U660	6
C694	10	R634	6	U660	9
CR625	6	R637	6	U660	10
CR626	6	R638	6	U665	6
CR680	9	R640	6	U665	6
CR684	9	R642	6	U665	6
CR685	9	R643	6	U665	9
CR687	9	R644	6	U665	10
CR816	9	R650	6	U670	6
CR817	9	R651	6	U670	6
J4220	9	R652	6	U670	10
L667	6	R653	6	U680	6
0630	6	R657	6	U680	6
0631	6	R659	6	U680	6
0637	6	R660	6	U680	6
0643	6	R662	6	U680	10
0670	6	R663	6	VR660	6
0674	6	R664	6	W638	6
0682	6	R665	6	W643	6
0683	6	R667	6	W655	10
0684	6	R668	6	W668	6
0687	6	R669	6	W672	6
R604	6	R670	6	W678	6
R605	6	R671	6	W690	10
R606	6	R672	6	W691	10
R609	6	R674	6	W695	10
R610	6	R678	6	W696	10
R611	6	R679	9	W9400	6
R613	6	R682	6	W9400	6
R614	6	R683	6	W9400	6
R616	6	R684	6	W9400	6
R617	6	R686	6	W9400	6
R618	6	R687	6	W9400	6
R619	6	R688	6		

TEST SCOPE TRIGGERED ON U665 PIN 8 FOR WAVEFORMS 25 THROUGH 30.


B TIMING AND ALTERNATE B SWEEP DIAGRAM 6

ASSEMBLY A1											
CIRCUIT   NUMBER	SCHEM LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT   NUMBER	SCHEM LOCATION	$\begin{gathered} \text { BOARD } \\ \text { LOCATION } \end{gathered}$	CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C603	2B	7G	R554	4 C	10F	W501	4 C	9 F	W9400	1 C	9 G
C635	5 C	9G	R645	78	10E	W602	18	8G	W9400	2 C	9G
C647	6 C	8 F	R646	8 B	10 E	W603	2B	8G	W9400	2K	9G
C648	6 C	8 F	R648	6 C	10 E	W635	5 C	9G	W9400	3K	9G
C649	4 C	7G	R649	6C	10E	W649	4 C	8G	W9400	4 C	9 G
C7101	8 B	9 G	R675	2 K	9 G	W7120	6C	8 B	W9400	5 C	9G
			R7111	8B	9G	W7143	4 C	10 F	W9400	6 C	9 G
CR712	3K	10 F				W9000	1 B	8A	W9400	7 C	9 G
			VR645	78	10 F	W9000	2B	8A	W9400	8C	9 G
J9010	4 C	10G	VR712	3к	10F	W9000	68	8A	W9700	3 K	9 F
J9644	78	10F				W9000	6 C	8A			
Partial At also shown on diagrams 2, 3, 4, 5, 7, 8, 9, 10 and 13.											
ASSEMBLY A3											
R602	18	1F	5602	1A	1F	W901	18	1E			
			S648	6 A	2 E	W904	18	10			
Partial A3 also shown on diagrams 1, 2, 3, 4, 5, 7, 9, 10 and 13.											
ASSEMBLY A4											
C673	4L	3B	0709	4 L	3 C	R744	5 L	38	S701C	4J	1 A
C701C	4L	38	Q710A	5M	3 C	R747	4K	3B			
C7010	4L	3 B	Q710B	5M	3 C	R763	6L	1 D	U715A	6 L	1 D
C712	4 L	3B	0712	5 M	3 C	R765	6M	1D	U715B	6L	1 D
C713	4 L	2 A				R767	6L	1 D			
C714	5M	3 C	$R 673$	4L	3 C	R769	6 L	1 C	W1304	6 M	3B
			R704	2L	3B	R771	5 L	3A	W1304	7H	3 B
CR760	5L	2A	R709	4 L	38	R772	5L	3A	W1304	8 H	3 B
CR761	6L	3B	R710	5M	3 C	R774	6L	1 D			
			R711	4G	2 D	R781	6 M	1D			
$J 9700$	2 L	3 C	R713	4M	3 C						
Partial A4 a/so shown on diagrams 5, 7 and 10.											
ASSEMBLY A5											
C610	10	3A	R610	1 D	3A	R652	80	30	U660B	2 G	1D
C643	3G	3 D	R611	1 D	2A	R653	8D	3 C	U660D	1 F	1D
C646	8 D	3 C	R613	35	2A	R657	5 E	2B	U660E	5D	1 D
C657	7 D	2 C	R614	3 D	2A	R659	8G	3 B	U660F	2G	1 D
C665	75	3 C	R616	2D	2 B	R660	7 D	38	U665A	8 F	1 C
C667	55	10	R617	2 D	2A	R662	7 E	2 D	U665C	8G	1 C
C672	6K	2 C	R618	20	2A	R663	70	3 C	U665D	3 J	1 C
			R619	3 D	2A	R664	8 E	2 D	U670A	1 H	1 B
CR625	2G	1 C	R621	3 D	2A	R665	7E	3 C	U670B	6 F	1 B
CR626	2G	1 C	R623	25	2 A	R667	5 E	10	U680A	$5 E$	10
			R624	3 E	2A	R668	5 D	1 C	U680B	5D	1 D
L667	5D	1 D	R625	2 H	1 C	R669	5 E	10	U680C	8 E	10
			R626	1 G	1 B	R670	6 E	38	U680D	75	1D
0630	6 K	1 B	R627	3D	1A	R671	6 E	2B			
0631	6 K	1 B	R628	2G	1 C	R672	6 K	2 C	VR660	7 D	38
0637	1F	2 D	R630	6 K	1 A	R674	40	2 B			
0643	3 H	2D	R631	6 K	1 A	R678	5G	18	W638	1 F	2 D
0670	6 E	28	R632	6 K	1 B	R682	6G	2 B	W643	3 H	2 D
0674	45	2B	R633	6K	1 A	R683	6 F	2 B	W668	5 D	3 C
Q682	6G	1 B	R634	3.	1 A	R684	6G	2 B	W672	6 K	3 C
0683	$6 F$	1 B	R637	1 F	3B	R686	7 G	2 C	W678	50	2 D
0684	6 G	2B	R638	1F	2 D	R687	7 F	2C	W9400	1 C	3 A
0687	7G	2 C	R640	1F	2 C	R688	7 F	2 C	W9400	2 C	3A
			R642	3 H	30	R689	7G	2 C	W9400	4 C	3 A
R604	2 D	3A	R643	3G	3D				W9400	5 C	3A
R605	2 D	2A	R644	3 H	2D	U605	15	2 A	W9400	6 C	3 A
R606	2 D	2B	R650	40	2B	U655	8D	3 C	W9400	8 C	3A
R609	1 D	3 A	R651	80	3C	U660A	2G	1D			
Partial A5 a/so shown on diagrams 9 and 10.											

TEST SCOPE TRIGGERED ON U665 PIN 8 FOR WAVEFORMS 31 THROUGH 33.


B TIMING AND ALTERNATE B SWEEP DIAGRAM 6 (CONT)

ASSEMBLY A13											
CIRCUIT NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline \text { BOARD } \\ \text { LOCATION } \\ \hline \end{array}$	CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CIRCUIT } \\ & \text { NUMBER } \end{aligned}$	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
J6421	6M	1 C	$\begin{aligned} & \text { R729 } \\ & \text { R736 } \end{aligned}$	$\begin{aligned} & 7 K \\ & 8 K \end{aligned}$	$\begin{aligned} & 1 \mathrm{~B} \\ & 1 \mathrm{C} \end{aligned}$	U782B U782C	8 K 8 K	$\begin{aligned} & 1 \mathrm{C} \\ & 1 \mathrm{C} \end{aligned}$	U783B	7K	1B
R723	7 K	18				U782D	8K	1 C	W1304	6 M	2A
R725	7k	1 B	U782A	7K	1 C	U783A	7K	18	W1304	7 J	2A

Partial A13 also shown on diagrams 5 and 10

## CHASSIS MOUNTED PARTS





Figure 9-17. A16—Sweep Reference board.


A16-SWEEP REFERENCE BOARD

CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER
C900	8	R903	8	W9011	8
C902	8	RT901	8	W9041	8
C903	8	T901	8	W9991	8
R900	8	T903	8	W9191	8
R901	8	VR901	8		

TEST SCOPE TRIGGERED ON U665 PIN 8 FOR WAVEFORMS 34 AND 35.




TEST SCOPE TRIGGERED ON U665 PIN 8 FOR WAVEFORMS 38 AND 40.


HORIZONTAL OUTPUT AMPLIFIER DIAGRAM 7

ASSEMBLY A1								
CIRCUIT   NUMBER	SCHEM   LOCATION	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT   NUMBER	SCHEM LOCATION	BOARD LOCATION
C764	5 J	$3 . J$	0775	6 L	3 G	R786	3M	3G
C770	5K	3 H	0779	6M	4G	R787	4L	3G
c775	51	4 H	0780	4 K	3H	R788	4M	3G
C777	6L	3G	0785	4 L	3G	R789	3L	3G
C779	6 L	3G	0789	3M	3G	R 789	3L	3G
C780	4 K	3 H				8792	5L	4G
C782	4 K	2 H	R566	5 C	7 F	R793	5L	4G
C785	4K	3 H	R676	5 C	7 F	R7301	7 C	6 E
C787	3L	3G	R756	6 B	6 F			
C789	3L	2G	R757	68	6 E	U758	6C	6 F
C7320	7 C	4G	R758	6 C	6 E			
			R759	6 C	6 E	VR764	5 J	3 J
CR764	5 J	2 J	R760	6 C	6 F	VR782	4 K	2 H
CR765	5K	3 H	R761	6 C	6 F			
CR768	5K	3 H	R764	5 J	3 J	W570	5 C	8 F
CR770	5 J	3 H	R766	5K	3 H	W732	5 C	8 F
CR780	4 K	3 J	R768	5K	3 H	W770	4 H	5G
CR7301	4 H	4 J	R770	6K	3 H	W780	$6{ }^{6}$	5 G
CR7302	4 H	4 J	R773	6K	3G	W7320	7 C	5 E
CR7303	5H	4 H	R775	5L	4 H	W9000	7B	8A
CR7304	$6 \mathrm{H}^{2}$	3 H	R776	6 M	3G	W9400	5 C	9 G
CR7305	5 H	3 H	R777	5L	3G	W9700	6D	9 F
CR7306	4 H	$4 J$	R778	5M	3G	W9705	6 D	7 F
CR7307	4 H	4 J	R779	6 L	3G	W9705	6G	7F
CR7308	5 H	4.1	R780	4 K	3 H	W9778	6M	3G
			R782	4 K	3H	W9788	4M	3G
0756	6 B	$6 E$	R783	4L	3 H			
0770	6K	3G	R785	4 K	3 H			
Partial A1 also shown on diagrams 2, 3, 4, 5, 6, 8, 9, 10 and 13.								
ASSEMBLY A3								
C987	8B	1 E	R726	78	1 E	4985	8 B	1D
			R985	8 B	1E			
CR988	8 C	1D	$R 986$	88	1E	W9900	8 D	1 A
CR989	8 C	1 D	R987	88	1 E			
			R988	8C	10			
J9250	70	3 D	R989	8 C	10			
J9900	8D	1 A	R990	8D	1 C			
Partial A3 also shown on diagrams 1, 2, 3, 4, 5, 6, 9, 10 and 13.								
ASSEMBLY A4								
C720	2B	1 C	0742	45	3 D	R745	5E	3 C
C728	75	10				R746	5 E	3D
C751	7 F	2D	R727	70	18	R748	4G	3 D
C755	3 E	2 E	R728	7E	1 B	R749	5G	3 E
			R730	5 C	3D	R750	5G	3D
CR732	6 D	3D	R731	5B	3 D	R751	55	2 E
CR742	5 D	3 D	R732	5 E	3 C	R753	3 F	2 E
			R733	55	3 D	R754	3 E	$1 E$
J9700	5 D	3 C	R737	3E	1 C	R755	3 E	1 E
J9705 $J 9705$	4G	2E	R738	3 E	1 D			
			R740	4C	30	U760	2 F	3E
			R741	4 B	3D			
07320737	$5 E$$3 E$	3020	R742	45	3 C	W5201	2B	25
			R743	$4 E$	30			
Partial A4 also shown on diagrams 5, 6 and 10.								
ASSEMBLY A16								
C7501	1 c	28	R721	10	1 A	S721A	2D	1 A
			R7501	1 C	1 B	S7218	2 D	14
$\begin{aligned} & J 5201 \\ & J 9410 \end{aligned}$	18 1 d	$\begin{aligned} & 2 B \\ & 1 B \end{aligned}$	R7502	1 C	18	S721C	2D	1 A
			R7504	1 C	18			
			R7505	1 C	1 B			
0750107502	1010	18 18	R7506	1 C	2B			
			R7507 1C		1 B			
CHASSIS MOUNTED PARTS								
$\begin{aligned} & \text { P9250 } \\ & \text { P9700 } \\ & \text { P9705 } \end{aligned}$	$\begin{aligned} & 7 D \\ & 5 C \\ & 4 G \end{aligned}$	CHASSIS   CHASSIS   CHASSIS	P9705	6D	CHASSIS	R5202	2 E	CHASSIS
			P9778	6M	CHASSIS	R5203	3 E	CHASSIS
			P9788	4M	CHASSIS			

Scams by ARTEK MEDIA =>



Static Sensitive Devices See Maintenance Section


Chassis-mounted components have no Assembly Number prefix - see end of Replaceable Electrical Parts Lust.


Figure 9-19. A18—Thermal Shutdown board.

## A6-EMI FILTER BOARD

CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER
C900	8	R903	8	W9011	8
C902	8	RT901	8	W9041	8
C903	8	T991	8	W9091	8
R900	8	T903	8	W9191	B
R901	8	VR901	8		

## A18-THERMAL SHUTDOWN BOARD

CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER
CR950	8	R957	8	W950	8
CR951	8	R958	8	W950	8
O950	8	R959	8		
R956	8	RT950	8		



## WAVEFORMS FOR DIAGRAM 8

## AC Waveforms

## WARNING

Instrument must be connected to the ac-power source using a 1:1 isolation transformer. Do not connect the test oscilloscope probe ground lead to the inverter circuit test points if the instrument is not isolated. AC-source voltage exists on reference points TP950 and T906 pin 5.

Preregulator and Inverter voltages are referenced to test point noted adjacent to the voltage. Power supply output voltages are referenced to chassis ground.
44)



## POWER INPUT, PREREGULATOR AND INVERTER DIAGRAM 8

ASSEMBLY A1								
CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD   Location	CIRCUIT   NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \end{gathered}$	BOARD location	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C396	1 E	5 K	0938	75	10 L	R940	8M	10 L
C904	2D	5M	Q939	7 J	10M	R941	$7 J$	10M
C906	25	7 L	0944	7L	10M	R942	7 J	10 L
C907	4 J	8M	0946	7M	10K	R943	7K	10L
C908	3 J	7 M	0947	7M	9 K	R944	7K	10M
C917	5 F	10L	09070	4J	9 K	R945	7 L	10L
C919	4 F	109				R946	7 M	10 L
C922	3 F	9L	R397	1 E	6 G	R947	7M	9 K
C925	3 E	10M	R398	1 E	6 G	R948	8k	10M
C940	5 H	8 K	R905	10	5 L	R949	7M	10 L
C941	5 J	8 K	R906	1 D	6 L			
C942	71	10 L	R907	5 H	8K	S901	10	5M
C943	7M	10 L	R908	5 H	9 L			
C944	7L	9 L	R909	4 H	9 L	I390	$1 E$	6L
C945	7L	10M	R910	1 D	6B	T906	3 H	8L
			R912	5 E	9 L	T944	7 L	9 K
CR901	2 E	6M	R913	5 E	9M			
CR902	2D	6M	R914	4 F	9 L	TP940	5 J	10M
CR903	2 E	6M	R915	4 F	9 L	TP950	2 E	9 L
CR904	2 D	6M	R916	4 F	10M			
CR907	4J	7L	R917	4F	9L	4930	5G	9M
CR908	4 H	9 L	R919	4 F	109			
CR920	2 H	8M	R921	5 F	9M	VR925	3 F	9 M
CR946	71	10k	R922	4 F	109	VR935	8 H	10 M
CR947	7.	10K	R925	3 F	9M	VR943	10 L	10 L
CR948	8 K	100	R926	2 E	9M	VR943	6 K	10L
			8927	3 F	9M			
5907	5 H	8K	R928	3 F	9M	W950	$6 J$	10 L
			R929	2 F	9M	W9040   W9070 1	${ }^{2 \mathrm{C}}$	$\begin{aligned} & 6 \mathrm{~L} \\ & 7 \mathrm{~K} \end{aligned}$
P9070	4J	8K	R930	3 F	9M			
			R934	7 7	10M	$\begin{aligned} & \text { W9070-2 } \\ & \text { W9070-3 } \end{aligned}$	5 H5 H	7 K 8 L
0908	5 H	9L	R935	8 H	10M			9 L
0928	3F	9M	R937	6 J	10L	W9150   W9190	1 C2 C	${ }_{6}^{64}$
0930	3G	9M	R938	$7 J$	10M			
0935	$8 \mathrm{H}$	10 M	R939	7 J	10L		2	
Partial A1 also shown on diagrams 2, 3, 4, 5, 6, 7, 9, 10 and 13.								
ASSEMBLY A6								
C900	2 B	2 C	RT901	2A	1 C	W9011 W904 1	2 A2 C	1 C18
C902	2 C	2A						
C903	2 C		$\begin{aligned} & \text { T901 } \\ & \text { T903 } \end{aligned}$	$\begin{aligned} & 2 B \\ & 2 B \end{aligned}$	28$2 A$	W9091 W9191	$\begin{aligned} & 2 \mathrm{~A} \\ & 2 \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \mathrm{C} \\ & 18 \end{aligned}$
R900	2 C	18						
R901	2 B	38	VR901	2A	1 C			
R903	2B	18						
ASSEMBLY 118								
CR950	$\begin{aligned} & 6 K \\ & 6 K \end{aligned}$	$\begin{aligned} & 3 B \\ & 2 A \end{aligned}$	R956R957R958	6 K6 K	$2 A$$3 B$	RT950	6K	2 B
CR951								
				$\begin{aligned} & 6 K \\ & 6 K \end{aligned}$	$\begin{aligned} & 2 A \\ & 2 B \end{aligned}$	W950	$6 J$$7 J$	3838
0950	6K	3A	R959					
CHASSIS MOUNTED PARTS								
DS9150	1 C	CHASSIS	FL9001	2A	CHASSIS			
F9001	2A	CHASSIS	P9070	4J	chassis			




Figure 9-20. A7—Intensity Pot board.

CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER
R9802	9	R9802	9	W9802	9

COMPONENT NUMBER EXAMPLE


Chassis-mounted components have no Assembly Numbe prefix-see end ol ReDiaceable Electrical Parts List


## WAVEFORMS FOR DIAGRAM 9

SET WAVEFORM REFERENCE/MENU SELECT SWITCH TO MENU SELECT AND SELECT BOX FOR WAVEFORMS 48 THROUGH 50 AND 53.


SET VERTICAL MODE SWITCH TO BOTH-CHOP



ASSEMBLY A1											
CIRCUIT   NUMBER	SCHEM   LOCATION	BOARD   LOCATION	CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { BOARD } \\ \text { LOCATION } \\ \hline \end{array}$	CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \\ \hline \end{gathered}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C547	3 F	2M	CR853	4K	7 K	R547	3 F	2M	R888	2 K	5 J
C824	6 F	8 F	CR854	4 K	6K	R548	4F	2M	R889	2 K	$5 J$
C825	5 F	3 L	CR855	4K	6K	R549	3G	2M	R890	2 K	5」
C828	5 G	4L	CR954	6K	7H	R581	35	2 L	R891	3 K	5
C835	4 H	4 L	CR955	5 K	7 H	R583	5D	8 F	R892	3 K	6 H
C845	3 H	4M	CR956	6 K	7 H	R586	50	8 F	R893	3K	5 H
C847	3 J	3M	CR957	6 K	7H	R590	1F	3 L	R894	3K	6 H
C851	4 J	7k	CR960	7 J	10 J	R595	1 F	2L	R965	6K	10 J
C853	4 K	$7 J$	CR961	7 J	9 H	R800	68	68	R976	5J	6.1
C854	4 K	7 J	CR962	7 J	10.1	R804	58	6 B	R978	5 K	$6 . J$
C855	3k	6 K	CR963	7 J	9 H	R805	58	6 B	R7203	18	1L
C871	2M	1L	CR965	$6 J$	9 J	R810	58	6 B	R7204	2 F	2M
C873	3M	1 K	CR967	6 J	9 9J	R814	68	6 B	R7205	2 C	1L
C875	3M	1K	CR980	8 J	9 J	R818	5 E	7 F	R7206	2 F	2M
C877	4M	1L	CR98	8 J	9 J	R820	5 E	7 F	R7207	2B	1 L
C893	4 K	5J	CR7201	1 G	2M	R822	4 B	3M	R7208	2 F	2 M
C954	5K	7 H	CR7202	2G	3M	R823	4B	3M	R7209	38	2 L
C956	6K	7H	CR7203	2 G	3M	R825	5 F	3L	R7260	2 C	2 L
C958	81.	10 H				R826	4 F	3M	R7261	1 B	1 L
C959	8L	10 H	DS856	4 K	$6 . J$	R828	5 F	2 K	R7262	2 C	1 L
C960	7 K	10K	DS858	4 K	6.5	R830	4G	3M	R7263	2 B	11
C961	7k	10 H	DS870	5L	$6 . J$	R832	1 G	3M			
C962	7 L	10.				R834	4 H	4 L	T948	5J	8J
C963	7L	10 H	J92 10	1 B	2 K	R835	4G	4 L			
C964	8 K	10.1	J9802	58	5B	R836	4G	4M	TP842	3 J	4L
C965	6 K	9 K	J9965	6 K	10J	R840	4 H	4 L			
C968	8K	9 H				R841	4 H	4M	U5378	3 F	1 M
C970	8 L	8 H	L960	7K	10 J	R842	3J	4M	U975	5J	6 H
C975	5 J	$6 J$	L961	7 K	10 H	R844	3 H	3M			
C976	5 J	$7 J$	L962	8 K	10 J	R845	3H	3 M	VR828	5 F	3L
C979	5K	$6 J$	L968	8 K	9 H	R849	3H	3M			
C7201	3 F	3M				R851	4 J	4M	W565	3 E	4K
			0583	$5 E$	8 F	R852	$4 \checkmark$	4M	W575	3 E	3L
CR551	55	7 F	0586	55	8 F	R853	4 K	7 J	W7202	3B	2 L
CR590	1 G	2M	0804	5 B	6B	R854	4 K	$7 J$	W7250	5 C	6 B
CR805	68	6 B	0814	6 C	6 B	R858	4 K	$6 J$	W9000	5 F	8A
CR818	5 E	8 F	0825	4 F	3L	R860	4 K	6 J	W9080	8	8 H
CR820	55	7 F	0829	4G	3M	R870	2 N	1 K	W9400	6 C	9G
CR823	48	3L	0835	4 H	4 M	R871	2N	1K	W9400	6 F	9G
CR824	4G	2M	0840	4 H	4M	R872	3 N	1 K	W9800	4B	4M
CR825	4G	3M	0845	3 H	3M	R873	2 N	1 K	W9870-10	2M	1L
CR829	4F	3M	Q7201	1 C	1L	R874	3 N	1 K	W9870-4	4 L	$6 J$
CR840	4 H	4M	Q7202	2 C	1 M	R875	3N	1 K			
CR845	3 H	3M	07203	2 C	1M	R877	4M	1 K			
CR85 1	4 J	7	07204	3 E	2M	R886	2 K	5 J			
Partial At also shown on diagrams 2, 3, 4, 5, 6, 7, 8, 10 and 13.											
ASSEMBLY A3											
$J 9006$	1M	2A	R982 R983	1 M 1 M	$\begin{aligned} & 2 A \\ & 2 A \end{aligned}$	S390	6G	2A			
Partial A3 also shown on diagrams 1, 2, 3, 4, 5, 6, 7, 10 and 13.											
ASSEMBLY A5											
CR680	65	2B	CR816							70	1 D
CR684	65	2B	CR817	65	3B	R816	6 E	2B	U665B	7 D	1 C
CR685	75	2 C				R817	$6 \underline{5}$	3B			
CR687			J4220	7E	2 D						
Partial A5 also shown on diagrams 6 and 10.											
ASSEMBLY A7											
R9802A	5A	1A	R9802B	6 A	1A	W9802	6 A	1 A			
CHASSIS MOUNTED PARTS											
B9965	6 L	CHASSIS	J9800	4A	CHASSIS	$\begin{aligned} & \text { P9802 } \\ & \text { P99665 } \end{aligned}$	$\begin{aligned} & 5 B \\ & 6 \mathrm{~K} \end{aligned}$	CHASSIS CHASSIS	V9870	11	CHASSIS



ANALOG POWER DISTRIBUTION DIAGRAM 10

ASSEMBLY AT											
CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \end{gathered}$	BOARD   LOCATION	CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \\ & \hline \end{aligned}$
C116	48	4 C	C849	1 A	3M	U501	2 D	6 C	W961	6 A	106
C200	3 C	4 F	C849	1A	3M	U502	7 D	10 C	W964	1A	4 K
C201	4A	4 F	C7203	3A	3 K	U504	78	8 E	W965	2A	3 K
C215	4A	1 C	C7260	38	1L	U506	8D	$9 E$	W968	7A	10 G
C220	3 C	2E				U532	8 D	10 E	W971	2A	9 F
C255	4 B	1G	5200	3 C	5 F	0537	8G	1 M	W972	3A	7 F
C274	2A	2 K	E201	4A	5 F	0540	8G	2 L	W974	3A	3 L
C420	2A	7 C	E272	1 B	2 J	U555	8 F	4 F	W975	3A	3 K
C421	6A	$B C$	E590	7 C	100	U565	8 G	2 K	W976	6A	9 F
C460	BC	80				U758	4 F	6 F	W977	5A	7 F
C480	5D	9 D	J9010	75	10 G	U7201	8 G	2 J	W979	5 D	3K
C494	3F	75	J9050	7 J	7 G	U7202	38	3 J	W991	2 C	7 C
C499	5 F	6 D	J9060	7 J	7G				W993	6 G	7 C
C502	7 C	10 C	J9300	8 J	4L	W400	50	9 C	W995	6 E	88
C503	7A	7 F				W408	6 D	98	W997	3 C	5 F
C506	8 C	9 E	R220	3 D	2 E	W494	3 F	7E	W998	5A	5 F
C507	7 A	7 C	R494	3 F	7F	W542	8A	78	W999	4A	3 F
C531	8 C	100	R499	5 F	7 F	W544	2 C	6 A	w9000	2 J	8A
C537	7 F	1 M	R796	50	2 J	W556	8 F	3 K	W9000	3 J	8A
C540	7 F	2L	R797	3A	$3 J$	W591	8 C	9 E	W9020	8 A	10 G
C553	8 F	4F	R799	18	4G	W592	7 C	10 D .	W9035	2A	10 F
C562	5 G	7A	R964	7 F	4L	W885	5G	5 K	W9068	7 F	10 G
C590	8 C	8 D	R966	7A	9 F	W954	1A	7 G	W9400	5J	9 G
C796	4D	2 J				W955	1 A	4 L	W9400	6.	9G
C797	3A	3 J	U225	4D	10	W956	1A	6G	W9705	5J	7 F
C799	18	4G	U426	4 E	88	W959	1A	5G		2 J	
C832	3A	3 L	$\cup 460$	8D	8D	W960	2A	10G			
Partial At also shown on diagrams 2, 3, 4, 5, 6, 7, 8, 9 and 13.											
ASSEMBLY A2											
C90	1 J	2 F	J9991	1 J	3 F	410 460	1 k	1 C 3 c	w94	1K	1 F 3 F
C93	1 J	2 F	L90	1 J	2 F			3C			
C94	1 K	1 E	L91	1 J	3 F	VR10	1 K	10			
C96	2 J	3 F	L93	1 J	3 F	VR60	1L	3 D			
C97	2 K	3 D	L96	2 J	3 F						
Partial A2 also shown on diagram 1.											
ASSEMBLY A3											
C905	2 J	18	4985	2K	10						
Partial A3 also shown on diagrams 1, 2, 3, 4, 5, 6, 7, 9 and 13.											
ASSEMBLY A4											
C705	4K	38	C750	4K	10	R752	3K	3D	VR749	$3 J$	2 E
C706	5K	38	C752	3K	3D						
C707	3 J	3 C				4715	3 J	10	W1304	3 L	38
C710	4k	3 B	J9705	$3 J$	$2 E$	U750	4J	20	W1304	4 L	38
C724	5K	30				4751	4J	20	W1304	5L	38
C749	4K	20	R724	4 K	3 C	U760	4K	3 E			
Partial 44 also shown on diagrams 5, 6 and 7.											
ASSEMBLY A5											
C605	6.	2A	4605	6 K	2A	W655	$6 J$	30			
C606	6 J	1 B	$\cup 660$	6M	1 D	W690	6 J	30			
C655	6K	3 C	U665	6M	1 C	W691	6K	38			
C659	5 K	2 C	U670	6K	18	W695	6 M	1 c			
C694	6K	1 C	U680	7 L	1 D	W696	6M	1 C			
Partial A5 also shown on diagrams 6 and 9.											
ASSEMBLY A13											
C767	4 N	2D	U780	4M	1A	U783	4N	18			
C768	4 N	2 D	U781	4M	18						
			4782	4 M	1 C	W1304	3M	2A			
Partial A13 also shown on diagrams 5 and 6.											
CHASSIS MOUNTED PARTS											
P9705	3 J	CHASSIS	P9991	1 J	CHASSIS						



ASSEMBLY A10								
CIRCUIT NUMBER	SCHEM LOCATION	BOARD   LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C2117	2 F	2G	U3103	4K	4L	U4226	6 K	9 K
C2118	2 F	2G	U3104	4K	3L	U4227	5J	9K
C2123	2G	3 H	U3105	4K	2L	U4228	6 K	9L
C2154	2G	1 H	U3106	4K	6M	U4229	6 F	9 L
C 2203	7 C	1 K	U3112	4K	6K	$\cup 4230$	5J	8 J
C2206	4 C	3K	U3229	4H	4K	U4231	6 K	9J
C2240	7 C	2 J	U3230	4H	7 K	U4232	6K	9L
C2245	3B	4G	U3231	4H	5K	U9101	6 K	5E
C2246	8 C	4 F	U3232	4H	4J	49102	6K	7 E
C2247	18	4G	U3233	4 H	5J	U9103	4G	6D
C2248	2 C	4 F	U3234	4 H	J	U9104	4 H	6 E
C3101	4 C	4M	U3235	4 H	7 J	U9105	5 J	8 E
C3102	4 C	3L	U3236	4 H	4 J	$\cup 9106$	5 J	7 E
C3104	4 C	3L	U3237	4H	5 J	U9107	6 K	6D
C3105	4 C	2L	U3238	5H	7H	U9108	5J	6 E
C3112	4C	5K	U3239	5 H	8 H	U9109	4 E	4C
C3232	4 C	4 J	$\cup 3306$	4K	4K	U9110	4 E	4C
C3236	4 C	4 J	U3307	4K	5K	U9111	4E	4E
C3306	4 C	4K	U3308	5K	5L	U9112	6 H	4D
C3307	4 C	5 K	U3309	3J	4L	U9113	6 H	4 E
C3308	4 C	5L	U3310	5H	5F	U9114	6 H	50
C4106	5 C	8L	U3313	5K	5 L	U9201	4L	7 C
C4110	5 C	7M	U3416	5K	5H	49202	4L	8 D
C4125	5 C	8M	U3417	3 J	5H	$\cup 9203$	4 L	7 D
C4126	5 C	5M	U3418	4F	5G	U9204	5 J	5D
C 4217	5 C	9 M	U3419	4F	5 H	U9205	5 J	5 C
C 4232	5 C	9L	U3420	5K	5G	U9206	6 H	7 C
C9002	3 B	10F	U3421	5H	8G	U9207	6 H	6B
C9006	1 B	9 E	U3422	5 H	8 H	$\cup 9208$	4 D	8 B
$\mathrm{C9007}$	2 C	10E	U3423	3 J	6G	49210	1D	10 C
C9101	5C	3 E	U3424	3 J	6G	U9211	6 H	6 C
C9102	5 C	7 E	U3425	3 J	6 F	U9220	2 D	10C
C9104	5 C	$6 E$	U3426	5K	5G	U9231	4L	6 C
C 9109	5 C	3 C	U3427	5H	7G	U9232	4L	8 D
C 9201	5C	7 C	U3428	5H	7 F	U9233	4L	7 D
$\mathrm{C9203}$	5C	5 C	U4101	5K	5M	U9301	6 H	5B
C 9207	5C	5 C	U4102	3J	7K	U9302	6 H	4B
C9211	1 B	9 C	U4103	3 J	7L			
C9212	2 C	10 C	$\cup 4104$	3.1	7 L	W2102	2G	4F
C 9221	1 D	90	U4105	5K	9M	W2104	30	4G
C 9222	2D	10D	$\cup 4106$	5 K	8L	W2105	1 F	4 F
C 9223	5C	8 B	U4107	3 J	7K	W2107	3 C	4 H
C 9250	5C	78	U4108	5J	7 K	W2203	7 C	3 H
C 9301	5 C	5B	U4109	5 J	71	W3234	78	7 J
C9302	5 C	4B	U4110	5 J	7 L	W4200	1 F	10K
			U4111	5 J	8 K	W9012	48	8 E
CR2105	2 F	2G	U4112	5 J	8L	W9013	4 B	8 D
CR2106	2 F	2G	U4113	5 H	8K	W9014	78	3C
CR2107	2F	1 F	U4114	5K	9 H	W9015	4B	35
CR2108	2F	1 F	U4115	5H	9G	W9016	7B	3D
CR2109	2 F	1 F	U4116	5 H	8 F	W9017	5B	3D
			U4117	5 H	9 H	W9018	4B	3E
J8100	1M	2D	U4118	5K	10 J	W9019	58	3E
			U4119	5H	9 J	W9021	5B	5G
U2101	2 F	2G	U4120	5K	$9 J$	W9022	6 B	5 H
U2202	6C	3 J	U4121	5K	10 J	W9023	6B	$5 . J$
U2203	6D	3L	U4122	5K	9 H	W9024	6 B	5K
U2204	65	3K	U4123	5H	9G	W9025	1 B	90
U2205	65	3 K	$\cup 4124$	5H	9 H	W9026	4B	4L
U2206	6 E	3K	U4125	5K	8M	W9027	4 B	10J
U3101	4K	4M	U4126	6 K	6M	W9028	4 B	5 J
U3102	4K	3 L	U4127	6K	7M	W9029	2 C	10D
Partial A10 also shown on diagrams 12, 14, 15, 16, 17, 18 and 21.								



STORAGE WIRING INTERCONNECT DIAGRAM 12

ASSEMBLY A10								
CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \\ & \hline \end{aligned}$
W4100-1	1K	6 E	W4212	6K	10 K	W9090	5F	10G
W4100-2	2K	7K	W4220	5K	10K	W9210	4K	9B
W4110	1K	5L	W9010	3K	9 F	W9321	1 K	5L
W4211	5K	10 K	W9050	5K	10 F	W9322	2K	5 F
W4212	6 K	10 K	W9060	4K	10F	W94 10	7K	$7 B$

Partial A10 also shown on diagrams 11, 14, 15, 16, 17, 18 and 21.

CHASSIS MOUNTED PARTS

P4110	1B	CHASSIS	P9010	$7 B$	CHASSIS	P9210	2 B	CHASSIS
P4210	6B	CHASSIS	P9050	5B	CHASSIS	P9320	$3 B$	CHASSIS
P4220	6B	CHASSIS	P9060	$4 B$	CHASSIS	P9410	$5 B$	CHASSIS



## INPUT/OUTPUT WIRING INTERCONNECT DIAGRAM 13

ASSEMBLY A1								
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	SCHEM   location	
C951	3 C	6A	VR954	3 C	88	W6411 W6412	6 D 6 D	$\begin{aligned} & 2 D \\ & 4 \mathrm{~J} \end{aligned}$
R953	2 C	7A	W6121	3 D	8A	W6413	3 D	6A
R954	3 C	8A	W6122	4D	8 F	W6422	5 D	3L
			W6123	4D	9 F	W9000	2 C	8 A
VR953	2 C	6A	W6130	2D	7A	W9000	3 C	8A
Partial A1 a/so shown on diagrams 2, 3, 4, 5, 6, 7, 8, 9 and 10.								
ASSEMBLY A3								
R960	3B	3A	R961	3B	1 A			
Partiat A3 a/so shown on diagrams 1, 2, 3, 4, 5, 6. 7, 9 and 10.								
CHASSIS MOUNTED PARTS								
P6110	5L	CHASSIS	P6120	6 L	CHASSIS	P64 21	1 E	CHASSIS
P6111	75	CHASSIS	P6130	71	CHASSIS	P64 23	$5 E$	CHASSIS
P6112	8 8	CHASSIS	P6410	3L	CHASSIS			
P6113	75	CHASSIS	P6420	2 L	CHASSIS			



Scans by => ARTEK MEDIA © 2003-2005


CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM   NUMBER	CIRCUIT NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT NUMBER	SCHEM NUMBER
C2101	16	CR2107	11	R2154	16	R9219	15	U3239	11	U4114	11
C2102	16	CR2108	11	R2155	16	R9220	15	U3239	17	U4114	18
C2103	16	CR2109	11	R2156	16	R9221	15	U3306	11	U4114	18
C2104	16	CR2111	16	R2157	16	R9222	15	U3306	17	04114	18
C2111	16	CR2112	16	R2257	16	R9223	15	U3306	17	U4114	18
C2112	16	CR2203	16	R2258	16	R9224	15	U3307	11	U4115	11
C2113	16	J2111	16	R2259	16	R9230	14	U3307	17	U4115	18
C2114	16	J2112	16	R2260	16	R9301	14	U3307	17	U4116	11
C2115	16	J4104	18	R2265	16	R9302	14	U3308	11	U4116	18
C2116	16	J6100	14	R2266	16	R9401	14	U3308	17	U4117	11
C2117	11	J6100	14	R2266	16	R9402	14	U3308	17	U4117	18
C2118	11	J6100	15	R2267	16	RT2101	16	U3308	17	U4118	11
C2119	16	J6100	21	R2268	16	RT2102	16	U3308	17	U4118	18
C2120	16	J8100	11	R2269	16	RT2103	16	U3309	11	U4118	18
C2123	11	J8100	14	R2270	16	RT2111	16	U3309	17	U4119	11
C2151	16	J8100	14	R2274	16	RT2112	16	U3310	11	$\cup 4119$	18
C2152	16	J8100	14	R2275	16	RT2113	16	U3310	17	U4120	11
C2153	16	J9104	14	R2276	16	RT2131	16	U3313	11	U4120	18
C2154	11	J9105	14	R2277	16	RT2132	16	U3313	17	U4120	18
C2203	11	J9105	14	R2278	16	S9401	14	U3313	17	U4120	18
C2206	11	J9105	14	R2279	16	S9401	14	U3313	17	U4120	18
C2224	16	J9105	14	R2281	16	S9401	14	U3416	11	U4121	11
C2225	16	J9107	14	R2286	16	59401	14	U3416	17	U4121	18
C2226	16	J9430	14	R2287	16	S9401	14	U3416	17	U4121	18
C2228	16	L2137	16	R2289	16	S9402	14	U3416	17	U4122	11
C2229	16	L2139	16	R2290	16	S9402	14	U3416	17	U4122	17
C2230	16	02101	16	R2291	16	S9402	14	U3416	17	U4122	18
C2233	16	02102	16	R2292	16	59402	14	U3416	17	U4122	18
C2235	16	Q2103	16	R2293	16	59403	14	U3417	11	U4122	18
C2236	16	02104	16	R2295	16	T2201	16	U3417	17	U4123	11
C2237	16	02105	16	R2296	16	T2202	16	U3418	11	U4123	18
C2238	16	02106	16	R2297	16	T2203	16	U3418	17	U4124	11
C2239	16	02107	16	R3102	17	U2101	11	U3419	11	U4124	18
C2240	11	02150	16	R3104	17	U2101	16	U3420	11	U4125	11
C2241	16	02207	16	R3105	17	U2202	11	U3420	17	U4125	18
C2242	16	02208	16	R3232	17	U2202	16	U3420	17	U4125	18
C2245	11	02209	16	R3234	17	U2202	16	U3420	17	U4126	11
C2246	11	02209	16	R3301	17	U2203	11	U3420	17	U4126	18
C2247	11	02211	16	R3307	17	U2203	16	U3421	11	U4126	18
C2248	11	02212	16	R3310	17	U2203	16	U3421	17	U4127	11
C3101	11	02213	16	R3417	17	U2203	16	U3422	11	U4127	18
C3102	11	04203	18	R3423	17	U2204	11	U3422	17	U4127	18
C3104	11	04204	18	R4101	18	U2204	16	U3423	11	U4127	18
C3105	11	04205	18	R4102	18	U2205	11	U3423	17	U4127	18
C3112	11	04207	18	R4103	18	U2205	16	U3424	11	U4226	11
C3232	11	04227	18	R4104	18	U2206	11	U3424	17	U4226	18
C3236	11	09100	14	R4105	18	U2206	16	U3425	11	U4226	18
C3306	11	R2101	16	R4106	18	U3101	11	U3425	17	U4227	11
С3307	11	R2102	16	R4107	18	U3101	17	U3426	11	U4227	18
C3308	11	R2104	16	R4108	18	U3101	17	U3426	17	U4228	11
C4101	18	R2105	16	R4110	18	U3102	11	U3426	17	U4228	18
C4106	11	R2106	16	R4115	18	U3102	17	U3426	17	U4228	18
C4110	11	R2107	16	R4119	18	U3102	17	U3426	17	U4229	11
C4115	18	R2108	16	R4201	18	U3103	11	U3427	11	U4229	18
C4125	11	R2109	16	R4202	18	U3103	17	U3427	17	U4230	11
C4126	11	R21 10	16	R4203	18	U3103	17	U3428	11	U4230	18
C4201	18	R2111	16	R4204	18	U3104	11	U3428	17	U4231	11
C4202	18	R2112	16	R4205	18	U3104	17	U4101	11	U4231	18
C4203	18	R2114	16	R4206	18	U3104	17	U4101	17	U4231	18
C4217	11	R2115	16	R4207	18	U3104	17	U4101	18	U4232	11
C4232	11	R2116	16	R4208	18	U3104	17	U4101	18	U4232	18
C9002	11	R2117	16	R4209	18	U3105	11	U4101	18	U4232	18
C9006	11	R2118	16	R4210	18	U3105	17	U4102	11	49101	11
C9007	11	R2119	16	R4211	18	U3105	17	U4102	18	49101	14
C9101	11	R2120	16	R4212	17	U3106	11	U4102	18	49101	14
C9102	11	R2121	16	R4213	18	43106	17	U4103	11	U9101	14
C9104	11	R21 22	16	R4214	18	43106	17	U4103	17	U9101	14
C9107	14	R2123	16	R4215	18	U3112	11	$\cup 4103$	18	U9102	11
C9109	11	R2124	16	R4216	18	U3112	17	U4104	11	49102	14
C9201	11	R21 25	16	R4217	18	U3112	17	U4104	17	U9102	14
C9202	15	R21 26	16	R4220	18	U3112	18	U4104	18	U9102	14
C9203	11	R2127	16	R4227	17	U3112	18	U4105	11	U9102	14
C9205	14	R2128	16	R9101	14	U3113	18	U4105	18	U9103	11
C9206	14	R21 29	16	R9102	14	U3229	11	U4105	18	U9103	14
C9207	11	R2130	16	R9103	14	U3229	17	U4106	11	U9103	14
C9210	15	R2131	16	R9104	14	U3230	11	U4106	18	49103	14
C9211	11	R2133	16	R9106	14	U3230	17	U4106	18	49103	14
C9212	11	R2137	16	R9107	14	43231	11	U4106	18	U9103	14
C9220	15	R2138	16	R9108	14	U3231	17	U4106	18	U9103	14
C9221	11	R21 39	16	R9109	14	U3232	11	U4107	11	49103	14
C9222	11	R2140	16	R9110	14	U3232	17	$\cup 4107$	18	U9103	14
C9223	11	R2141	16	R9112	14	U3233	11	U4108	11	U9104	11
C9250	11	R2143	16	R9113	14	U3233	17	U4108	18	U9104	14
C9301	11	R2144	16	R9113	14	U3234	11	U4109	11	U9105	11
C9302	11	R2145	16	R9114	14	U3234	17	U4109	18	U9105	14
C9410	14	R2146	16	R9115	14	U3235	11	U4110	11	U9105	14
C9411	14	R2147	16	R9120	14	U3235	17	U4110	18	49106	11
CR2101	16	R2148	16	R9210	15	U3236	11	$\cup 4111$	11	U9106	14
CR2102	16	R2149	16	R9211	15	U3236	17	U4111	18	49107	11
CR2103	16	R2150	16	R9212	15	U3237	11	U4112	11	49107	14
CR2104	16	R2151	16	R9213	15	U3237	17	U4112	18	49107	14
CR2105	11	R2152	16	R9214	15	U3238	11	U4113	11	U9107	14
CR2106	11	R2153	16	R9219	15	U3238	17	U4113	18	U9108	11

A10-STORAGE BOARD

CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM   NUMBER	CIRCUIT NUMBER	SCHEM   NUMBER
U9108	14	U9210	15	W4212	12
U9109	11	U9211	11	W4220	12
U9109	14	U9211	15	W9010	12
U9110	11	49220	11	W9012	11
U9110	14	U9220	15	W9013	11
U9111	11	49231	11	W9014	11
U9111	14	U9231	15	W9015	11
U9112	11	U9232	11	W9016	11
U9112	14	U9232	15	W9017	11
U9113	11	U9233	11	W9018	11
U9113	14	U9233	15	W9019	11
U9114	11	U9301	11	W9021	11
U9114	14	U9301	14	W9022	11
U9201	11	U9302	11	W9023	11
U9201	15	U9302	14	W9024	11
U9202	11	W2101	16	W9025	11
U9202	15	W2102	11	W9026	11
U9203	11	W2103	16	W9027	11
U9203	15	W2104	11	W9028	11
U9204	11	W2105	11	W9029	11
U9204	15	W2107	11	W9050	12
U9205	11	W2203	11	W9060	12
U9205	15	W3234	11	W9090	12
U9206	11	W4100-1	12	W92 10	12
U9206	15	W4100-2	12	W9211	15
U9207	11	W4110	12	W9321	12
U9207	15	W4200	11	W9322	12
U9208	11	W4201	18	W94 10	12
U9208	15	W4211	12	Y4100	18
U9210	11	W4212	12		

Scans by $=>$ ARTEK MEDIA © 2003-2005


WAVEFORMS FOR DIAGRAM 14


TEST SCOPE TRIGGERED ON U911 PIN 21 FOR WAVEFORMS 57 THROUGH 62.




4999-96


TEST SCOPE TRIGGERED ON U911 PIN 21 FOR WAVEFORMS 64 THROUGH 69.


MICROPROCESSOR AND STORE PANEL CONTROLS DIAGRAM 14

ASSEMBLY A10								
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C9107	4A	65	R9110	8C	7 C	U9102B	7 K	75
$\mathrm{C9} 205$	1M	9 C	R9112	6C	75	U9102C	4B	75
C9206	1M	9 D	R9113H	7 C	4D	U9102D	6 H	7E
C9410	2E	7B	R9113	4 E	4D	U9103A	7 B	6D
C9411	1G	78	R9114	7B	75	U9103B	7H	6 D
			R9115	6 B	75	U9103C	6G	6D
J6100	1M	100	R9120	8 E	5 E	U9103D	7H	6D
J6100	8A	10D	R9230	1 M	9D	U91035	5G	6D
J8100	3C	2D	R9301	2 J	5B	U9103F	6 H	6D
J8100	5M	2D	R9302	1 J	4B	U9103G	8 C	6D
J8100	6A	2D	$\mathrm{R9401}$	2M	10C	U9103H	5 H	6D
J9104	5A	6 E	R9402	2M	10 C	U9104	38	65
J9105A	7 C	60				U9105D	7K	85
J9105B	5E	5 E	S9401A	1 A	5A	U9105	3 J	8E
J9105C	8 F	8 E	S9401B	1 B	5A	U9106	7G	7E
J9105D	6K	4E	S9401C	1 B	5A	U9107A	7H	6D
J9107	5A	85	S9401D	1 B	5A	U9107B	6 H	6D
J9430	1M	7B	S9401E	1 C	5A	U9107C	5 H	6D
			S9402A	1 C	8A	U9108	6C	6 E
Q9100	7B	6 E	S9402B	1 E	8A	U9109	4J	4 C
			S9402C	$1 E$	8A	U9110	5.	4 C
R9101	4B	65	S9402D	1 F	8A	U9111	3D	4E
R9102	6 B	8 E	S9403	1G	4B	U9112	4F	4D
R9103	8 F	85				U9113	4L	4E
R9104	5A	5E	U9101A	6 F	5E	U9114	5 F	5D
R9106	4B	5 E	U9101B	6G	5 E	U9301	2 K	58
R9107	4A	5 E	U9101C	6 B	5 E	U9302	1 K	4 B
R9108	8 C	7 E	U9101D	6 H	5E			
R9109	6 E	5D	U9102A	7 H	75			
Partial A10 also shown on diagrams 11, 12, 15, 16, 17, 18 and 21.								
ASSEMBLY A24								
R9412A	1L	1 A	S9412	2 L	1A	W9430	2M	1 A
R9412B	2L	1 A						
CHASSIS MOUNTED PARTS								
P9105C	85	CHASSIS	P9430	1 M	CHASSIS			

Scans by $=>$ ARTEK MEDIA © 2003-2005


## WAVEFORMS FOR DIAGRAM 15

TEST SCOPE TRIGGERED ON U9111 PIN 21 FOR WAVEFORMS 70 THROUGH 77.


DIGITAL DISPLAY DIAGRAM 15

ASSEMBLY A10								
CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT   NUMBER	SCHEM   LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD   LOCATION
C 9202	15	8 B	R9219	6D	7B	U9206	3 C	7 C
C9210	3H	9C	R9220	2G	10C	U9207	5C	68
C9220	2 H	9D	R9221	2 H	9D	U9208	55	8 B
			R9222	2G	100	U9210	3J	10 C
$J 6100$	1M	100	R9223	1 K	10 C	U9211	8 B	6 C
			R9224	1 L	100	U9220	1 J	10 C
R9210	2G	9 C				U9231	4M	6C
R9211	3H	9 C	U9201	6M	7 C	U9232	4K	8D
R9212	3G	10C	U9202	6 K	80	U9233	4J	7 D
R9213	3K	10 C	49203	6 J	70			
R9214	3L	10 C	U9204	6 F	5 D	W92 11	60	5 C
R9219C	8 B	78	49205	7F	5 C			

Partial A10 also shown on diagrams 11, 12, 14, 16, 17, 18 and 21



TEST SCOPE TRIGGERED AT JUNCTION OF R2265 AND R2266 FOR WAVEFORMS 81 THROUGH 86.


## STORAGE ACQUISITION DIAGRAM 16

ASSEMBLY A10								
CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD   LOCATION	CIRCUIT NUMBER	SCHEM   LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C2101	2 C	1 g	Q22098	2 J	2 J	R2257	6 G	3 J
C2102	2 C	1G	02211	3K	2」	R2258	6G	3 J
C2103	2 C	2G	02212	2 K	2 J	R2259	6G	3 J
C2104	40	3G	02213	6G	3 J	R2260	6G	3J
C2111	4 C	4G				R2265	7 D	3L
C2112	4 C	4G	R2101	48	3G	R2266	1 J	3L
C2113	4 C	3G	R2102	38	3G	R2266	70	3 L
C2114	2D	2G	R2104	3 C	4G	R2267	80	2k
C2115	4 B	3 F	R2105	4 C	3G	R2268	8 D	2L
C2116	2 B	2 F	R2106	3 C	3 G	R2269	8 F	3k
C2119	6D	3 H	R2107	30	3 G	R2270	7E	2L
C2120	5 F	3H	R2108	4D	3 G	R2274	7 H	1 J
C2151	2G	2 H	R2109	4 B	3 F	R2275	7 H	1 J
C2152	2 H	2 H	R2110	2 B	2 F	R2276	7 J	1 J
C2153	3 H	$1{ }^{\text {H }}$	R2111	2 B	2G	R2277	7H	1 K
C2224	70	3L	R2112	2 B	2G	R2278	7H	1 k
C2225	JE	2L	R2114	2 C	1G	R2279	5 J	2 J
C2226	5 J	1 J	R2115	2 C	2G	R2281	4 J	2 H
C2228	7H	1 K	R2116	3 C	2G	R2286	1 J	2 J
C2229	4 H	1 H	R2117	20	2G	R2287	2 J	2 J
C2230	4.1	1 H	R2118	20	2G	R2289	3 J	2 J
C2233	4G	2.1	R2119	20	2 F	R2290	3 J	3 J
C2235	2 J	2 H	R2120	2B	2G	R2291	3K	2 J
C2236	1 J	2 J	R2121	2 B	2 G	R2292	2 K	2 J
C2237	2 K	2 J	R2122	2 B	2G	R2293	2 K	2 J
C2238	4 H	2 J	R2123	4 B	3G	R2295	3L	3.
C2239	6 F	3 J	R2124	3 B	3G	R2296	7K	2K
C2241	8 K	2 K	R2125	4 B	3G	R2297	7 K	2K
C2242	$3 J$	2 J	R2126	50	2G			
			R2127	5 D	1G	RT2 101	4 C	3G
CR2101	5 D	1 G	R2128	4 C	4 H	RT2 102	40	2 F
CR2102	5D	1 H	R2129	5 C	3H	RT2103	4 C	4G
CR2103	5 C	3 H	R2130	4 D	3 F	RT2111	2 C	2G
CR2104	5 C	3 H	R2131	3 F	1 H	RT2 112	2D	2 F
CR2111	2D	1G	R2133	60	3 H	RT2 113	2 C	1 G
CR2112	4D	3G	R2137	4 F	2 H	RT2 131	4 F	2 H
CR2203	1 J	2 H	R2138	3 F	1H	RT2 132	1G	2 H
			R2139	3F	2 H			
J2111	2 A	2G	R2140	3 F	2 H	T2201	5 J	1H
J2112	3A	3G	R2141	3 F	2 H	T2202	6 H	1 J
			R2143	5F	3H	T2203	3 J	2 H
12137	3F	2 H	R2144	5 F	3H			
L2139	3 F	2 H	R2145	5G	3 H	U2101		2G
			R2146	4F	3H	U2202A	1G	3 J
02101	3 F	2 H	R2147	3G	2 H	U22028	6G	3 J
02102	4F	2 H	R2148	2G	2 H	U2203A	7F	3 L
02103	4G	3 H	R2149	1 G	2 H	U2203B	7 F	3 L
02104	5G	3H	R2150	2 H	2 H	U2203C	8 E	3 L
Q2105	2G	2 H	R2151	2 H	2 H	U2204	1 L	3K
Q2106	2 H	2 H	R2152	2 H	2 H	U2205	2M	3K
Q2107	3 H	1 H	R2153	2 H	1 H	U2206	3M	3K
Q2150	1H	3 J	R2154	3 H	1 J			
02207	7 H	1 J	R2155	1 F	3 J	W2101	1H	3H
Q2208	$7 J$	1 J	R2 156	1G	3J	W2 103	5 C	4F
Q2209A	2 J	2.	R2157	1G	3 J			
Partial A10 also shown on diagrams 11, 12, 14, 15, 17, 18 and 21.								



## WAVEFORMS FOR DIAGRAM 17



TEST SCOPE TRIGGERED ON U9111 PIN 21 FOR WAVEFORMS 94 THROUGH 105.


TEST SCOPE TRIGGERED ON U4118 PIN 6 FOR WAVEFORMS 90 THROUGH 93.



## ACQUISITION MEMORY DIAGRAM 17

ASSEMBLY A10								
CIRCUIT   NUMBER	SCHEM   LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION
R3102	7 C	3 L	U3112A	7F	6K	U3416B	5G	5H
R3104	4B	5M	U3112D	7G	6K	U3416C	5 H	5 H
R3105	5 C	4M	U3229	1 B	4K	U3416D	6 H	5 H
R3232	1 C	4J	U3230	2B	7K	U3416E	7H	5 H
R3234	2 C	7 J	U3231	3B	5K	U3416F	7H	5H
R3301	6 F	4K	U3232	1 C	4 J	U3417	5 H	5 H
R3307	6 F	6K	U3233	3 E	5.J	U3418	3 L	5G
R3310	7B	6G	U3234	2C	7J	U3420A	5L	5G
R3417	5 H	5 H	U3235	2E	$7 J$	U3420B	8A	5G
R3423	5.J	6G	U3236	1 K	4 J	U3420C	5G	5G
R4212	2G	10L	U3237	3K	5J	U3420D	5 L	5G
R4227	2 C	9K	U3238	2K	7H	U3421	2M	BG
			U3239	4K	8 H	U3422	3M	8 H
U3101A	5B	4M	U3306A	6E	4 K	U3423	5K	6G
U3101B	5D	4M	U3306B	6 F	4K	U3424	6 K	6G
U3102A	7G	3 L	U3307A	6 F	5K	U3425	7K	6 F
U3102B	7E	3L	U3307B	2 H	5K	U3426A	5L	5G
U3103A	6D	4L	U3308A	3G	5L	U3426B	5K	5G
U3103B	5D	4L	U3308B	BJ	5L	U3426C	6K	5 G
U3104A	7B	3L	U3308C	7F	5L	U3426D	1A	5G
U3104B	7B	3L	U3308D	2G	5L	U3427	6M	7 G
U3104C	7 C	3L	U3309	2G	4L	U3428	7M	7 F
U3104D	7 B	3L	U3310	8B	5 F	U4101C	6 F	5M
U3105A	7 D	2 L	U3313A	2 J	5L	U4103A	6D	7 L
U3105B	7 C	2 L	U3313B	2 J	5L	U4104B	5B	7L
U3106A	6B	6M	U3313D	7 F	5L	U4122C	6G	9 H
U3106B	6B	6 M	U3416A	5G	5 H			

Partial A10 also shown on diagrams $11,12,14,15,16,18$ and 21



TEST SCOPE TRIGGERED ON U4105 PIN 9 FOR WAVEFORMS 121 AND 122.


TEST SCOPE TRIGGERED ON U4227 PIN 10


## WAVEFORMS FOR DIAGRAM 18



TEST SCOPE TRIGGERED ON U9111 PIN 21 FOR WAVEFORMS 108 THROUGH 111.


DIGITAL TIMEBASE DIAGRAM 18

ASSEMBLY A10								
CIRCUIT   NUMBER	SCHEM   LOCATION	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C4101	2 A	6L	R4214	2G	10L	U4118B	4M	10 J
C4115	7 D	gF	R4215	2G	10L	U4119	48	9J
C4201	2G	10 L	R4216	2H	10M	U4120A	2M	9 J
C4202	1F	10 K	R4217	1H	10M	U41208	4M	9 J
C 4203	2F	10L	R4220	2M	9 J	U4120C	4M	$9 J$
						U4120D	5M	9 J
J4104	$2 A$	6L	U3112B	3D	6 K	U4121A	6 K	10 J
			U3112C	3E	6K	U4121B	6 H	10 J
Q4203	1G	10L	U3113C	4D	5L	U4122A	8B	9 H
Q4204	1G	10L	U4101A	6M	5M	U4122B	7B	9 H
04205	2G	10L	U41018	45	5M	U4122D	7 B	9 H
Q4207	2 F	10L	U4101D	6 M	5M	U4123	7 L	9G
Q4227	2 C	9K	U4102A	2A	7K	U4124	8L	9 H
			U4102B	3B	7K	U4125A	4K	8M
R4101	2A	6M	U4103B	4K	7L	U4125B	4L	8M
R4102	2A	6M	U4104A	3E	7 L	U4126A	4G	6M
R4103	5K	9L	U4105A	5J	9 M	U4126B	4H	6M
R4104	5 L	9M	U4105B	5J	9M	U4127A	5 H	7M
R4105	4L	10K	U4106A	5H	8L	U41278	2 E	7M
R4106	7 D	9G	U4106日	1 H	8L	U4127C	1 E	7M
R4107	6 H	10 H	U4106C	6 J	8L	U4127D	5 C	7M
R4108	5 C	7 L	U4106D	5 H	8L	U4226A	1 C	9 K
R4110	2B	6 K	U4107	5 C	7K	U4226B	1 F	9K
R4115	70	8F	U4108	5D	7K	U4227	1 C	9K
R4119	5A	8 J	U4109	5 E	7L	U4228A	2D	9L
R4201	1B	10 J	U4110	6 F	7L	U42288	1 E	9L
R4202	25	10K	U4111	6G	8 K	U4229	2 H	9L
R4203	2F	10K	U4112	6G	8L	U4230	1 K	8 J
R4204	1G	9 L	U4113	5B	8K	U4231A	1M	9 J
R4205	1G	10L	U4114A	8B	9 H	U4231B	1 M	9 J
R4206	1 H	10L	U4114B	7 B	9 H	U4232A	1 J	9 L
R4207	1 H	10L	U4114C	6 A	9 H	U4232B	1 J	9L
R4208	1E	10K	U4114D	5A	9 H			
R4209	1 F	9 L	U4115	8E	9G	W4201	1D	9 K
R4210	2G	10K	U4116	8G	8 F			
R4211	2G	10K	U4117	7 H	9 H	Y4100	2 A	6 L
R4213	$1{ }^{1}$	10L	U4118A	3 C	10 J			
Partial A10 also shown on diagrams 11, 12, 14, 15, 16, 17 and 21.								
CHASSIS MOUNTED PARTS								
P4104	1A	CHASSIS						




Figure 9-22. A11A1—input/Output board.

Static Sensitive Devices See Maintenance Section

COMPONENT NUMBER EXAMPLE


Chassis-mounted components have no Assembly Number
prefix-see end of Replaceable Electrical Parts List


## A11A1—INPUT/OUTPUT BOARD

CIRCUIT NUMBER	SCHEM   NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM   NUMBER
C6101	19	R6102	19	R6219	21
C6102	19	R6102	19	R6220	21
C6103	19	R6103	19	R6221	21
C6104	19	R6104	19	R6222	21
C6105	19	R6105	19	R6223	21
C6106	19	R6106	19	R6224	21
C6107	19	R6107	19	R6225	21
C6108	19	R6108	19	R6226	21
C6109	19	R6109	19	R6227	21
C6110	19	R61 10	19	R6228	21
C6111	19	R6111	19	R6229	21
C6112	19	R61 12	19	R6230	21
C6113	19	R61 13	19	R6231	21
C6114	19	R61 14	19	R6232	21
C6115	19	R6115	19	R6233	21
C6116	19	R6116	19	R6234	21
C6117	19	R6117	19	U6101	19
C6118	19	R61 18	19	U6101	19
C6130	19	R6119	19	U6101	19
C6201	21	R61 20	19	U6101	19
C6202	21	R61 21	19	U6 101	21
C6203	21	R61 22	19	U6102	19
C6204	21	R61 23	19	U6102	21
C6205	21	R61 24	19	U6103	19
C6206	21	R61 25	19	U6103	21
C6207	21	R61 26	19	U6104	19
C6208	21	R61 27	19	U6104	21
C6210	21	R61 28	19	U6105	19
C6211	21	R61 29	19	U6105	21
C6212	21	R61 30	19	U6106	19
C6220	21	R6131	19	U6106	21
C6221	21	R6132	19	U6107	19
CR6101	19	R6133	19	U6 107	19
CR6102	19	R6134	19	$\cup 6107$	19
CR6103	19	R6135	19	U6107	19
CR6104	19	R6136	19	U6107	21
CR6201	21	R6137	19	U6108	19
CR6202	21	R6138	19	U6108	21
CR6203	21	R6201	20	U6201	21
CR6204	21	R6202	20	U6202	21
J61 10	19	R6203	20	U6202	21
J6120	19	R6204	19	W6000	20
J6130	19	R6205	19	W6000	20
$J 6140$	21	R6206	19	W6000	20
J6150	21	R6207	19	W6000	20
L6201	21	R6208	19	W6000	20
L6202	21	R6209	19	W6000	20
L6203	21	R62 10	19	W6000	21
L6204	21	R62 11	19	W6100	19
L6205	21	R6212	19	W6100	20
L6206	21	R62 13	19	W6100	21
06101	19	R6214	19	W6119	19
Q6201	19	R6215	19	W6201	21
06202	21	R6216	19	W6202	21
06203	21	R6217	19		
R6101	19	R6218	19		



TEST SCOPE TRIGGERED ON U6103 PIN 1 FOR WAVEFORMS 126 AND 127.


ASSEMBLY A11								
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C6101	5 J	30	R6103	5C	3 D	R6138	3K	35
C6102	6C	3 D	R6104	5C	4D	R6204	7 C	3 C
C6103	3 C	4D	R6105	5B	4 D	R6205	8C	1 C
C6104	4E	3 C	R6106	5C	4D	R6206	7C	2C
C6105	4E	3 C	R6107	5B	4E	R6207	7 C	2C
C.6106	6B	30	R6108	5 C	4E	R6208	7c,	1C
$\mathrm{C6107}$	1K	2E	R6109	5B	4E	R6209	7 C	3 C
C6108	4B	3D	R6110	5B	4E	R62 10	7 B	2 B
C6109	4C	3 D	R6111	4B	$4 E$	R6211	7B	2 B
C6110	4 C	3 D	R6112	5B	4 E	R6212	8 B	$2 B$
C6111	4C	3 D	R6113	3B	3 E	R6213	8 B	2 B
C6112	2K	2E	R6114	4B	35	R6214	8 B	2B
C6113	2K	2E	R6115	4C	3 E	R6215	7 B	2B
C6114	2K	2E	R6116	4 C	3E	R6216	7 B	1 B
C6115	2K	2 E	R6117	6 B	$3 E$	R6217	7 B	1 B
C6116	3K	2E	R6118	6 C	3 E	R6218	6 L	30
C6117	5C	4 E	R6119	3 D	4E			
C6118	5D	4D	R6120	30	3E	U6101A	70	20
C6130	68	1E	R6121	2K	2 E	U6101B	7D	2D
			R6122	2L	2E	U6101C	4F	2D
CR6101	4 J	3E	R6123	2L	2D	U6101D	6 K	2D
CR6102	4 J	3E	R6124	2 L	2D	U6102	3M	2C
CR6103	5 C	3D	R6125	1M	2D	U6103	7 D	1 C
CR6104	5C	3D	R6126	1 L	2D	U6104	7F	2 C
			R6127	3 K	1 E	U6105	3 J	2D
J6110	3B	4E	R612B	3K	1E	UE106	3G	3D
J6120	1 B	3E	R6129	6B	1 D	U6107A	4 H	4D
J6130	5B	2E	R6130	6C	1D	U6107B	5B	4D
			R6131	7 B	1D	U6107C	4 C	4D
06101	1K	1 E	R6132	3B	1 D	U6107D	7 J	4D
06201	6L	2B	R6133	3 C	1 D	U610B	5H	4C
			R6134	6B	1 D			
R6101	1L	2 E	R6135	3B	1E	W6100	8A	3 C
R6102	5 J	3E	R6136	3C	1E	W6119	2B	3 E
R6102	6C	3 E	86137	1 J	2E			
Partial 411 also shown on diagrams 20 and 21.								
CHASSIS MOUNTED PARTS								
P6100	7 A	CHASSIS						




Figure 9-23. A11A2—Vector Generator board.


Scans by ARTEK MEDLA $\Rightarrow$

## A11A2-VECTOR GENERATOR BOARD

CIRCUIT NUMBER	SCHEM   NUMBER	CIRCUIT NUMBER	SCHEM   NUMBER	CIRCUIT NUMBER	SCHEM   NUMBER
C6301	21	R6308	20	R6443	20
C6302	21	R6309	20	R6444	20
C6303	21	R6310	20	R6445	20
C6304	21	R6311	20	U6301	20
C6305	21	R63 11	20	U6301	20
C6306	21	R63 12	20	U6301	20
C 6307	21	R6315	20	U6301	21
C6308	21	R6316	20	U6302	21
C6309	21	R6317	20	U6303	20
C6310	20	R6318	20	U6303	21
C6311	20	R63 20	20	U6304	20
C6312	20	R6321	20	U6304	21
C6313	21	R6322	20	U6305	20
C6314	20	R63 23	20	U6305	21
C6315	20	R6330	20	U6306	20
C6316	20	R6331	20	U6306	21
C6317	20	R6401	20	46307	20
C6401	20	R6402	20	46307	21
C6402	20	R6403	20	46308	20
C6403	21	R6404	20	U6308	21
C6404	21	R6404	20	U6401	20
C 6407	20	R6405	20	U6401	20
C6408	20	R6406	20	U6401	20
C6409	21	R6407	20	U6401	20
C6421	20	R64 10	21	U6401	20
C6422	20	R64 11	20	U6402	20
C6440	20	R64 12	20	U6402	20
C6441	20	R6413	20	U6402	20
C6442	20	R6414	20	U6402	20
CR6301	20	R6415	20	U6402	20
CR6302	20	R64 16	20	U6403	20
CR6303	20	R64 17	20	U6403	20
CR6304	20	R64 18	20	U6403	20
CR6305	20	R6419	20	U6403	20
CR6306	20	R6420	20	U6404	20
CR6307	20	R6421	20	U6404	20
CR6307	20	R64 22	20	U6404	20
CR6308	20	R6423	20	U6404	21
CR6401	20	R6424	20	U6405	20
CR6403	20	R6425	20	U6405	21
CR6405	20	R6426	20	U6405	21
J6410	20	R6427	20	W6000	20
J6420	20	R64 28	20	W6000	20
Q6301	20	R6429	20	W6000	20
R6301	21	R6432	20	W6000	20
R6303	20	R6433	20	W6000	20
R6304	20	R6434	20	W6000	20
R6305	20	R6440	20	W6000	21
R6306	20	R6441	20	W6310	20
R6307	20	R6442	20	W6320	20

SET WAVEFORM REFERENCE/MENU SELECT SWITCH TO MENU SELECT AND SELECT BOX FOR WAVEFORMS 129 THROUGH 139



VECTOR GENERATOR DIAGRAM 20

ASSEMBLY A11								
CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD   LOCATION	CIRCUIT   NUMBER	SCHEM   LOCATION	BOARD LOCATION
R6201 R6202 R6203	$\begin{aligned} & 5 C \\ & 2 C \\ & 4 C \end{aligned}$	$\begin{aligned} & 2 B \\ & 2 B \\ & 2 B \end{aligned}$	W6000   W6000   W6000   W6000	$\begin{aligned} & 2 C \\ & 3 C \\ & 4 C \\ & 5 C \end{aligned}$	$\begin{aligned} & 3 A \\ & 3 A \\ & 3 A \\ & 3 A \end{aligned}$	$W 6000$ $W 6000$ $W 6100$	$\begin{aligned} & 7 C \\ & 8 C \\ & 6 B \end{aligned}$	$\begin{aligned} & 3 A \\ & 3 A \\ & 3 C \end{aligned}$
Partial All also shown on diagrams 19 and 21.								
ASSEMBLY A12								
	3 E	3 D		1 G	20	R6440	7G	18
C6310	3E	30	$R 6311$ $R 6311$	1 G	2D	R6440 R6441	7 L	1 B
C6312	4F	3 D	R6312	3G	3 C	R6442	BG	1B
C6314	3 J	3C	R6315	2G	3 C	R6443	7G	1 B
C6315	1 J	3 C	R6316	3 G	3 C	R6444	7 L	18
C6316	3 J	3 C	R6317	1 G	3 C	R6445	8G	1B
C6317	1 J	3 C	R6318	3G	3 C			
C6401	4 H	1 A	R6320	4F	3D	U6301A	3 H	3B
C6402	4M	3A	R6321	1G	2C	U6301B	5 D	3 B
C6407	3 K	3A	R6322	2G	4 D	U6301C	1 H	3B
C6408	1 K	4A	R6323	5 L	2A	U6303	2 E	3E
C6421	6K	1A	R6330	5 E	1D	U6304	3 E	3E
C6422	6 K	1A	R6331	5H	1D	U6305	1 F	3 D
C6440	7G	1 C	R6401	2K	3A	U6306	3F	30
C6441	7 L	1 C	R6402	2K	3A	U6307	2 J	3B
C6442	8G	1 C	R6403	2K	3B	U6308	3 J	3C
			R6404	3D	3B	U6401A	2 K	4B
CR6301	2G	2C	R6404	4K	3B	U6401B	2K	4 B
CR6302	4G	2C	R6405	4K	3B	U6401C	2K	4B
CR6303	1 G	2 C	R6406	4K	38	U6401D	2K	4B
CR6304	3G	2 C	R6407	4G	3B	U6401E	2L	4B
CR6305	2J	3 C	R6411	5 H	2B	U6402A	4 K	3B
CR6306	3 J	3 C	R6412	5 H	2B	U6402B	4K	38
CR6307	1 H	3 C	R6413	5K	28	U6402C	3K	3B
CR6307	1 J	3 C	R6414	5J	2C	U6402D	3 K	3B
CR6308	3 J	3 C	R6415	4 H	1 B	U6402E	5 L	3 B
CR6401	8L	25	R6416	4 H	2A	U6403B	7 F	28
CR6403	5 H	2D	R6417	5 J	2 B	U6403C	7G	28
CR6405	4M	2A	R641B	4L	3A	U6403D	4 J	2B
			R6419	5L	3A	U6403E	5 J	2B
J6410	1M	4A	R6420	4.」	2A	U6404A	5 K	2 C
J6420	5M	2A	R6421	6G	1 C	U6404B	6 K	2 C
			R6422	7G	1 C	U6404C	6 J	2 C
06301	5E	1 D	R6423	4M	3A	U6405A	7G	1C
			R6424	8L	1 B			
R6303	1E	3E	R6425	8L	1 B	W6000	2 C	3E
R6304	2D	2E	R6426	5 H	2 C	W6000	3 C	3E
R6305	3 D	2E	R6427	5 H	1 C	W6000	4 C	3E
R6306	3E	35	R6428	5K	2B	W6000	5 C	3E
R6307	3E	2E	R6429	3L	2A	W6000	7 C	35
R6308	1E	2 E	R6432	3L	3A	W6000	8 C	3 E
R6309	2 E	2 D	R6433	6 K	1 A	W6310	6 H	2D
R6310	35	4E	R6434	6 J	1 A	W6320	6 J	4B
Partial A12 also shown on diagram 21.								
CHASSIS MOUNTED PARTS								
P6100	18	CHASSIS						



WAVEFORMS FOR DIAGRAM 21


## INPUT／OUTPUT \＆VECTOR GENERATOR BOARDS POWER DISTRIBUTION DIAGRAM 21

ASSEMBLY A10								
CIRCUIT   NUMBER	SCHEM   LOCATION	BOARD LOCATION	CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION
$\checkmark 6100$	3A	10D						
Partial A10 a／so shown on diagrams 11，12，14，15，16， 17 and 18.								
ASSEMBLY A11								
C6201	1H	2E	L6201	4D	3B	R6231	4F	2B
$\mathrm{C6202}$	1J	2A	L6202	5F	3B	R6232	5F	2B
C6203	6B	3C	L6203	6.5	4 B	R6233	5F	2A
C6204	6C	2B	L6204	7」	4A	R6234	5 F	2A
C6205	3B	3B	L6205	3」	3 C			
C6206	3C	2 B	L6206	2」	4B	U6101	4H	2D
C6207	4G	2C				U6102	4H	2C
C6208	4 H	1 A	Q6202	5D	38	U6103	4H	1 C
C6210	5B	3B	Q6203	5 F	3A	U6104	5 H	2 C
C6211	4E	3B				U6105	1F	2 D
C6212	5G	3A	R6219	2 E	4 D	U6106	5 J	3 D
C6220	5C	1B	R6220	4 C	1 B	U6107	5B	4 D
C6221	55	2A	R6221	4D	1 B	U6108	5 J	4 C
			R6222	5D	1 B	U6201	4G	3 C
CR6201	5D	2B	R6223	4D	1 B	U6202B	45	1 B
CR6202	4 D	3B	R6224	4D	1B	46202	5 C	1 B
CR6203	5 F	2A	R6225	5D	2B			
CR6204	5F	3B	R6226	5 E	2A	W6000	1 J	3A
			R6227	5 E	2A	W6100	6B	3C
J6140	4B	1 C	R6228	4 E	2A	W6201	1 H	2B
J6150	4B	3 C	R6229	45	1 A	W6202	2 J	3A
			R6230	5 E	2 A			

Partial A11 a／so shown on diagrams 19 and 20

ASSEMBLY A12

C6301	7K	3E	C6403	6 L	2B	U6304	5K	3E
C6302	2K	3D	C6404	4 K	3B	U6305	4N	3D
C6303	2K	3E	C6409	4K	2D	U6306	5N	3D
C6304	7K	3D				U6307	5K	3B
C6305	2L	2D	R6301	2K	10	U6308	5K	3 C
C6306	3 K	3D	R64 10	1 L	1 C	U6404	5K	2C
C6307	6K	3D				U6405B	1L	1 C
C6308	6L	3B	U6301	5K	3B	U6405	4L	1 C
C6309	3 K	4B	U6302	2K	2E			
C6313	6 K	35	U6303	4L	35	W6000	1J	35

Partial A12 also shown on diagram 20

CHASSIS MOUNTED PARTS							
P6100	$3 A$	CHASSIS					




Figure 9-24. A20—XY Plotter board.

* Static Sensitive Devices See Maintenance Section

COMPONENT NUMBER EXAMPLE


Chassis-mounted components have no Assembly Number prefix-see end of Repiaceable Elecirical Parts List.


Scans by ARTEK MEDLA =>

## A20-XY PLOTTER BOARD

CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER	CIRCUIT   NUMBER	SCHEM   NUMBER
C1001	22	CR1014	22	R1012	22
C1002	22	CR1016	22	R1013	22
C1003	22	F1001	22	R1014	22
C1004	22	J1011	22	R1015	22
C1005	22	$J 4110$	22	R1016	22
C1006	22	J6423	22	R1017	22
C1007	22	J9301	22	U1001	22
C1011	22	K1001	22	U1001	22
C1012	22	L1001	22	U1001	22
C1013	22	L1002	22	U1001	22
C1014	22	L1003	22	U1001	22
C1015	22	01011	22	VR1011	22
CR1001	22	Q1012	22	VR1012	22
CR1002	22	RR1001	22	W1001	22
CR1003	22	RR002	22	W1002	22
CR1011	22	R1005	22		
CR1012	22	R1011	22		

WAVEFORMS FOR DIAGRAM 22


## XY PLOTTER BOARD DIAGRAM 22

ASSEMBLY A20								
CIRCUIT NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \end{gathered}$	BOARD   LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C1001	3 B	2B	F1001	1E	2B	R1012	1B	2 C
C1002	2 B	2 B				R1013	35	2 C
C1003	4 C	2A	$J 1011$	1 F	1 C	R1014	10	2 C
C1004	40	2A	J4110	1 B	1A	R1015	1 C	2 C
C1005	4 D	2 A	J6423	1 B	1A	R1016	1 C	2 C
C1006	2B	2 A	J9301	3B	2A	R1017	1 B	1 B
C1007	3B	2A						
C1011	4B	2B	K1001	2 D	2 B	U1001A	1 C	1 A
C1012	4B	3B				410018	2 B	1A
C1013	4 B	3 B	L1001	4 B	2A	U1001C	2 B	1A
C1014	4 B	3 B	L1002	4 B	3A	$\cup 10010$	3 B	1A
C1015	3B	3 B	L1003	3B	3A	U1001	4 C	1A
CR1001	3 D	1 B	01011	1 B	2A	VR1011	3 D	1 C
CR1002	3 C	1 B	01012	2 C	2 B	VR1012	3 C	1 C
CR1003	2 C	2 B						
CR1011	2 D	28	R1001	35	18	W1001	3 B	1A
CR1012	1 C	28	R1002	2E	1 B	W1002	3B	2 B
CR1014	35	2 C	R1005	2 C	2 B			
CR1016	2 C	2 B	R1011	10	2 C			




Figure 9-25. A21-RS-232 Option board


CIRCUIT	SCHEM NUMBER	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { NUMBER } \end{aligned}$	CIRCUIT NUMBER	sChem number	CIRCUIT NUMBER	SCHEM NUMBER
c1001	${ }^{23}$	CR1001	${ }^{23}$	R1212	${ }^{23}$	$\cup_{1234}$	${ }^{23}$
C1002	23	CR1002	23	R1213	${ }^{23}$	$\mathrm{Ul1234}^{2}$	${ }^{23}$
${ }^{\text {c1003 }}$	${ }^{23}$	${ }^{\text {CR1003 }}$	${ }^{23}$	${ }^{\text {R1214 }}$	${ }^{23}$	$\mathrm{Ul234}^{1234}$	${ }^{23}$
${ }^{\text {c1004 }}$	${ }^{23}$	CR1011	${ }^{23}$	${ }^{\text {R1221 }}$	${ }^{23}$	${ }^{1234}$	${ }^{23}$
C1005	23	CR1012	23	R1222	${ }^{23}$	${ }^{1234}$	23 23 23
C1006	${ }^{23}$	CR1014	${ }^{23}$	R1223	${ }^{23}$	${ }^{1} 1235$	23 23 23
C1007	${ }^{23}$	CR1016	${ }^{23}$	${ }^{\text {R1224 }}$	${ }^{23}$	$\mathrm{Ul235}^{1235}$	${ }^{23}$
C1011	23	CR1221		${ }^{\text {R1234 }}$	${ }^{23}$	$\mathrm{Ul}^{1236}$	${ }^{23}$
${ }^{\text {C1012 }}$	23 23 23	${ }^{\text {CR1222 }}$	$\begin{array}{r}23 \\ 23 \\ \hline\end{array}$	R1235   R 1223   1224	${ }_{23}^{23}$	U1236	${ }_{23}^{23}$
${ }^{\text {C1013 }}$	23 23 23	${ }_{\text {ch1223 }}$	$\begin{array}{r}23 \\ 23 \\ \hline\end{array}$	${ }_{\text {R1243 }}$	${ }_{23}^{23}$	U1241	23
${ }^{\text {C1014 }}$	$\begin{array}{r}23 \\ 23 \\ \hline\end{array}$	${ }^{\text {CR1222 }}$	${ }^{23}$	R1244	${ }_{23}^{23}$	${ }^{1} 1241$	23 23 23
${ }^{\text {c1015 }}$	${ }^{23}$	F1001	${ }^{23}$	${ }^{\text {R1245 }}$	${ }^{23}$	$\mathrm{Ul242}^{122}$	23 23 23
${ }^{\text {c1221 }}$	${ }^{23}$	J1011	${ }^{23}$	${ }^{\text {R1246 }}$	${ }^{23}$	${ }^{1242}$	23 23 23
${ }^{\text {c1222 }}$	${ }^{23}$	${ }^{31212}$	${ }^{23}$	R1248	${ }^{23}$	${ }^{1243}$	23
${ }^{\text {c1223 }}$	${ }^{23}$	${ }^{31214}$	${ }^{23}$	${ }^{\text {R1251 }}$	${ }^{23}$	${ }^{1} 1243$	${ }_{23}^{23}$
${ }^{\text {c1224 }}$	${ }^{23}$	${ }^{31216}$	${ }^{23}$	${ }^{\text {R1252 }}$	${ }^{23}$	${ }^{1244}$	${ }^{23}$
${ }^{\text {c1225 }}$	${ }^{23}$	${ }^{31222}$	${ }^{23}$	${ }^{\text {R1253 }}$	${ }^{23}$	$\mathrm{Ul}^{1244}$	${ }^{23}$
${ }^{\text {c1226 }}$	${ }^{23}$	${ }^{51251}$	${ }^{23}$	${ }^{\text {R1255 }}$	${ }^{23}$	$\mathrm{Ul}^{1244}$	${ }^{23}$
${ }^{C 1227}$	$\begin{array}{r}23 \\ 23 \\ \hline 2\end{array}$	J4110	${ }^{23}$	S1221	${ }^{23}$	${ }^{1} 1244$	23 23 23
	23 23 23	- $\begin{gathered}\text { J6423 } \\ \text { j9301 }\end{gathered}$	23 23 23	U1201	$\begin{array}{r}23 \\ 23 \\ \hline 23\end{array}$	( ${ }^{\text {U1244 }}$	23 23 23
${ }^{\text {C1231 }}$	${ }^{23}$	K1001	${ }^{23}$	U1001	${ }^{23}$	$\mathrm{Ul}^{1245}$	${ }^{23}$
${ }^{\text {c1232 }}$	${ }_{23}^{23}$	L1001	${ }^{23}$	U1001	${ }^{23}$	${ }^{1225}$	23 23 23
C1233 C1234 c123	23 23 23	L1002	23   23   23   2	41001   U1222	23   23   23	U1251   U1251   $\mathbf{U} 1251$	23   23   23   2
${ }^{\text {c1235 }}$	23	01011	23	U1222	${ }_{23}$	VR1011	23
${ }_{C}^{C 1236}$	${ }^{23}$	01012	${ }^{23}$	U1223	${ }^{23}$	VR1012	${ }^{23}$
${ }^{\text {C1237 }}$	${ }^{23}$	01221	${ }^{23}$	${ }^{1} 1223$	${ }^{23}$	VR1221	${ }^{23}$
${ }^{\text {C1237 }}$	${ }^{23}$	R1001	${ }^{23}$	${ }^{1} 1224$	${ }^{23}$	VR1222	${ }^{23}$
${ }^{C 1238}$	${ }^{23}$	${ }^{\text {R1002 }}$	${ }^{23}$	${ }^{1} 1224$	${ }^{23}$	VR1223	${ }^{23}$
${ }^{C 1239}$	${ }^{23}$	${ }^{\text {R1005 }}$	${ }^{23}$	${ }^{1} 1225$	${ }_{23}^{23}$	VR1223	${ }_{23}^{23}$
${ }^{\text {C1240 }}$	${ }^{23}$	${ }^{\text {R1011 }}$	${ }^{23}$	${ }^{4} 1225$	${ }^{23}$	VR1232	23 23 23
C1242 $C 1243$ $C 1239$	23 23 23	R1012 R1013	23 23 23	U1231 U1231 U 1231	-23	W1001 W1002	23 23 23
C1244	${ }_{23}^{23}$	${ }_{\text {R1014 }}$	${ }_{23}^{23}$	U1231 U1232	23   23   23	W1216	${ }_{23}^{23}$
${ }^{C 1251}$	${ }^{23}$	R1015	${ }^{23}$	U1232	${ }^{23}$	w8101	${ }_{23}^{23}$
C1252 C1253	23 23	R1016	23 23 23	(1233	23	Y1251	23

RS-232 OPTION BOARD DIAGRAM 23

ASSEMBLY A21											
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD location	CIRCUIT   NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT   NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C 1001	8 K	2B	CR1003	8 K	28	R1017	71	18	U1234A	$6 F$	$3 F$
C 1002	BJ	2B	CR1011	BL	2B	R1212	2K	2D	U1234B	3J	$3 F$
C 1003	BB	2A	CR1012	7M	28	R1213	2K	3D	U1234C	6D	$3 F$
C1004	8C	2A	CR1014	8M	2C	R1214	3K	3D	U1234D	4B	$3 F$
C1005	8C	2A	CR1016	7K	2B	R1221	5L	2 D	U1234	8F	3 F
C1006	7 J	2A	CR1221	1 L	2E	R1222	5L	1 E	U1235	5 E	3G
C1007	7B	2A	CR1 222	3L	2E	R1223	4J	3 E	U1235	7 F	3G
C1011	88	2B	CR1223	8D	3 F	R1224	5K	1 E	U1236	6 G	3G
C1012	88	3 B	CR1 224	8D	3 F	R1234	58	3G	U1236	8 F	3G
C1013	8B	38				R1235	6 C	3G	U1241	2B	1G
C1014	8B	3B	F1001	7M	2B	R1243	4B	1 J	U1241	8 E	1 G
C1015	78	3B				R1244	3B	1J	U1242	$1 F$	1 H
C1221	3K	2E	$J 1011$	7M	1 C	R1245	38	1 J	U1242	70	1 H
C1222	7 C	1 F	J1212	3M	2C	R1246	5 E	3 J	U1243	3F	1J
C 1223	7C	2F	J1214	1M	3C	R1248	6E	3G	U1243	7 C	1.1
C1224	1 J	2E	J1216	4 C	1 K	R1251	4B	1 J	U1244A	6D	3 H
C1225	3K	2E	J1222	10	2 E	R1252	48	1 J	U1244B	6 D	3 H
C1226	3 K	2 E	J1251	2 D	2K	R1253	2 E	3 J	U1244D	3K	3 H
C1227	2K	2E	J4110	7 J	1A	R1255	2G	3K	U1244E	5 C	3 H
C1228	3K	2E	J6423	7 J	1A				U1244F	3G	3 H
C1229	2K	3E	$J 9301$	8J	2A	S1221	5M	10	U1244	8 F	3 H
C1231	7C	2 F							U1245	$6 E$	3 H
C1232	7C	1G	K1001	7M	28	U1001A	7L	1A	U1245	8 E	3H
C1233	7 C	1G				U10018	7K	1A	U125 1	1H	1 J
C1234	8D	3 F	L1001	8B	2A	U1001C	7J	1A	U1251	7 D	1 J
C1235	80	3F	$L 1002$	8 B	3A	U1001D	8K	1A			
C1236	2K	3E	L1003	7B	3A	U1001	8 C	1A	VR1011	8L	1 C
C1237	7 C	3F				U1222	6 H	2F	VR1012	8 K	1 C
C1237	8 D	3F	01011	7 L	2A	U1222	7 E	2 F	VR1221	11	1 E
C1238	2K	3 E	01012	7K	2 B	U1223	5 H	2 F	VR1222	11	1 E
C1239	1J	3E	01221	5K	1E	U1223	8 E	2F	VR1223	4K	$1 E$
C1240	7 C	3G				U1224	2J	3F	VR1224	3 K	2 E
C1242	7 C	1 J	R1001	86	18	U1224	8D	$3 F$	VR1232	8D	3 F
C1243	7 C	3J	R1002	8 L	1 B	U1225	1 J	3F			
C1244	7 C	3G	R1005	7K	2B	U1225	8D	$3 F$	W1001	8K	1 A
C1251	7 C	1 K	R1011	7M	2 C	U1231	18	2 F	W1002	8K	28
C1252	2G	3K	R1012	7 L	2C	U1231	8 E	2F	W1216	4B	1 K
C1253	3G	3 K	R1013	8M	2 C	U1232A	3.J	1G	W8101	1 A	1G
			R1014	7M	2C	U1232	7 F	1G			
CR1001	BL	1 B	R1015	7	2C	U1233	38	1G			
CR1002	8K	1 B	R1016	7L	2 C	U1233	8 E	IG	Y1251	2G	3 J
CHASSIS MOUNTED PARTS											
P8100	1A	CHASSIS									



## 2230 Service



Figure 9-26. A22-GPIB Option board.

## (ख) $\begin{aligned} & \text { Static Sensitive Devices } \\ & \text { See Mintenance Section }\end{aligned}$



A22-GPIB OPTION BOARD

circuit NUMBER	schem nUMBER						
C1001	24	F1001	24	${ }^{\text {R1344 }}$	24	$\mathrm{Ul}^{1335}$	24
C1002	24	$J 1011$	24	R1345	24	U1335	24
c1003	24	J1314	24	R1346	24	U1335	24
C1004	24	J1316	24	R1348	24	U1336	24
C1005	24	J1322	24	${ }^{\text {R1351 }}$	24	U1336	24
C1006	24	J1351	24	${ }^{\text {R1352 }}$	24	U1336	24
c1007	24	J4110	24	R1353	24	U1336	24
c1011	24	J6423	24	S1321	24	U1336	24
c1012	24	J9301	24	U1001	24	U1341	24
c1013	24	к1001	24	U1001	24	U1341	24
c1014	24	L1001	24	U1001	24	U1342	24
c1015	24	L1002	24	U1001	24	U1342	24
${ }^{\text {c1321 }}$	24	L1003	24.	41001	24	${ }^{\text {U1343 }}$	24
C1322	24	01011	24	$\mathrm{Ul}^{1322}$	24	$\mathrm{Ul}^{1343}$	${ }^{24}$
${ }^{\text {c1323 }}$	24	01012	24	$\mathrm{Ul}^{1322}$	24	$\mathrm{Ul}^{1344}$	${ }^{24}$
$\mathrm{Cl}^{1331}$.	24	R1001	24	U1323	24	U1344	24
${ }^{C 1332}$	24	${ }^{\text {R1002 }}$	24	${ }^{\text {U } 1323}$	24	${ }_{\text {U }} 13344$	24
${ }^{\text {c1333 }}$	24	${ }^{\text {R1005 }}$	24	41324   1324   1	${ }_{24}^{24}$	${ }_{\text {U }} \mathbf{U} 1344$	24 24 24
${ }^{\text {c1334 }}$	24	R1011 R1012	24 24	U1324	24 24	U1344	24 24 24
${ }_{\text {cli335 }}$	24 24	R1012 R1013	24	U1325   U 1325   1	24 24	U1344	24 24 24
C1343 C134	${ }_{24}^{24}$	${ }_{\text {R1014 }}$	24	$\mathrm{Ul}_{1331}$	24	U1345	24
${ }^{\text {c1351 }}$	24	R1015	24	U1331	24	U1351	24
CR1001	24	R1016	24	U1332	24	U1351	24
CR1002	24	R1017	24	U1332	24	VR1011	24
CR1003	24	R1321	24	U1333	24	VR1012	24
CR1011	24	${ }^{\text {R1322 }}$	24	U1333	24	VR1321	24
CR1012	24	${ }_{\text {R1323 }}$	24	U1334	24	W1001	24
CR1014	24	R1335	24	U 1334	24	W1002	24
CR1016	24	R1341	24	$\mathrm{Ul}^{\mathbf{1} 334}$	24	W1316 W1324	24
${ }^{\text {CR1321 }}$	${ }_{24}^{24}$	${ }_{\text {R }}$	24 24	U1334	24 24	W1324 w8101	${ }_{24}^{24}$
CR1322							

## GPIB OPTION BOARD DIAGRAM 24

ASSEMBLY A22											
CIRCUIT   NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD   location	CIRCUIT NUMBER	SCHEM   LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	SCHEM   LOCATION	BOARD   location	CIRCUIT NUMBER	SCHEM   LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C1001	81	2B	J1011	7M	1 C	R1344	3 B	1 J	U1335B	$6 J$	3G
C1002	8 J	2 B	J1314	1M	3 C	R1345	3 B	1 J	$\cup 1335$	7 F	3G
C1003	8 C	2A	$J 1316$	4 C	1 K	R1346	6.	$3 J$	U1336A	5 B	3 G
C1004	8 C	2A	J1322	15	25	R1348	6 E	3 J	U13368	5B	3 G
C1005	BC	2A	J1351	25	2K	R1351	48	1 J	U1336C	4 B	3G
C1006	7H	2A	J4110	7H	1A	R1352	3 B	1 J	U1336D	5 B	3G
C1007	78	2A	J6423	7H	1A	R1353	4H	1 K	$\cup 1336$	7 F	3G
C1011	8 B	2 B	J9301	6 H	2 A				$\cup 1341$	2 C	2 F
C1012	8 B	38				S1321	5M	10	U1341	85	2 G
C1013	8 B	38	K1001	7 M	2 B				U1342	1 G	2 H
C1014	8 B	38				U1001A	7	1A	$\cup 1342$	75	2 H
C1015	78	38	L1001	8 B	2 A	U10018	$7 」$	1A	$\cup 1343$	3 G	2 J
C1321	4L	2 E	L1002	88	3A	U1001C	7	1 A	$\cup 1343$	7 D	2 J
C1322	7 C	1 F	L1003	78	3A	U1001D	8 J	1A	U1344A	55	3 H
C1323	7 C	2 F				U1001	BC	1A	U13448	6 E	3 H
C1331	7 C	2 F	0.1011	7 K	2A	41322	6K	2 F	U1344C	6 F	3H
C1332	7 C	2G	01012	7k	28	U1322	75	2 F	U1344D	3 H	3 H
C1333	7 C	2 G				U1323	5 K	2 F	U1344E	7 F	3 H
C1334	7 C	3 F	R1001	8 L	18	U1323	7 E	2 F	U1344F	8 D	3 H
C1335	7 C	3 F	R1002	8L	18	U1324	2K	3 F	$\cup 1345$	5 E	3 H
C1342	7 C	$1 J$	R1005	7 J	2 B	U1324	75	3 F	$\cup 1345$	8 E	3 H
C1343	7 C	$3 . J$	R1011	7M	2 C	U1325	1 K	3 F	$\cup 1351$	1 J	2 J
C1351	7 C	1 J	R1012	7k	2 C	U1325	85	3 F	$\cup 1351$	7 C	2J
			R1013	8M	2 C	U1331	1 C	2 F			
CR1001	8 K	18	R1014	7 L	2 C	U1331	8 E	2 F	VR1011	8L	1 c
CR1002	8 k	1 B	R1015	7	2 C	U1332	6 F	1 G	VR1012	BK	1 C
CR1003	8 K	28	R1016	7	2 C	U1332	7 F	1G	VR1321	4 L	1 E
CR1011	8 K	2 B	R1017	7 K	1 B	U1333	3 C	2 G			
CR1012	7 L	2B	R1321	5 L	2D	U1333	BE	2G	W1001	81	1A
CR1014	8M	2 C	R1322	4M	1 E	U1334A	7E	3 F	W1002	81	2 B
CR1016	7K	2B	R1323	4L	3 E	U1334B	2K	3 F	W1316	4 C	1 K
CR1321	1 M	2 E	R1335	70	3G	U1334C	7 D	3 F	W1324	6 J	2 E
CR1322	4 M	25	R1341	58	3G	U1334D	6 H	3 F	W8101	1A	1 G
			R1342	58	3G	U1334	7F	3 F			
F1001	7M	28	R1343	48	1」	U1335A	5 C	3G			
CHASSIS MOUNTED PARTS											
P8100	1A	CHASSIS									




Figure 9-27. A23—Option Memory board.
(3) Static Sensitive Devices

COMPONENT NUMBER EXAMPLE
 prefix-see end ot'Re plareabie Electrical Parts List.

A23-OPTION MEMORY BOARD


Scans by ARTEK MEDLA $\Rightarrow$

## A23-OPTION MEMORY BOARD

CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM   NUMEER
C1106	25	CR 1104	25	R1150	25	U1 132	25
C1112	25	J1152	25	R1152	25	U1132	25
C1118	25	L1104	25	R1154	25	U1132	25
C1120	25	P1122	25	R1156	25	U1138	25
C1128	25	P1122	25	RT1 102	25	U1 138	25
C1132	25	P1151	25	U1118	25	01142	25
C1134	25	P1 151	25	01118	25	U1142	25
C1138	25	R1112	25	U1 122	25	U1942	25
C1142	25	R1114	25	U1 128	25	01148	25
C1143	25	R1116	25	U1 128	25	U1488	25
C1148	25	R1132	25	U1132	25	U1162	25
C1154	25	R1132	25	U1 132	25	U1162	25
C1156	25	R1134	25	U1 132	25		
CR1 102	25	R1144	25	U1 132	25		

## OPTION MEMORY DIAGRAM 25

ASSEMBLY 423								
CIRCUIT NUMBER	SCHEM   LOCATION	BOARD   LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C1106	1B	1A	P1122	2M	2E	U1122	1 E	2C
C1112	1D	1 C	P1 122	6 B	2E	U1128	3 E	3 C
C1118	1 F	2 C	P1151	18	2A	U1128	6K	3 C
C1120	1 C	1 C	P1151	4 B	2A	U1 132B	2G	1 D
C1128	$2 E$	2 C				U1 132C	3 H	1D
C1132	2G	1D	R1 112	1 C	1 C	U1132D	3 J	1D
C1 134	1 F	2 D	R1 114	1 C	2 C	U1132D	3 K	1 D
C1138	2E	2D	R1116	2C	2C	U1 132E	3 J	1D
C1142	3 H	IE	R1 132	2G	1 D	U1132F	3 K	1D
C1143	1F	2E	R1132	2G	1 D	U1 132	3 F	1D
C1148	20	2E	R1 134	1G	2D	U1138	3D	3D
C1154	3 K	1E	R1 144	3 H	2 E	U1138	6 H	3 D
C1156	1F	2E	R1150	1K	1 E	U1 142A	2K	1 D
			R1 152	1K	1 E	U1142B	2K	1 D
CR1102	2 C	1 B	R1154	3 J	1E	U1142	1 F	1D
CR1104	2C.	1 B	R1 156	3 K	2 E	U1148	3D	3E
						U1148	6 F	3E
J1152	2B	1 E	RT1102	3 B	1 B	$\begin{aligned} & \text { U1 } 162 \\ & \text { U1 } 162 \end{aligned}$	$\begin{aligned} & 1 F \\ & 5 \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 E \\ & 1 E \end{aligned}$
L1104	1B	1 A	U1118	$3 F$	3C			
			U1118	6M	3 C			
CHASSIS MOUNTED PARTS								
BT1 101	2 A	CHASSIS	P1 152	2A	CHASSIS			





A17-POSITION INTERFACE ADJUSTMENT LOCATIONS


A2-ATTENUATOR BOARD ADJUSTMENT LOCATIONS


A16—SWEEP REFERENCE ADJUSTMENT LOCATION




A11A2-VECTOR GENERATOR ADJUSTMENT LOCATIONS
Scans by ARTEK MEDLA $\Rightarrow$


# REPLACEABLE MECHANICAL PARTS 

## PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number

Change information, if any, is located at the rear of this manual.

## ITEM NAME

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

FIGURE AND INDEX NUMBERS
Items in this section are referenced by figure and index numbers to the illustrations.

## INDENTATION SYSTEM

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column.

12345
Name \& Description
Assembly and/or Component
Attaching parts for Assembly and/or Component
.... END ATtACHING PARTS ....
Detail Part of Assembly and/or Component
Attaching parts for Detail Part
.... END ATTACHING PARTS ....
Parts of Detail Part
Attaching parts for Parts of Detail Part
.... END ATtAChing Parts ....

Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented items are part of, and included with, the next higher indentation.

Attaching parts must be purchased separately, unless otherwise specilied.

ASBREVATM							
"	INCH	ELCTRN	ELECTRON	in	INCH	SE	SINGLE END
*	NUMBER SIZE	ELEC	ELECTRICAL	INCAND	INCANDESCENT	SECT	SECTION
ACTR	ACTUATOR	ELCTLT	ELECTROLYTIC	INSUL	INSULATOR	SEMICOND	SEMICONDUCTOR
ADPTR	ADAPTER	ELEM	ELEMENT	INTL	INTERNAL	SHLD	SHIELD
ALIGN	ALIGNMENT	EPL	ELECTRICAL PARTS LIST	LPHLDA	LAMPHOLDER	SHLDR	SHOULDERED
AL	ALUMINUM	EQPT	EQUIPMENT	MACH	MACHINE	SKT	SOCKET
ASSEM	ASSEMBLED	EXT	EXTERNAL	MECH	MECHANICAL	SL	SLIDE
ASSY	ASSEMBLY	FIL	FILLISTER HEAD	MTG	MOUNTING	SLFLKG	SELF-LOCKING
ATTEN	ATTENUATOR	flex	FLEXIBLE	NIP	NIPPLE	SLVG	SLEEVING
AWG	AMERICAN WIRE GAGE	FLH	FLAT HEAD	NON WIRE	NOT WIRE WOUND	SPR	SPRING
BD	BOARO	FLTR	FILTER	OBD	ORDER BY DESCRIPTION	SO	SOUARE
BRKT	BRACKET	FR	FRAME or FRONT	OD	OUTSIDE DIAMETER	SST	STAINLESS STEEL
BRS	BRASS	FSTNR	FASTENER	OVH	OVAL HEAD	STL	STEEL
BRZ	BRONZE	FT	FOOT	PH BRZ	PHOSPHOR BRONZE	SW	SWITCH
BSHG	BUSHING	FXO	FIXED	PL	PLAIN Or PLATE	T	TUBE
CAB	CABINET	GSKT	GASKET	PLSTC	PLASTIC	TERM	TERMINAL
CAP	CAPACITOA	HOL	HANDLE	PN	PART NUMBER	THD	THREAD
CER	CERAMIC	HEX	HEXAGON	PNH	PAN HEAD	THK	THICK
CHAS	CHASSIS	HEX HD	HEXAGONAL HEAD	PWR	POWER	TNSN	TENSION
CKT	CIRCUIT	HEX SOC	HEXAGONAL SOCKET	RCPT	RECEPTACLE	TPG	TAPPING
COMP	COMPOSITION	HLCPS	HELICAL COMPRESSION	RES	RESISTOR	TRH	TRUSS HEAD
CONN	CONNECTOA	HLEXT	HELICAL EXTENSION	RGD	RIGIO	$V$	VOLTAGE
COV	COVER	HV	HIGH VOLTAGE	RLF	RELIEF	VAR	VARIABLE
CPLG	COUPLING	IC	INTEGRATED CIRCUIT	RTNA	RETAINER	W/	WITH
CRT	CATHODE RAY TUBE	10	INSIDE DIAMETER	SCH	SOCKET HEAD	WSHR	WASHER
DEG	DEGREE	IDENT	IDENTIFICATION	SCOPE	OSCILLOSCOPE	XFMR	TRANSFORMER
OWR	DRAWER	IMPLR	IMPELLER	SCR	SCREW	XSTR	TRANSISTOR

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER

Mfr.   Code	CROSS INDEX -   Manufacturer	FR. CODE NUMB Address	City, State, Zip Code
01536	TEXTRON INC CAMCAR OIV SEAS PRODUCTS UNIT	1818 CHRISTINA ST	ROCKFORD IL 61108
06383	PANOUIT CORP	17301 RIOGELANO	TINLEY PARK IL 60477
06915	RICHCO PLASTIC CO	5825 N TRIPP AVE	CHICAGO IL 60646
09922	BURNOY CORP	RICHAROS AVE	MORHALK CT 06852
12327	FREENAY CORP	9301 ALLEN OR	CLEVELONO OH 44125
13103	THERMALLOY CO INC	2021 h valley vien lane   P O B0X 34829	OALLAS TX 75234
16428	beLDen CORP ELECTRONIC OIV	2200 US HHY 27 SOUTH P 0 B0X 1980	RICHMONO IN 47374
18565	CHOMERICS INC	77 ORAGON COURT	MOBURN MA 01801
24931	SPECIALTY CONNECTOR CO INC	2620 ENORESS PLACE PO BOX 0	GREENHOOO IN 46142
70903	BELDEN CORP	2000 S batavia ave	GENEVA IL 60134
71400	MCGRAM-EDISON CO BUSSMANN MFG DIV	502 EARTH CITY PLAZA P 0 BOX 14460	ST LUUIS MO 63178
73743 78189	FISCHER SPECIAL MFG CO ILLINOIS TOOL WORKS INC	446 MORGAN ST ST CHARLES ROAD	CINCINWATI OH 45206 ELOIN IL 60120
80009	SHAKEPROOF OIVISION TEKTRONIX INC	4900 S M GRIFFITH OR P 0 80× 500	BEAVERTON OR 97077
83309	ELECTRICAL SPECIALITY CO SUBSIOIARY OF BELOEN CORP	213 E Harris ave	SOUTH SAN FRONCISCO CA 94080
83385	microoot manufacturing inc greer-central oiv	3221 ¢ dig beaver Ro	TROY MI 48098
$\begin{aligned} & 83486 \\ & 86113 \end{aligned}$	ELCO IMOUSTRIES INC MICROOOT MFG INC CENTRAL SCREAKEENE OIV	1101 SAMUELSON RD 149 BIERALD ST	ROCKFORD IL 61101 KEENE NH 03431
$\begin{aligned} & 86928 \\ & 93907 \end{aligned}$	SEASTROM MFG CO INC TEXTRON INC cancar oiv	701 somora ave 600 18TH AVE	glenoale ca 91201 ROCKFORD IL 61101
53109	feller asa hoolf ag C/D PAMEL COMPONENTS CORP	355 TESCONI CIRCLE	SANTA ROSA CA 95401
S3629	SCHURTER AG H   C/O PAMEL COMPONENTS CORP	2015 SECONO STREET	BERKELEY CA 94170
TK0392 TK0869	northeest fasterer sales inc h SChURTER Ag dist panel components	7923 SH CIRRUS ORIVE 2015 SECOND STREET	BEAVERTON OR 97005 BERKELEY CA 94170
TK1336	Parsons mfg corp	1055 ObRIEN	MENLD PARK CA 94025
TK1373	PATELEC-CEA (ITALY)	10156 TORINO	VAICENTALLO 62/45S Italy
TK1543	CAMCAR/TEXTRON	516 18Th AVE	ROCKFORD IL 61101

Fig. 8

Index No.	Tektronix Part No.	Serial/Assembly No. Effective Dacont	Qty	12345 Name \& Description	Mir.   Code	Mfr, Part No,
1-1	644-0536-00		1	CAGIMET ASSY:	80009	644-0536-00
-2	437-0331-01		1	. CAAINET, SCOPE:M/FEET	80009	437-0331-01
-3	367-0289-00		1	. HANDLE CARRYIMG: 13.855,5ST (ATtACHING PARTS)	80009	367-0289-00
-4	212-0144-00		2	.SCRE T,TPG, TF: E-16 X 0.562L,PLASTITE   (ENO ÁTTACHING PQRTS)	93907	225-38131-012
$-5$	334-5965-00		1	.MARKER,IOENT:MKO TEKTRONIX	80009	334-5965-00
-	426-1765-02		1	FRAME,CRT:POLYCARBONATE,GRAY   (ATTACHIMG PARTS)	80009	426-1765-02
-7	211-0690-00		2	SCREM, MACHINE: 6-32 $\times 0.875$, PNH, STL   (END ATtACHING PARTS)	83385	ORDER 8Y OESCR
-8	334-5966-00		1	marker, IOENT:MKO TEK 2230 OGTL STOR SCOPE	80009	334-5966-00
	334-6213-00		1	MARKER,IDENT:MKO 2230 OGTL STOR SCOPE (OPTION 10,12 ONLY)	80009	334-6213-00
-9	397-2775-00		1	SHLD, IMPLOSION:FILTER, BLUE 2211/2213/2215	80009	337-2775-00
-10	348-0660-00		4	CUSHION, CRT:POLYURETHANE	80009	348-0660-00
-11	366-2087-00	80101008010339	2	KNOB:GRAY, $0.1410 \times 0.2800 \times 0.32 \mathrm{H}$	80009	366-2087-00
	366-1391-03	8010340	1	KNOQ:DOVE GRAY, $0.08110 \times 0.2800 \times 0.32 \mathrm{H}$ (B INTENSITY)	80009	366-1391-03
	366-1391-02	8010340	1	KNOB:LT GY, 0.081 IO X $0.2800 \times 0.32 \mathrm{H}$ (HF REJECT SWITCH)	80009	366-1391-02
-12	366-1879-01		3	KNOO:GRAY $0.500 \times 0.531 \mathrm{H}$ PLSTC	80009	366-1879-01
-13	366-0573-00		10	PUSH BUTTON:IVORY GY, 0.186 SOX 0.48 H	80009	366-0573-00
-14	384-1575-00		1	EXTENSION SHAFT: 8.805 L,M/KNOP, PLASTIC	80009	384-1575-00
-15	366-0575-00		2	KNOP:GRAY, CAL 0.127 IO $\times 0.39200 \times 0.4 \mathrm{H}$	80009	366-0575-00
-16	366-2148-01		2	KNDO:GY, VOLTS/OIV,0.72 $00,0.79$ HN/0.25 O1A	80009	365-2148-01
-17	366-1059-00		1	PUSH 8UTTON:GRAY, $0.22700 \times 0.3$	80009	366-1059-00
-18	214-3697-00		1	PIN, STR , HEADED: 0.075 OIA $\times 1.27 \mathrm{L,AL}$	80009	214-3697-00
-19	384-1669-00		1	EXTENSION SHAFT: $0.31200 \times 1.58$ L,AL	80009	384-1669-00
-20			2	COW, RCPT, ELEC:BNC (SEE J9100, J9510 REPL)   (ATtaching parts)		
-21	220-0497-00		2	NUT, PLAIN, HEX: $0.5-28 \times 0.562$ HEX, BRS CO PL	80009	220-0497-00
-22	210-0241-00		2	TEPMIMAL, UG:0.515 IO,PLAIN,STL CO PL	80009	210-0241-00
-23	210-1039-00		2	MASHER, LOCK:0.521 IO,IMT, O.025 THK,SST (END ATTACHING PARTS)	24931	OROER BY OESCR
-24	366-0576-00		1	KNOB:MED GRAY, CAL $0.0083 \times 0.45 \times 0.456$	80009	366-0576-00
-25	$366-1840-03$	8010100 B010445	1	KNO :GY,TIME/DIV,0.127 $\times 0.855 \times 0.844$	80009	366-1840-03
	366-1840-04	8010446	1	KM00:GY, TIME/OIV,0.127 X $0.855 \times 0.844$	80009	366-1840-04
	213-0153-00	B010446	2	SETSCREI:5-40 $\times 0.125$, STL	TK0392	OROER BY DESCR
-26	366-1850-00		1	KM08:CLEAR, $0.25210 \times 1.200 \times 0.383 \mathrm{H}$	80009	366-1850-00
-27	366-0574-00		11	PUSH BUTTON:IVORY GY, 1.445 H, POLYCARBONATE	80009	366-0574-00
-28	366-2020-01		1	KN09:0.252 $\times 0.581 \times 0.612 \mathrm{M} / \mathrm{SET}$ SCREN	80009	366-2020-01
-29	366-2049-01		5	KM08:GY, 0.172 IO $\times 0.4100 \times 0.496 \mathrm{H} / \mathrm{C} / 8 \mathrm{AR}$	80009	366-2049-01
-30	366-1146-00		2	R100:GY,0.127 ID $\times 0.392$ OD $\times 0.466 \mathrm{H}$	80009	366-1146-00
-31	210-0940-00		2	MASHER, FLAT: 0.25 ID $\times 0.37500 \times 0.02, S T L$	12327	OROER BY OESCR
-32			1	COW, RCPT, ELEC: (SEE J9376 REPL)		
-33	210-0255-00		1	TEMIMAL, WG:0.391 IO, LOCKING, 8RS CO PL	12327	OROER OY OESCR
-34	333-3161-00		1	PANEL, FRONT:	80009	333-3161-00
-35	386-4850-02		1	SLPPANEL, FRONT:	80009	386-4850-02
-36	200-2538-09			COVER,REAR:M/MARKERS	80009	200-2538-09
-37	211-0691-00		2	SCREA, MACHINE: 6-32 $\times 0.625$, PM , STL   (attachimg parts)	93907	OROER 8Y OESCR
-38	213-0882-00		1	SCREM,TPG,TR:6-32 $\times 0.437$ TAPTITE,PWH,STL (END ATTACHING PARTS)   REAR COVER IMCWDES:	83385	OROER GY OESCR
-39	334-5964-00		1	. MARKER,IDENT: MKO COUTION	80009	334-5964-00
	334-6265-00		1	MARKER,IDENT: IKXD CAUTION (UNITED KIMGDON OKLY)	80009	334-6265-00
	334-6294-00		1	MARKER, IOENT: MKD CRUTION	80009	334-6294-00
	200-3130-00		1	(SONY/TEX ONLY) COVER FAM:ALMIMM	80009	200-3130-00




Fig. 8

Index No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Qty	12345	Name \& Description	Mfr. Code	Mfr, Part No,
2-1	441-1571-00		,	CHASSIS	SCOPE: FRONT, L FRAME	80009	441-1571-00
-2	441-1591-00		1	CHASSIS	SCOPE:SIDE TACHING PaRTS)	80009	441-1591-00
-3	211-0325-00		2	SCR,ASS	MSHR:4-40 $\times 0.25$, PNH , STL, TORX T9	01536	ORDER BY OESCR
-4	211-0379-00			SCREN,	CHINE:4-40 $\times 0.312$, FLH,CO PL,T-9 0 attaching parts)	80009	211-0379-00
-5	334-5962-00			overlay	PANEL:SIOE, PLOTTER STO	80009	334-5962-00
-6	129-1083-01		2	SPACER,	OST:0.2 L,4-40, STEEL, 0.188 HEX	80009	129-1083-01
-7	290-1307-00		2	WASHER,	LCK:0.115 IO, SPLIT,0.025 THK	86928	A384-25N
-8	386-5209-00		1	SUPPDN	SIOE:   taching parts)	80009	386-5209-00
-9	211-0371-00		4	SCREN,	CHINE:4-40 $\times 0.5$, PNH, STL 0 attaching parts)	83486	318-004-40416X
-10	361-1336-00		1	spacer	LATE: $0.05 \times 2.148 \times 0.7$, ALUMINUM taching parts)	80009	361-1336-00
-41	291-0370-00		2	SCREN,	CHINE:4-40 X 0.5, FLH, 100 DEG ST 0 attaching parts)	83486	OROER BY OESCR
-12	------		1	CKT BO	SSY:X-Y PLOTTER (SEE AZO REPL) TACHING PARTS)		
-13	211-0325-00		4		MSHR:4-40 X 0.25 , PNH, STL, TORX T9 O ATTACHING PARTS)	04536	OROER BY OESCR
					ION 12 ONLY		
-14	334-5961-00		1	overlay	PAMEL:SIDE RS232	80009	334-5961-00
-15	211-0371-00		2	SCREA,	CHINE:4-40 $\times 0.5$, PM , STL	83486	318-004-40416X
-16	129-1083-01		4	SPACER,	OST: 0.2 L, 4-40, STEEL, 0.188 HEX	80009	129-1083-01
-17	210-1307-00		4	Masher,	OCK:0.115 IO, SPLIT, 0.025 THK	86928	A384-25N
-18	342-0743-00		1	INSUL,	T B0:POLYCAROONATE	80009	342-0743-00
-49			1	CIRCUI	BD ASSY:OPT HEHORY (SEE A23 REPL) taching parts)		
-20	211-0379-00		4	SCREN,	CHINE:4-40 X 0.312, FLH,CO PL,T-9 D attaching parts)	80009	211-0379-00
-21	- --m		1	CKT 80   (A	SSY:RS-232 OR GPIB(SEE A21,22 REPL) TACHING PARTS)		
-22	129-1095-00		4	SPACER	OST:0.43 L,4-40 INT/EXT, AL, 0. 25 HEX attaching parts)	80009	129-1095-00
-23	129-1085-00		2	SPacer,	OST:0.25 L, 4-40, 8RS , 0.25 HEX	80009	129-1085-00
-24	210-0056-00		2	MASHER,	LOCK: 10 SPLIT, 0.047 THK, SI BRI	86928	OROER BY OESCR
-25	343-0089-00		1	CLCMP, C	BLE:0.062 OIA,PLASTIC	80009	343-0088-00
-26	334-6221-00		1	MARKER,	DENT:MKD COUTION, aATtery	80009	334-6221-00
-27	344-0116-00		1	RTNR , ©	ACITOR:0.625 DIA,STEEL TACHING PARTS)	80009	344-0146-00
-28	211-0325-00		1	SCR,ASS	MSHR:4-40 X 0.25, PNH, STL, TORX T9 0 ATTACHIMG PARTS)	01536	ORDER BY DESCR


-29	$334-5963-00$
-30	$211-0371-00$
-39	$129-085-00$
-32	$210-0056-00$
-33	$342-0743-00$
-34	
-35	$211-0379-00$
-36	-
-37	$129-1095-00$
-3	
-38	$129-1085-00$
-39	$210-0056-00$
-40	$343-0089-00$
-41	$334-6221-00$
-42	$211-0325-00$
	$344-0116-00$


OVERLLY , PANEL:SIDE, GPIA	80009	334-5963-00
SCRES, MACHINE: 4-40 $\times 0.5$, PNH, STL	83486	318-004-40416X
SPACER, POST: 0.25 L, 4-40, QRS , 0.25 HEX	80009	129-1085-00
MASHER,LOCK: 10 SPLIT,0.047 THK, SI BRI	86928	OROER BY OESCR
INSUL,CKT 80:POLYCARBONATE	80009	342-0743-00
CIRCUIT BD ASSY:OPT MENORY (SEE A23 REPL) (ATtaching parts)		
SCREN, MACHINE:4-40 $\times 0.312$, FLH,CD PL,T-9 (ENO ATtaChing PaRTS)	80009	211-0379-00
CKT BDE ASSY:RS-232 OR GPIB(SEE A21,22 REPL (ATTACHING PARTS)		
SPACER,POST:D.43 L,4-40 INT/EXT,AL,0.25 HEX (end attaching parts)	80009	129-1095-00
SPACER, POST:D. 25 L, 4-40, 日RS, 0.25 HEX	80009	129-1085-00
WASHER, LOCK: 10 SPLIT, 0.047 THK, SI BRI	85928	OROER BY OESCR
CLIMP, CA9LE:O.062 OIA, PLASTIC	80009	343-0088-00
MARKER,10ENT:MKD CAUTION, BATTERY	80009	334-6221-00
SCR, ASSEM MSHR:4-40 X 0.25, PNH,STL, TORX T9	01536	OROER BY OESCR
RTNR, CAPACITOR:0.625 OIA, STEEL	80009	344-0116-00

Fig. 8


Fig. \&


Fig. \&

Index   No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Qty	12345 Name \& Description	Mfr. Code	Mfr, Part No,
3-1	377-0512-01		5	INSERT, KN08:0.172 $10 \times 0.2800 \times 0.64, \mathrm{NYL}$	80009	377-0512-01
-2			1	CKT BO ASSY:FRONT PANEL (SEE A3 REPL) (ATTACHING PARTS)		
-3	211-0325-00		3	SCR, ASSEN MSHR:4-40 X 0.25, PMWH, STL,TDRX T9 (END ATTACHING PARTS)	01536	OROER BY OESCR
-4	366-1480-03		1	PUSH BUTTON:BLACK, OFF	80009	366-1480-03
-5	384-1576-01		1	EXTENSION SHAFT: 12.544 L,PLASTIC	80009	384-1576-01
-6	---------		1	CKT Bo ASSY:MAIN (SEE A1 REPL)		
-7	200-2735-00		1	.COVER, PONER SN:BLACK, POLYCARBONATE	80009	200-2735-00
-8	---------		1	. SWITCH, PUSH: (SEE S901 REPL)		
	361-1047-00		1	. SPaCER, VAR RES:0.3 $\times 0.615 \times 0.55$, PLSTC	80009	361-1047-00
-9	----------		1	CKT Bo ASSY:ALT SWEEP (SEE AS REPL)		
-10	129-0999-00		1	SPACER, POST:0.485 L,4-40 INT/EXT, STL	80009	129-0999-00
-11	337-2773-01		1	SHIELD,ELEC: POMER SUPPLY, LONER , PLASTIC, M/MA RKER	80009	337-2773-01
	337-2773-02		1	SHIELD,ELEC:PONER SUPPLY, LONER PLASTIC	80009	337-2773-02
-12	334-4251-00		1	MARKER, IDENT:MKD CAUTION	80009	334-4251-00
-13	129-0906-00		1	SPACER, POST: 0.685 L,4-40 INT/EXT,AL   (attaching parts)	80009	129-0906-00
-14	210-0586-00		1	NUT , PL, ASSEM MA:4-40 $\times 0.25$,STL CD PL   (END ATTACHING PARTS)	78189	211-041800-00
-15	337-3291-00		1	SHIELD, ELEC:SN BD,BOTTOM   (áttaching parts)	80009	337-3291-00
-16	211-0325-00		1	SCR,ASSEX WSHR:4-40 X 0.25, PMH,STL,TORX T9   (END ATTACHING PARTS)	01536	ORDER BY DESCR
-17	337-3201-01		1	SHIELD, ATTEN:TOP   (áttaching parts)	80009	337-3201-01
-18	211-0325-00		2	SCR,ASSE MSHR:4-40 X 0.25, PM , STL, TORX T9	01536	ORDER BY DESCR
	211-0332-00	8010400	1	SCR,ASSEN MSHR:4-40 $\times$ 0.5, PNH , STL, T9	01536	ORDER BY DESCR
-19	211-0326-00		2	SCREN, MACHINE: 4-40 X 1.25, PHH,STL (END ATTACHIMG PARTS)	93907	ORDER BY DESCR
-20	----------		2	CKT BD ASSY:LOGIC (SEE A14, Q15 REPL)   (ATTACHING PARTS)		
-21	211-0925-00		2	SCR, ASSEX MSHR:4-40 X 0.25 , PMH,STL,TORX T9 (END ATTACHING PARTS)	04536	OROER BY DESCR
-22	129-0988-00		1	SPACER,POST:0.965 L,4-40 EA ENO,AL   (áttaching parts)	80009	129-0988-00
-23	211-0325-00		1	SCR, ASSEX MSHR:4-40 X 0.25, PHH,STL,TORX T9   (END ATTACHING PARTS)	01536	ORDER BY OESCR
-24	--.-.-----		1	CKT bo assy:attenuator (SEE a2 REPL)   (attaching parts)		
-25	211-0302-00		2	SCR, ASSEX HSHR:4-40 X 0.75, PHH,STL,TORX DR   (END ATTACHING PARTS)   ATTENUATOR BOARD ASSEMBLY INCLJDES:	04536	OROER BY DESCR
-26	----------		2	. SW ASSY: ACTUATOR,COUPLIMG (SEE S1,551 REPL)		
-27	210-0406-00		2	.. WUT, PLAIN,HEX:4-40 X 0.188,8RS CO PL	73743	12161-50
-28	401-0370-01		2	.. BEARING , CAM SM: ENO, 0.6 DIA	80009	401-0370-01
-29	214-1752-00		4	.. ROLLER, DETENT:0.125 00 $\times 0.16$, 5 ST	80009	214-1752-00
-30	214-1126-01		4	..SPRING,FLAT:0.7 $\times 0.125$, CU BE GRN CLR	80009	214-1126-01
-31	105-0934-01		2	. ACTUATOR, CAM SH: AC-CNO-OC	80009	105-0934-01
-32	401-0369-00		2	.BEARING,CAM SN:CENTER,0.6 DIA (attaching parts)	80009	401-0369-00
-33	211-0325-00		2	.SCR, ASSEN NSHR:4-40 X 0.25, PNH,STL,TORX T9 (END ATtACHING PARTS)	04536	OROER BY OESCR
-34	---------		2	. 51 ASSY: ACTUATOR, V/OIV (SEE S10, S60 REPL)		
-35	105-0935-01		2	. . ACTUATOR CAM SM: ATTENUATOR	80009	105-0935-01
-36	210-0406-00		2	.. AUTT, PLAIN, HEX:4-40 $\times$ 0.188, BRS CD PL	73743	12161-50
-37	214-1126-01		2	..SPRING,FLAT: $0.7 \times 0.125, \mathrm{CU}$ BE GRN CLR	80009	214-1126-01
	214-1126-02		2	..SPRING,FLAT: $0.7 \times 0.125, \mathrm{CU}$ BE RED CLR	80009	214-1126-02
-38	214-1752-00		4	.. ROLLER, DETEN: $0.12500 \times 0.16,5 S T$	80009	214-1752-00
-39	376-0209-00		2	. . CPLG, SHAFT, RGO:0.127 ID, PLASTIC	80009	375-0209-00
-40	401-0370-00		2	.. PEARING, CAM SN: ENO,0.6 DIA	80009	401-0370-00
-41	361-1218-00		2	.SPACER,SLEEVE: $0.738 \mathrm{~L} \times 0.1310 .8 \mathrm{RS}$	80009	361-1218-00
-42	343-1020-00		2	.RETAINER,CONT:ABS GRAY   (ATTACHING PARTS)	80009	343-1020-00
-43	211-0325-00		4	.SCR,ASSEN WSHR:4-40 X 0.25, PNH , STL, TORX T9	01536	OROER BY DESCR

Fig. 8

Index No,	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Qty	12345 Name \& Description	Mfr. Code	Mfr, Part No,
3-44	376-0051-01		2	.CPLG, SHAFT, FLEX:0.127 [D X 0.375 00, OELRIN	80009	376-0051-01
-45	361-1300-00		2	. SPACER , BEARING:0.115 $10 \times 0.2$ OD, BRASS	80009	361-1300-00
-46	361-1191-00		1	SPACER,CKT B0:0.222 $\times 0.125 \times 0.25$,	80009	361-1191-00
-47	---m- ---		1	CKT BO ASSY:TIMING (SEE A4 REPL)   (ATTACHING PARTS)		
-48	211-0325-00		3	SCR , ASSEM MSHR:4-40 X 0.25 , PNH,STL, TORX T9   (END ATTACHING PARTS)	01536	ORDER BY OESCR
-49	-		1	CKT B0 ASSY:SNEEP REFERENCE (SEE A16 REPL)		
-50	174-0160-00		1	CKT BO ASSY:SMP INTERFACE (SEE A13 REPL)		
	174-0160-00		1	CA ASSY, SP, ELEC: 2,26 a (FROM A1 TO POMER ON LIGHT)	80009	174-0160-00
	$176-0045-00$		1	BRAID, NIRE:24 STRANOS, 36 and , TINed COPPER	70903	$5112 R 424 / 36$
	210-1011-00		1	MASHER, FLAT: 0.13 IO $\times 0.37500 \times 0.01$, NYLON	83309	OROER BY OESCR
	344-0367-00		3	CLIP, GROUND:CU-8E	80009	344-0367-00
	342-0563-00		1	INSULATOR, PLATE:TRANSISTOR (UNDER CR970)	18565	69-11-8805-1674




2230 Service

Fig. \&

Index No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Qty	12345 Name \& Description	Mfr. Code	Mir, Part No,
4-1	---------		1	CKT BO ASSY:STORAGE (SEE A10 REPL) (ATTACHING PARTS)		
-2	211-0325-00		4	SCR ,ASSEM MSHR:4-40 X 0.25 , PNH, STL, TORX T9 (END ATTACHING PARTS) STORAGE BOARO ASSEMBLY INCLUOES:	01536	OROER BY DESCR
	211-0305-00		3	.SCR, ASSEM HSHR:4-40 X 0.437, PNH,STL, T9	01536	OROER GY OESCR
-3	136-0755-00			.SKT, PL-IN ELEX:HICROCIRCUIT, 28 DIP	09922	01L828P-108
-4	136-0757-00		1	.SKT, PL-IN ELEX:MICROCIRCUIT,40 DIP	09922	OILB40P-108
	386-1130-00		2	.INSULATOR, OISK:TRANSISTOR,NYLON	13103	7717-15N
$-5$	343-1098-00		1	RETAINER,CKT 80:PLASTIC (ATTACHING PARTS)	80009	343-1098-00
$\rightarrow$	211-0304-00		1	SCR,ASSEM HSHR:4-40XO.312, PNH,STL,T9 TORX (END ATTACHING PARTS)	01536	ORDER BY OESCR
-7	214-3327-01		3	HIMGE,CKT BOARD:11.6 L,PLASTIC (attaching parts)	80009	214-3327-01
-8	$\begin{aligned} & 211-0303-00 \\ & 211-0323-00 \end{aligned}$	$\begin{array}{ll}8010100 \\ 8010135 & 8010134\end{array}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	SCRES, MACHINE: $4-40 \times 0.25$,FLH 100 DEG, STL SCREN, MACHINE: $4-40 \times 0.312$, FLH, 100 OEG ,STL (END ATTACHING PARTS)	$\begin{aligned} & 93907 \\ & 89385 \end{aligned}$	OROER BY DESCR OROER BY OESCR
-9	361-1337-00		1	spacer , bracket:Chromate   (attaching parts)	80009	361-1337-00
-10	211-0325-00		1	SCR,ASSEM WSHR:4-40 X 0.25, PHH,STL,TORX T9   (END ATTACHING PARTS)	01536	OROER BY OESCR
-11 -12	---761-1303-00		1	CKT BO ASSY:VECTOR GEN (SEE A11A2 REPL) SPACER CKT BD:0.375 THK POLYCARBONATE BLACK	80009	361-1303-00
-13	361-1303-00		1	CKT BD ASSY:IN/OUT (SEE A11A1 REPL)	80009	361-1303-00
-14	441-1594-00		1	CHASSIS, SCDPE:CKT BO	80009	441-1594-00
-15	342-0766-00		1	INSUL,CKT BO:POLYCARBONATE	80009	342-0766-00


Fig. 8 index No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Qty	12345 Name \& Description	Mfr. Code	Mfr Part ${ }^{\text {No, }}$
5	STAMDARD ACCESSORIES					
	----- ---		2	PROQE, VOLTAGE:P6122,1.5 METER, $10 \times \mathrm{X}$ H/ACC		
	159-0023-00		1	FUSE, CARTRIDGE: 3 AG , 2 A , 250V, SLOH 8 LOH	71400	M0X2
	131-3579-00		1	CONWECTOR ASSY:9 PIN, MALE M/HARDHARE	80009	131-3579-00
-1	161-0104-00		1	CABLE ASSY,PHR,:3 HIRE,98.0 L,M/RTANG CONN	16428	CH8352, FH-8352
-2	343-0003-00		1	CLANP, LOOP:0.25 ID PLASTIC	06915	e4 Clear round
-3	213-0882-00		1	SCREN,TPG, TR: 6-32 X 0.437 TAPTITE, PNH, STL	83385	OROER BY DESCR
-4	210-0803-00		1	MASHER, FLAT:0.15 ID $\times 0.37500 \times 0.032$	12327	OROER BY OESCR
	016-0677-02		1	PQUCH , ACCESSORY:	80009	016-0677-02
	070-4998-00		1	MANUAL, TECH:OPR, 2230	80009	070-4998-00
	070-5370-00		1	MANUAL, TECH:USERS GUIOE,2230	80009	070-5370-00
	OPTIONAL ACCESSORIES					
	020-0859-00		1	COMPOMENT KIT: EUROPEAM	80009	020-0859-00
	200-2265-00		1	.CAP, FUSEHOLOER:5 $\times$ 2OMM FUSES	TK0861	FEX 031.1663
-5	161-0104-06		1	.CABLE ASSY, PAR, $3 \times 0.7514 \mathrm{MS}$ S $220 \mathrm{~V}, 98.0 \mathrm{~L}$	53109	ORDER BY OESCR
	020-0860-00		1	COMPONEST KIT: UNITED KINGDOM	80009	020-0860-00
	200-2265-00		1	.CAP, FUSEHOLDER: $5 \times$ 20MM FUSES	TK0861	FEX 031.1663
-6	161-0104-07		1	.CABLE ASSY, PAR, $3 \times 0.751 \%$ SO,240V,98.0 L	TK1373	A25UK-RA
	020-0861-00		1	COMPONENT KIT:AUSTRALIAN	80009	020-0861-00
	200-2265-00		1	.CAP, FUSEHOLDER: $5 \times$ 2OMA FUSES	TK0861	FEX 031. 1663
-7	161-0104-05		1	.CABLE ASSY, PHR, 3 , 18 AMF, 240V,98.0 L	53109	ORDER BY DESCR
	020-0862-00		1	COMPONENT KIT: MORTH AMERICAN	80009	$020-0862-00$
	200-2265-00		1	.CAP, FUSEHOLOER:5 X 2OMM FUSES	TK0861	FEX 031.1663
-8	161-0104-08		1	.CABLE ASSY, PHR, 3 , 18 Amg, 240V,98.0 L	70903	OROER BY DESCR
	020-0863-00		1	COMPONENT KIT:SNISS	80009	020-0863-00
	200-2265-00		1	.CAP, FUSEHOLDER: $5 \times$ 2OM FUSES	TK0861	FEX 031. 1663
-9	161-0167-00		1	.CABLE ASSY, PHR, $3.0 \times 0.75,6 \mathrm{~A}, 240 \mathrm{~V}, 2.54 \mathrm{~L}$	53109	OROER BY DESCR
	013-0191-00		1	TIP, PROBE:H/ACTUATOR	80009	013-0191-00
	016-1003-00		1	AOAPTER, RACK:	80009	016-1003-00
	016-0566-00		1	VISOR,CRT:	80009	016-0566-00
	016-0792-01		1	CASE, CARRYING: $24.5 \times 16.5 \times 11.5$	TK1336	OROER BY OESCR
	016-0848-00		1	COVER, PROT:MATERPROOF VINYL	80009	016-0848-00
	346-0199-00		1	STRAP, CARRYING: HKD TEXTRONIX	80009	346-0199-00
	070-4999-00		1	MAMUAL, TECH:SERVICE, 2230	80009	070-4999-00



## MANUAL CHANGE INFORMATION

At Tektronix, we continually strive to keep up with latest electronic developments by adding circuit and component improvements to our instruments as soon as they are developed and tested.

Sometimes, due to printing and shipping requirements, we can't get these changes immediately into printed manuals. Hence, your manual may contain new change information on following pages.

A single change may affect several sections. Since the change information sheets are carried in the manual until all changes are permanently entered, some duplication may occur. If no such change pages appear following this page, your manual is correct as printed.


[^0]:    ${ }^{\text {an }}$ Performance Requirement not checked in Service Manual.

[^1]:    aPerformance Requirement not checked in Service Manual.
    ${ }^{\text {b }}$ One-hundred MHz bandwidth is derated for temperature outside $0^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ and at 2 mV per division as for NON STORE.

[^2]:    ${ }^{\text {a }}$ Performance Requirement not checked in Service Manual.

[^3]:    aPerformance Requirement not checked in Service Manual.

[^4]:    aPerformance Requirement not checked in Service Manual.
    CThe X10 MAG control extends the maximum sweep speed to 5 ns per division.
    ${ }^{d}$ The X10 MAG control extends the maximum sweep speed to 5 ns per division. The 4 K COMPRESS control multiplies the SEC/DIV by 4.

[^5]:    ${ }^{\text {a }}$ Performance Requirement not checked in Service Manual.

[^6]:    *Performance Requirement not checked in Service Manual.

[^7]:    When not in the Runs After Delay mode, the output of U660A is HI , and U670A has a HI on both the Set and the D input. The circuitry connected to the Reset input of U670A functions as described before. When the output of U660F goes HI, U670A is no longer held reset. In this case, the first B Trigger signal from the collector of Q630 after the end of the delay time clocks through the HI on the $D$ input, setting flip-flop U670A. The $\bar{Q}$ output of U670A is then LO, and a B Sweep is started by reverse biasing Q709 in the B Miller Sweep as before.

[^8]:    ${ }^{\text {a }}$ Each n , message, and rng depend upon the detected failure.

[^9]:    "Epson is a trademark of Epson Corporation.
    HP-GL and ThinkJet are trademarks of Hewlett-Packard Company.

