TEK INTER-OFFICE COMMUNICATION

John Martin

94-540

DA1E

Frank Gray, 50-PAT

GIDEP permit request

SUBJECT

TO

In response to the request to grant permission to the Government Industry Exchange Program (GPDEP) to reproduce Tektronix operator, service and instruction manuals, Tektronix, Inc. hereby grants such permission for distribution of such documents to any GIDEP user that is a full participant in the Metrology Data Interchange Data Base of GIDEP provided that all copies of the original work include the entire copyright notice and ownership statement exactly as it appears in the original, together with the Legend "Reproduced with permission."

This permission has been approved by the Intellectual Property committee of Tektronix, and a copy of this memo may be provided to GIDEP to provide the requested permission.

vanis I thay rancis I. Gray

Group Patent Counsel

imp

TEKTRONIX IIA34V

Checks and Adjustments

This section contains procedures that allow you to examine measurement limits and electrical specifications of the 11A34V Video Amplifier. Procedures 1 to 11 (see Table 2-1) are intended to return the 11A34V Video Amplifier to proper operation following repair, or as a part of a routine maintenance program.

To ensure accurate operation of the amplifier, check the electrical adjustment after each 2,000 hours of operation; or every 24 months if you use the amplifier infrequently. Refer to the *11A34V User Reference* for more information about advertised specifications and amplifier operation.

To verify that the instrument is functioning, perform the procedures which have a (ν) indication in the Functional Test column of Table 2-1. If you wish to verify the specifications of the instrument, perform all procedures.

Table 2-1	 Measurement Limits, 	Specifications,	Adjustments,	and Functional Test
-----------	---	-----------------	--------------	---------------------

Procedure and Description	Measurement Limits <i>(Examine</i>)	Specifications (Check)	Adjustments (Adjust)	Functional Test	
Procedure 1 Initial Setup	none	none	none	~	
Procedure 2 Enhanced Accuracy	none	none	successful execution	<i>.</i>	
Procedure 3 High Frequency Response					
Amplifier Step Response	difference between two waveform aberrations +4.5, -6% peak and 8% p-p	none :	HF1, HF2, HF3, and HF4 so that the CH1, CH2, CH3, and CH4 aberrations respectively, are within ± 4.5 , -6% peak and 8% p-p		
Amplifier Bandwidth: Performance Verification Procedure	none	refer to Table 2-3 for the bandwidth specifications	none .		
Amplifier Bandwidth; Functional Test Procedure	none	peak-peak measurément ≥848 mV	none		
Procedure 4 Input Resistance	ñòne	1 MΩ ±0.5% 75 Ω ±0.5%	none	~	

Procedure and Description	Measurement Limits <i>(Examine)</i>	Specifications (Check)	Adjustments (Adjust)	Functional Test
Procedure 5 Vertical Accuracy		<u></u>		V
DC Balance	none	from 5 mV to 10 V, trace within ±0.2 divs.of center,	none	
		from 1 mV to 2 mV, trace within ±1 div of center		
Gain	none	peak-peak measurement is 5 V ± 57 mV.	none	
DC Offset	none	top of waveform vertically centered within ± 0.5 divisions	none	
Procedure 6 Bandwidth Limit	none	at 100 MHz limit: 2.45 ns < rise time < 4.55 ns	none	v
		at 20 MHz limit: 12.3 ns < rise time < 22.7 ns		
Procedure 7 AC Coupling	none .	bottom of square wave near center graticule line and waveform centered on screen	none	V
Procedure 8 DC Balance	none	refer to Table 2-4	none	
Procedure 9 △V DC Accuracy	none	within ±0.63%	none	
Procedure 10 DC Offset Accuracy	none	refer to Table 2-6	none	
Procedure 11 Video Pick-off Offset	with input coupling off, the voltage at TP2 is $0 V \pm 5 mV$ or less and the voltage at TP4 is $0 V \pm 5 mV$ or less	none	CH 1 offset and CH 2 offset are adjusted (with input coupling off) to set the voltage at TP2 is $0 V \pm 5 mV$ or less and the voltage at TP4 is $0 V \pm 5 mV$ or less	

Table 2-1 — Measurement Limits, Specifications, Adjustments, and Functional Test (Cont.)

۰,

Table 2-2, Test Equipment, lists recommended test equipment for use in this manual. The Functional Test column of Table 2-2 indicates, with a check mark (ν) , the test equipment recommended if you are only performing a functional test. Procedure steps are based on the test equipment examples given, but other equipment with similar specifications may be substituted. Test results, setup information, and related connectors and adapters may be altered if you use different equipment.

Description	Minimum Specification	Examples of Recommended Test Equipment	Functional Test
11000-Series maintrame mainframe that accommodates the amplifiers	11000 Séries mainframe that accommodates the amplifier	TEKTRONIX 11401 Digitizing oscilloscope 11402 Digitizing oscilloscope 11402A Digitizing oscilloscope 11403A Digitizing oscilloscope 11403A Digitizing oscilloscope CSA 404 Communications Signal Analyzer DSA 600 Series Digitizing Signal Analyzer with version 2.0 firmware or higher	L
Power Module	Tektronix four-compart- ment power module	TEKTRONIX TM 504 Power Module	
Leveled Sine Wave Generators	250 MHz to 1000 MHz, Leveled variable amplitude, 50 kHz or 6 MHz reference	TEKTRONIX SG 504 Leveled Sine Wave Generator with a TM 500-Series Power Module	~
	260 kHz to 250 MHz, Leveled variable amplitude, 50 kHz or 6 MHz reference	TEKTRONIX SG 503 Leveled Sine Wave Generator with a TM 500-Series Power Module	
Power Supply	Continuously variable from 0-40 V; current limit, adjustable from 0 – 400 mA; 20 V at 400 mA with overcurrent protection	TEKTRONIX PS 503A Dual Power Supply with a TM 500-Series Power Module	~
DC Voltage Calibrator (optional)	Output, 0-4 V	Data Precision 8200	
Pulser	Amplitude: 250 mV Rise rime: \leq 125 ps Aberrations: $<$ 1%	TEKTRONIX 067-0681-01 Tunnel diode Calibration Fixture	
Digital Multimeter (w/test leads)	Accuracy <u><</u> 0.01%	Fluke 8842A Digital Multimeter	r

Table 2-2 – Test Equipment

s i se i na premi presidente de secondo de s			(des) is is
Description	Minimum Specification	Examples of Recommended Test Equipment	 Functional Test
Signal Standardizer	Tektronix Calibration Fixture with interface connector modified for 11000-Series use	TEKTRONIX 067-0587-02 Signal Standardizer	
11K Plug-in Extender		Tektronix Part 067-1261-00	· · · · ·
Calibration Generator	Period, 0.1 ms Amplitude, -60 V Square wave output, 0.25% accuracy, 1-2-5 amplitude selection from 200 μ V p-p to 100 p-p, ~1 ms period, fast rise <1 ns	TEKTRONIX PG 506 Calibration Generator with a TM 500-Series Power Module	~
Coaxial Cable, 36-inch (2 required)	50 Ω, 36-inch male BNC connectors	Tektronix Part 012-0482-00	
Coaxial Cable, 42-inch (2 required)	50 Ω, 42-inch male BNC connectors	Tektronix Part 012-0057-01	V
Adapter, BNC to Alligator Clips	BNC Female to Clip leads	Tektronix Part 013-0076-00	
Term Conn Link	Shorting strap	Tektronix Part 131-0993-00	
Attenuator, 10X	Impedance: 50 Ω, one male and one female BNC connector	Tektronix Part 011-0059-02	
Adapter, BNC-to-Banana (2 required)	BNC Female-to-Dual Banana Connector	Tektronix Part 103-0090-00	V
Adapter, T	BNC, T: Two female and one male BNC connector	Tektronix Part 103-0030-00	V
50 Ω Termination	Impedance: 50 Ω; Accuracy, within 2%; connectors, BNC	Tektronix Part 011-0049-01	
Resistor	430 Ω, 10% tolerance; power rating, 1 W	Tektronix Part 303-0431-00	and a second
Alignment Tool (insulated slot)	Insulated slot	Tektronix Part 003-0675-01	
Magnetic Screwdriver	Holder for Torx tips	Tektronix Part 003-0293-00	·

۰.

Tektronix Part 003-1415-00 Tektronix Part 003-1293-00 Tektronix Part 003-0964-00 Tektronix Part 003-0814-00 W shank Tektronix Part 003-0815-00
Tektronix Part 003-1293-00 Tektronix Part 003-0964-00 Tektronix Part 003-0814-00 w shank Tektronix Part 003-0815-00
Tektronix Part 003-0964-00 Tektronix Part 003-0814-00 w shank Tektronix Part 003-0815-00
Tektronix Part 003-0814-00 w shank Tektronix Part 003-0815-00
w shank Tektronix Part 003-0815-00
Tektronix Part 003-0966-00
extraction General Tool P/N U505BG or htype equivalent
In 50 Ω out Tektronix Part 011-0057-01 ale and one connector
2

.

¢

Table 2-2 - Test Equipment (cont)

Tweezers

۰.

19 N. S

Using these Procedures

The first-time user should become familiar with the above information prior to performing the procedures.

At the beginning of each procedure a short narrative describes the purpose of the procedure. The next section, labeled Measurement Limit, gives the proper range for the specification. The Specification section gives the specification to be verified by the procedure. The Setup section provides a figure that shows test equipment setup and connection. The final section, labeled Steps Necessary To Check, lists the steps required to check the video amplifier's specification.

Conventions in this Manual

In these procedures, the following conventions are used:

- CAPITAL letters within the body of text identify front panel controls, indicators, and connectors (for example, MEASURE) on the mainframe and amplifier.
- Bold letters identify menu labels, display messages, and commands typed in from a terminal or controller.
- Initial Capital letters identify connectors, controls, and indicators (for example, Position) on associated test equipment. Initial Capital letters also identify adjustments inside the amplifier (for example Vert Pos).

A heading system is used to readily identify the steps that contain performance verification and/or adjustment instructions. For example, if *Check* is the first word in the title of a step, an electrical specification is checked. If *Adjust* appears in the title, the step involves an electrical adjustment. If *Examine* is the first word in the title, the step concerns measurement limits that indicate whether the instrument is operating properly. These limits are not to be interpreted as electrical specifications.

Initial Mainframe Settings

At the beginning of most steps, you are instructed to **Initialize** the instrument as part of the setup. The **Initialize** feature, available through the UTILITY menu, presets all mainframe controls and functions to known values. Initializing the instrument at the beginning of a step eliminates the possibility of settings from previous steps causing erroneous or confusing results. For more information on initialization, refer to the mainframe *User Reference* manual.

Menu Selections and Measurement Techniques

Details on measurement techniques and instructions for making menu selections are generally not included in this procedure. Comprehensive descriptions of menus and instrument features are located in the mainframe User Reference manual.

Procedure 1 Initial Setup	Perform the Checks and Adjustment procedure within the ambient temperature range of +18° and +28°C to ensure proper mainframe and 11A34V operation.
	Specification
	Power on and warm test equipment.
CAUTION	To avoid damage to any of the equipment, set the mainframe ON/STANDBY switch to STANDBY before installing or removing plug-ins.
	Turning the mainframe power off during probe calibration, self-calibration, Extended Diagnostics, or other intense system activity may result in some internal data being corrupted. If corruption occurs, refer to Restoring Calibration Data in Section 3.
	Steps Necessary for Initial Setup
	Step 1: Power on the following test equipment, so that it is warmed up with the mainframe and 11A34V to be tested.
	Power supply Calibration generator Leveled sine wave generators Digital multimeter
	Step 2: With the ON/STANDBY switch set to STANDBY, connect the mainframe to a suitable power source.
	Step 3: Install a signal standardizer in the Center plug-in compartment and the 11A34V in the Left plug-in compartment. If you are performing a functional test, it is not necessary to install the signal standardizer.
	Step 4: Set the front panel ON/STANDBY switch to ON.
	Step 5: Allow the equipment to warm up for 20 minutes before continuing.

.

1 g

Procedure 2 Enhanced Accuracy

This procedure shows the setup and lists the steps necessary to check the Enhanced Accuracy state of the mainframe. Its purpose is to verify that the Enhanced Accuracy state can be achieved by the mainframe. When the mainframe has achieved Enhanced Accuracy, the symbol (EA) will be displayed The mainframe stores both the time of calibration and ambient temperature for use in maintaining the Enhanced Accuracy state.

For more information about the Enhanced Accuracy state, see Enhanced Accuracy in your mainframe User Reference manual.

To verify the Enhanced Accuracy state, check the DC measurement accuracy of the amplifier and mainframe system, apply and monitor test voltages, then compare these test voltages with the measurements made on the screen.

Specification

When invoked, the Enhanced Accuracy self-calibration executes successfully.

Setup to Check Enhanced Accuracy

Steps Necessary to Check Enhanced Accuracy

Step 1: Initialize the mainframe's settings.

Left plug-in no setting changes
Mainframe no setting changes
Signal standardizer

Step 2: Twenty minutes after power-on, the mainframe must recalibrate its to achieve the Enhanced Accuracy state. Press the ENHANCED ACCURAC button. A prompt then appears on the display. Press the ENHANCED ACCURACY button again. Enhanced Accuracy is achieved after a couple o minutes.

CAUTION

Turning the mainframe's power off during Enhanced Accuracy testing may result in losing some of the non-volatile RAM data. This could cause diagnostic errors at the next power-up, and cause the mainframe to operate unpredictably. If this occurs, refer to your mainframe's Service Reference manual for instructions on restoring calibration data.

- Step 3: Check that the message, Enhanced Accuracy in Progress (indicating that the mainframe is attempting to achieve Enhanced Accuracy) appears.
- Step 4: Check that the message, Enhanced Accuracy completed and passed or Self calibration completed successfully appears. This indicates that the Enhanced Accuracy state has been achieved. The EA indicator appears on the display when Enhanced Accuracy is active.

Procedure 3 High Frequency Response

This procedure describes the setup and lists the steps necessary to check the 11A34V system high frequency response. It is divided into two parts, a functional test and a performance verification procedure.

Functional Test

This procedure describes the setup and lists the steps necessary to perform a functional test of the 11A34V bandwidth.

Specification

A peak-peak measurement ≥848 mV.

Setup to Check Amplifier Bandwidth: Functional Test Procedure

Steps Necessary to Check Amplifier Bandwidth: Functional Test Procedure

Step 1:	First Initialize the mainframe's settings.
Step 2:	Perform the following settings in the order listed:

Amplifier

1	
CH 1 Display on/off o	л
Leveled sine wave generator	
Frequency Ref (6 MHz	2)
Mainframe	
Impedance)
Vert Size	v
Main Size	v
Step 3: Select the Peak-Peak measurement to measure the peak-to-pe	ak
amplitude of the waveform.	

Step 4: Set the leveled sine wave generator for 1.2 V peak-to-peak.

Step 5: Set the leveled sine wave generator Frequency control to 300 MHz.

- Step 6: Set the Main Size to 2 ns/div.
- Step 7: Check that the measurement is at least 848 mV (70.7% of Step 3).
 - Step 8: Set the CH 1 display on/off button to off.
- Step 9: Move the coaxial cable and 50-75 Ω, Min Loss Pad to the CH 2 input.

Step 10: Perform the Steps 2 to 9 for the remaining channels.

Performance Verification (Optional)

This procedure describes the setup and lists the steps necessary to check the mainframe and 11A34V system high frequency response. Its purpose is to check the mainframe high frequency response, the 11A34V step response, and the 11A34V bandwidth. The 11A34V high frequency peaking is checked to verify that the bandwidth is adequate and the aberrations are not excessive.

A plug-in signal standardizer provides a reference waveform to characterize the mainframe high frequency response. Mainframe aberrations are displayed at 2% per division. Amplitude is measured at specification frequencies.

A step response waveform is recorded then compared with the Mainframe High Frequency Response waveform. This will to determine the 11A34V contribution to any aberrations.

Measurement Limits

The difference between the two waveform aberrations should not exceed +4.5% and -6% peak (2.25 and 3 divisions) and 8% (4 divisions) peak-to-peak. (One major graticule division = 2%.)

Specification (Performance Verification)

Refer to Table 2-3 for the bandwidth specifications.

Procedure 3 High Frequency Response

۴.

Setup to Examine Mainframe High Frequency Response

Steps Necessary to Check Mainframe High Frequency Response

Step 1: First Initialize the mainframe's settings, then perform the following settings in the order listed:

Mainframe

UTILITY major menu Instrument Options or Modes Waveform Scaling (Forced)
Def Wfm C (center)
TRIGGER major menu
Main Trigger Source Description pop-up menu C (center)
Left plug-in not used in this procedure
Signal standardizer
Test
Rep Rate
Position
Amplitude
Mainframe
Main Size
Trig Level
Main Pos
Acquire Desc pop-up menu
Average N On
Set Avg N
Signal standardizer
Amplitude
Mainframe
Vert Offset: Wfm position top of step on center horizontal graticute line
Vert Size: Wfm

L	_eveled :	sine wave generator
	Freq	uency
C S C F	Step 2: of the dis Amplifier	Record the displayed waveform on graph paper or make a hardcopy splay. This waveform is used in the Procedure to Examine/Adjust Step Response for comparison against the amplifier step response.
	Step 3:	Set Average N to Off. Set Main Size to 200 ns/div (for 6 MHz Ref).
<u> </u>	Step 4:	Set the signal standardizer Test switch to Vert or Horiz Freq Resp.
5 5 1 5	Step 5: signal sta hrougho 50 kHz a	Set the leveled sine wave generator output amplitude so that the andardizer CW Leveled light is on. Ensure that the light remains on ut the following steps. The reference frequency must be between nd 6 MHz.
	Step 6: display a	Set the signal standardizer Position and Amplitude for a 6-division amplitude, centered on the screen.
: ۲ ۱ ۱	Step 7: record th used in t amplifier	Set the leveled sine wave generator frequency to 300 MHz, and the Displayed Amplitude in line 2 on a copy of Table 2-3. This data is the Procedure to Check Amplifier Bandwidth for calculating the bandwidth
<u> </u>	Step 8:	Set the mainframe ON/STANDBY switch to STANDBY.
ع [] ن ن	Step 9; comparti ristall it i	Remove the signal standardizer from the Center plug-in ment. Remove the amplifier from the Left plug-in compartment and in the Center plug-in compartment.

.

Setup to Examine/Adjust Amplifier Step Response (A1R1027, A1R1029, A1R1041, A1R1045)

.

Procedure to Examine/Adjust Amplifier Step Response (A1R1027, A1R1029, A1R1041, A1R1045)

Step 1: Perform the following settings in the order listed:

- Remove the left side cover from the amplifier.
- Insert the amplifier into the mainframe Center plug-in compartment.
- Connect the 50 to 75 Ω, Min Loss Pad to CH 1 input connector.
- Connect the pulser to the 50 to 75 Ω , Min Loss Pad.
- Connect a 50 Ω coaxial cable from the calibration generator High Ampl Output connector to the pulser.

Calibration generator Function switch High Ampl Period 0.1 ms Pulse Amplitude Max Pulser Mainframe ON/STANDBY switch ON Wait for calibration cycle to complete UTILITY major menu Initialize UTILITY major menu Instrument Options or Modes Waveform Scaling (Forced) Center plug-in CH 1 Display on/off Mainframe Vert Offset position top of step 2.5 divisions above the center horizontal graticule line Main Pos position positive-going edge to first graticule line from left edge of graticule Pulser TD Triggered Level rotate control counterclockwise until the step disappears, then rotate clockwise just enough to obtain a step Mainframe Main Size 2 ns/div Main Pos position positive-going edge between the first and second graticule lines from the left edge of the graticule Acquire Desc pop-up menu Average N On

	Vertical icon
	Vert Offset vertically position right side of trace to the center horizontal graticule line
	Vert Size use numeric entry to set readout for 10% of present readout (~3.1 mV/div)
	Vert Offset vertically position right side of trace to the center horizontal graticule line
	Step 2: Examine the displayed waveform with the waveform recorded in the previous Procedure to Examine Mainframe Step Response and examine the amplifier's contribution for aberrations within +4.5%, ~6% peak (+2.25, -3.0 divisions) and 8% peak-to-peak (4 divisions). (You can use cursors to measure this amplitude.)
STEP	DO NOT attempt to optimize the aberrations if they are within the stated limits, Proceed to Step 4,
	Step 3: Adjust HF1, R1027 on the A1 Main board, so that the CH 1 aberrations are within +4.5%, -6% peak (+2.25, -3.0 divisions) and 8% peak-to-peak (4 divisions). Refer to Figure 2-1 for adjustment locations.
	Step 4: Remove the displayed waveform.
	Step 5: Move the 50–75 Ω Min Loss Pad to the CH 2 input connector. Then, repeat Step 1 beginning at the Center plug-in settings and proceeding through Steps 2, 3, and 4 (the adjustment is performed using the HF2 adjustment, R1029).
	R1027 R1029 HF1 HF2

÷

Procedure 3 High Frequency Response

Step 6: Move the 50-75 Ω Min Loss Pad to the CH 3 input connector. The repeat Step 1 beginning at the Center plug-in settings and proceeding through Steps 2, 3, and 4 (the adjustment is performed using the HF3 adjustment, R1041).

Step 7: Move the 50-75 Ω-Min Loss Pad to the CH 4 input connector. The repeat Step 1 beginning at the Center plug-in settings and proceeding through Steps 2, 3, and 4 (the adjustment is performed using the HF4 adjustment, R1043).

Setup to Check Amplifier Bandwidth: Performance Verification Procedure

Steps Necessary to Check Amplifier Bandwidth: Performance Verification Procedure

Step 1: First Initialize the mainframe's settings.

Step 2: Perform the following settings in the order listed:

Center plug-in
CH1 Display on/off on
Mainframe
Main Size (for 6 MHz Ref) 200 ns/div
Impedance
Vert Size
Leveled sine wave generator
Amplitude 2 V p-p displayed
Frequency

If the leveled sine wave generator has a remote leveling head, then you must connect it to the 50–75 Ω . Min Loss Pad without additional coaxial cables.

If the leveled sine wave generator is not equipped with internal attenuators, the use the 10X attenuator between the leveling head (if used) and the 50–75 Ω , M. Loss Pad when setting amplitude,

Step 3: Set the leveled sine wave generator amplitude (ref freq) to 300 mV (6 div) using peak-to-peak measurements.

Step 4: Set the leveled sine wave generator to 300 MHz.

Step 5: Record the Peak-Peak measurement in line 5.

Step 6: Check that the computed value ≥ 0.777 .

If there are any failures, then the step response must be readjusted, so that the Measurement Limits for step response aberrations and the Specifications for bandwidth are both met.

Step 7: Repeat for all channels.

Configuration	Characteristic		Value
Mainframe with Standardizer	Displayed Amplitude/div		(2)
Mainframe with Amplifier	Vertical Size		50 mV/div
	Reterence Amplitude		300 mV
	Displayed Amplitude/div	CH 1	(5)
		CH 2	(6)
		CH 3	(7)
		CH 4	(8)
Amplifier Only	Calculated Amplitude	CH 1 0.02 × line (5) + line (2)	<u>≥</u> 0.777
		CH 2 0.02 × line (6) ÷ line (2)	<u>≥</u> 0.777
		CH 3 0.02 × líne (7) ⊹ line (2)	<u>></u> 0.777
T) V TI 40		CH 4 0.02 × line (8) ∻ line (2)	
		Example:	
		$\frac{0.02 \times 260}{5.8} = 0.896$	

Table 2-3 - 11A34 Bandwidth

11A34V Sen - Enforence

Procedure 4 Input Resistance

This procedure describes the setup and lists the steps necessary to check input resistance.

Specifications

The specifications for this part are as follows:

- Impedance resistance is 1 M Ω within $\pm 0.5\%$.
- Impedance resistance is 75 Ω within $\pm 0.5\%$.

Setup to Check Input Resistance

Steps Necessary to Check Input Resistance

Step 1: First Initialize the mainframe's settings, then perform the following settings in the order listed:		
Mainfran Digital m Resi	ne no setting changes nultimeter (DMM) stance mode	
Step 2:	Set the CH 1 display to on.	
Step 3:	Check that the input resistance is 1 MΩ within $\pm 5 \text{ k}\Omega$.	
Step 4:	Set CH 1 Impedance to 75 Ω .	
Step 5:	Check that input resistance is 75 Ω within $\pm 0.375 \Omega$.	
Step 6:	Set the CH 1 display to off.	
Step 7:	Repeat Steps 2 through 6 for the remaining input channels.	

Procedure 5 Vertical Accuracy

This procedure describes the setup and lists the steps necessary to check vertical accuracy.

Specifications

The specifications for this part are as follows:

- DC balance so that trace is within ±0.2 divisions of center from 5 mV through 10 V; and ±1 division of center from 1 mV to 2 mV.
- Peak-Peak measurement of 5 V ± 57 mV for the 11400/DSA 600 Series.
- DC offset so that the top of the waveform is vertically centered within ± 0.5 division.

Setup to Check Vertical Accuracy

Steps Necessary to Check Vertical Accuracy

Stop 1: First Initialize the mainframe's settings, then perform the following settings in the order listed;

Amplifier
CH 1 Display on/off on
Calibration generator
Mode
Amplitude Output
Mainframe
Main Size or HORIZONTAL SIZE
Average N On

Procedure 5 Vertical Accuracy

Check DC	Balance - by	performina	Step 2	2.
----------	--------------	------------	--------	----

Step 2: Check the Vertical Size to each position from 10 V through 5 mV a observe that the trace stays within ± 0.2 divisions of center. Then, set the Vertical Size to 2 mV and 1 mV and observe that the trace stays centered within ± 1 division.

Check Gain-by performing Steps 3 through 7.

- Step 3: Connect the calibration generator output to the CH 1 input using the 42-inch coaxial cable.
- Step 4: Set the Vert Size to 1 V/div.

Step 5:	Set the Vert	Offset to	+2.5	V.
---------	--------------	-----------	------	----

- Step 6: Select the Peak-Peak measurement, to measure the peak-to-peal amplitude of the waveform.
- Step 7: Check that the measurement is 5 V, plus or minus 57 mV.

Check Offset-by performing steps 8 through 11.

- Step 8: Set the Vert Offset to 5 V.
- Step 9: Set the Vert Size to 100 mV/div.
- Step 10: Check that the top of the waveform is vertically centered within ± 0.5 divisions.
- Step 11: Repeat the Steps 1 through 10 for the remaining channels.

Procedure 6 Bandwidth Limit

This procedure describes the setup and lists the steps necessary to check rise time,

Specifications

The specifications for this part are as follows:

- At a bandwidth limit of 100 MHz, rise time is between 2.45 and 4.55 ns. 截
- At a bandwidth limit of 20 MHz, rise time is between 12.3 and 22.7 ns. 58

Setup to Check Bandwidth Limit

Steps Necessary to Check Bandwidth Limit

Step 1: First Initialize the mainframe's settings, then perform the following settings in the order listed:

	Amplifie	r
	CH 1	t Display on/off
	Calibrati	on generator
	Perio	od,
	Mod	le Fast Rise
	Mainfran	ne
	Maii Maii	n Size or HORIZONTAL SIZE
	Step 2: CALIBRA function	Calibrate all input channels by connecting each channel to the ATOR with the 42-inch coaxial cable and selecting the Probes in the UTILITY major menu.
	Step 3: CH 1 wit	Connect the calibration generator Fast Rise output (rising edge) to hit the 42-inch coaxial cable.
	Step 4:	Set the Impedance to 75 Ω .
[]	Step 5:	Set the Vert Size or VERTICAL SIZE to 100 mV/div.

Procedure 6 Bandwidth Limit

•,

.

	Step 6:	Set the Vert Offset or VERTICAL OFFSET to -250 mV.
[]	Step 7:	Set the calibration generator Amplitude to approximately 5 divisions
	Step 8:	Select 100 MHz bandwidth limit.
	Step 9:	Select the Rise Time measurement.
	Step 10:	Check that the rise time is between 2.45 and 4.55 ns.
	Step 11:	Set the bandwidth limit to 20 MHz.
	Step 12:	Check that the rise time is between 12.3 and 22.7 ns.
	Step 13:	Set the input channel display to off.
	Step 14:	Set the next channel's display on/off to on.
	Step 15:	Repeat Steps 3 through 14 for the remaining channels.

.

.

Procedure 7 AC Coupling

This procedure describes the setup and lists the steps necessary to check AC coupling.

Specifications

The specifications for this part are as follows:

- Bottom of square wave is near the bottom graticule line.
- m The waveform is approximately centered on the screen.

Setup to Check AC Coupling

Steps Necessary to Check AC Coupling

	Step 1: Initialize the mainframe's settings.
	Step 2: Perform the following settings in the order listed:
	Amplifier
	CH 1 Display on/offon
	Calibration generator
	Mode Std Ampl
	Amplitude
	Mainframe
	Impedance
	Vert Size or VERTICAL SIZE
	Main Size or HORIZONTAL SIZE
	Step 3: <i>Check</i> that the bottom of the square wave is near the center graticule line.
[_	Step 4: Select AC Coupling for the CH 1 input.
[Step 5: Check that the waveform is approximately centered on the screen (duty cycle will cause some variation).

🔲 Step 6:	Set the CH 1 display on/off to off.
Step 7: on.	Move coaxial cable to the CH 2 input and set its display on/off t
🔲 Step 8:	Repeat Steps 2 through 7 for the remaining channels.

Procedure 8 DC Balance

The purpose of this procedure is to confirm that DC balance can be accomplished accurately. This procedure must be performed immediately after Enhanced Accuracy calibration. The position of the displayed trace with no input signal applied is examined.

Specifications

Refer to Table 2-4.

Setup to Check DC Balance

Steps Necessary to Check DC Balance

Step 1: First Initialize the mainframe's settings, then perform the following settings in the order listed.

Center plug-in

CH 1 Display on/off
Mainframe
Vert Size or VERTICAL SIZE
BW Limit or HF Limit
Impedance

Step 2: Check that the displayed trace position is at the center graticule line within the value Shift listed in Table 2-4 for each Vert Size setting.

Set Average N to On and use Mean (whole zone) in the Measurement pop-up menu to help measure the trace position.

Repeat Step 2 for each channel.

Procedrue 8 DC Balance

۰.

	11400 Series or DSA 600 Series Shift	
Vert Size	(±di∨)	(±mV)
5 V/div	0.065	330
0.5 V/div	0.065	33
50 mV/div	0.065	3.3

λ.

Table 2-4 — 11A34V Amplifier DC Balance

Procedure 9 **△V DC Accuracy**

This procedure shows the setup and lists the steps necessary to check ΔV DC Accuracy, Its purpose is to confirm that the 11A34V can be accurately calibrated. Check ΔV DC Accuracy immediately after an Enhanced Accuracy calibration.

Before checking ΔV DC Accuracy you must characterize your mainframe by using the following procedure that corresponds to your mainframe series.

Specification

△V DC Accuracy within ±0.63%.

Setup to Characterize the Mainframe

Steps Necessary to Characterize the 11400-Series Mainframe

Step 1: Set the following parameters:

	Center p	plug-in no setting changes
	Digital r	nultimeter (DMM)
	Mo	de DC
	Rar	age Auto (Range 10 V)
	Mainfra	me
	UTI	LITY major menu
		Subsystem
		Block Points Acq
		Area FP Cal Refs
		Routine
		Run touch
	Step 2:	Record the DMM absolute value.
	Step 3:	Press Exit.
[]	Step 4:	Press FP + 9.9951 V.

Procedure 9 ΔV DC Accuracy

٠.

ı.

🗌 Ste	p 5:	Press Run.
📋 Ste	р 6:	Record the DMM reading.
🔲 Ste	p 7:	Press Exit.
🗌 Ste	p 8:	Press Exit Diagnostics.
Ste and vol:	p 9: 16. Di tage r	Add the DMM absolute values of the readings obtained in Steps 2 vide the result by 19.9951 V to obtain the mainframe's calibration eference characterization factor.
Steps I	Veces	sary to Characterize the DSA 600 Series Mainframe
🗌 Ste	p 1:	Set the following parameters:
Cer Dig	nter pl gital m	lug-in
-	Mod	e DC
	Ranç	je Auto (Range 10 V)
Ma	infram	ne
	UTIL	ITY major menu Calibrator
	Freq Adju	st Amplitude
⊡ St∈	p 2:	Record the DMM absolute value.
Ste	р 3:	Adjust Amplitude to +9.9951 V.
📋 Ste	р4:	Record the DMM absolute value.
Ste and vol	ep 5: 3 4, D tage r	Add the DMM absolute values of the readings obtained in Steps 2 ivide the result by 19.9951 V to obtain the mainframe calibration eference characterization factor.

.

.

Setup to Check the 11A34V riangle V DC Accuracy

Steps Necessary to Check the 11A34V $\triangle V$ DC Accuracy

Step 1: First Initialize the mainframe settings, then perform the following settings in the order listed.

Center plug-in

CH 1 Display on/off On
Mainframe
WAVEFORM major menu
BW Limit (11400) 20 MHz
Input Parameters (DSA 600) touch
Bandwidth 20 MHz
Acquire Desc pop-up menu
Average N On
DC Voltage Calibrator
On/Standby on
50 Ω Override

If the environment is electrically noisy, connect a capacitor (at least 0.1 $\mu F)$ across the input terminals of the DC Voltage Calibrator.

Step 2: Press the Enhanced Accuracy button twice to initiate Enhanced Accuracy calibration and ensure peak performance of the system.

Immediately after self-calibration has completed and passed, perform this procedure for each channel.

Procedure 9 △V DC Accuracy

.

Step 3: Select the Mean set the Data Interval to V	n measurement in the Mi Vhote Zone in the Mean	EASURE major menu, and pop-up menu.
Step 4: Set Compare to Def in the MEASURE maj DSA600 Series, select the select Compare & Defau	o On. For the 11400 Serie for menu, and then select e second page of the ME alts.	es, select Stat, Comp, & t Compare Options. For the EASURE major menu, then
Step 5: Set Vert Size to resolution will be required	the first Vertical Size en to select the 49.8 and 2	try in Table 2-5. Fine knob 23 mV settings.
Step 6: Set the DC Volta output level to the approp	age Calibrator polarity to priate Deflection Volts se	minus (~), then set its tting from Table 2-5.
Step 7: Save the curren menu that you used to se	t Méan measurement as at Compare on in Step 4.	the reference value in the
Step 8: Set the DC Volta level set to the Deflection	age Calibrator polarity to a Volts setting used in Ste	plus (+), leaving its output ep 6.
Step 9: Clear the wavef selecting Clear waveform waveform averaging and	orm data by selecting R on name (wfm 1) in the po give a measurement bas	emove/Clr Waveform, then p-up menu. This will restart sed on the new input signal
Step 10: Now calculate the combined applied sig	the difference between to get the ΔV	the delta-mean value and DC error:
<i>Read</i> the current △M <i>Divide</i> the △Mean va you determined earlie <i>Subtract</i> from this va to obtain the △V DC	ean measurement. alue by the mainframe ch er in this procedure. lue, 2 times the present I error.	naracterization factor that Deflection Volts setting
Step 11: Check that the Limits given in Table 2-5.	ΔV DC error obtained ir	a Step 10 is within the Error
Step 12: Repeat Steps Table 2-5.	5 through 11 for all Vertic	al Size settings listed in
Table 2-5 —	11A34V ∆V DC Accuracy	y Error Limits
Vertical Size	Deflection Volts	Error Limits (+V)
	4 V	50.4 mV
	400 mV	5.04 MV
49.8 m)//div /Eioo.ros)	200 mV	2.52 mV
23 mV/div (Fine res)	92 mV	2.02 MV
	WALLEY	1. 1.00 HIV

80 mV

40 mV

20 mV

8 mV

4 mV

20 mV/div

10 mV/div

5 mV/div

2 mV/div

1 mV/div

Checks and Adjustments

1.008 mV

.504 mV

.252 mV

.101 mV

.050 mV

Procedure 10 DC Offset Accuracy

This procedure shows the setup and lists the steps necessary to check DC Offset. Its purpose is to confirm that the amplifier can be accurately calibrated. This procedure does not test the mainframe calibration voltage reference accuracy or long term stability. Therefore, before checking DC Offset Accuracy you must characterize your mainframe by using the procedure corresponding to your series of mainframe. Check DC Offset Accuracy immediately after an Enhanced Accuracy calibration.

Specifications

Refer to Table 2-6.

Setup to Characterize the 11400 or DSA 600 Series Mainframe

Steps Necessary to Characterize the 11400 Series Mainframe

This characterization procedure is identical to that performed in Procedure 10. You can use the mainframe calibration voltage reference characterization factor computed in Procedure 10 for the verification portion of this procedure.

Step 1: Perform the following settings:

Center plug-in
Digital multimeter (DMM)
Mode DC
Range
Mainframe
UTILITY major menu Extended Diagnostic
Subsystem Digitizer
Block Points Acq
Area FP Cal Refs
Routine
Кил

Procedure 10 DC Offset Accuracy

. . . .

4

.

Step 3:	Press Exit.
🔲 Step 4:	Press FP + 9.9951 V.
Step 5:	Press Run.
Step 6:	Record the DMM reading.
🗌 Step 7:	Press Exit.
Step 8:	Press Exit Diagnostics.
Step 9: and 6. E voitage Test the	Add the absolute values of the DMM readings obtained in Steps 2 Divide the result by 19.9951 V to obtain the mainframe's calibration reference characterization factor (which is used in the Procedure to Amplifier).
Steps Nece	ssary to Characterize the DSA 600 Series Mainframe
6	
Center p Mainfra	olug-in
Center p Mainfrai UTI	blug-in
Center p Mainfrai UTII Fre Adji Digital r	blug-in
Center p Mainfrar UTII Fre Adji Digital r Moo Rar	Dlug-in no setting changes me
Center p Mainfrat UTII Fre Adju Digital r Moo Rar	Dlug-in no setting changes me
Center p Mainfrat UTII Fre Adju Digital r Moo Rar Step 2: Step 3:	Diug-in no setting changes me
Center p Mainfrat UTII Fre Adji Digital r Moo Rar Step 2: Step 3:	olug-in no setting changes me

.

Setup to Check the 11A34V DC Offset Accuracy

Steps Necessary to Check the 11A34V DC Offset Accuracy

- Step 1: First Initialize the mainframe settings, then perform the following settings in the order listed:
 - DC Voltage Calibrator

On/Standby
50 Ω Override
Output Level
Center plug-in
CH 1 Display on/off
Mainframe
WAVEFORM major menu
(11400)) BW Limit
(DSA600) Input Parameters
Bandwidth
Acquire Desc pop-up menu
Average N On
If the environment is electrically noisy, connect a capacitor (at least 0.1 $\mu\text{F})$ across the input terminals of the DC Voltage Calibrator.
Step 2: Press the Enhanced Accuracy button twice. Immediately after self-calibration has completed and passed, perform this procedure for each channel.

Step 3: Select the Mean measurement in the MEASURE major menu, and set the Data interval to Whole Zone in the Mean pop-up menu.

Procedure 10 DC Offset Accuracy

45 X .

Step 4: Set Compa Def in the MEASURE DSA600 Series, select select Compare & D	re to On. For the 11400 Se major menu, and then select the second page of the M efaults.	ries, select Stat, Comp, & ect Compare Options. For the //EASURE major menu, then
Step 5: Save the cu menu in which you se	rrent ∆ Mean measuremen et Compare to on in Step 4	t as the reference value in the .
Step 6: Set Vert Siz	e to 1 mV/div.	
Step 7: Set Vert Off	fset to 1 V.	
Step 8: Set the DC by the characterization	Voltage Calibrator to the cu on-factor which you comput	rrent Vertical Offset divided ted earlier in this procedure.
Step 9: Clear the was selecting Clear wave waveform averaging	aveform data by selecting l form name (wfm 1) in the p and give a measurement b	Remove/Clr Waveform, then oop-up menu. This will restart ased on the new input signal.
Step 10: Read the 2 Vertical Offset set in 5 Offset error.	ΔMean measurement after Step 7 from the current ΔM	it has stabilized. Subtract the ean reading to get the DC
Step 11: Check that Error Limit shown in 7	t the DC Offset error obtain Fable 2-6.	ed in Step 10 is less than the
Step 12: Repeat Ste	eps 1 through 12 for each C	hanne).
Table 2-6 —	11A34V Video Amplifier D	C Offset Accuracy
Vertical Size	Vertical Offset	Error Limit (±Volts)

Vertical Size	Vertical Offset	Error Limit (±Volts)
1 mV/div	1 V	2.0 mV

ł

لأخدنك بز

.

Procedure 11 Video Pick-off Offset Adjust

This procedure shows how to check and adjust the video pick-off offset.

Specifications

- Voltage between test point 2 (TP2) and ground 0 V ±5 mV.
- Voltage between test point 4 (TP4) and ground 0 V ±5 mV.

Setup to Check Video Pick-off Adjust

Steps Necessary to Check Video Pick-off Adjust

- Step 1: Remove the left side-panel of the 11A34V. Use an 11000 extender to connect the 11A34V to the mainframe.
- Step 2: Initialize the mainframe's settings and perform the following settings in the order listed:

Amplifier

CH 1 coupling off
CH 2 coupling ,
Digital multimeter (DMM)
Mode DC
Bange 200 mV -

Procedure 11 Video Pick-off Offset Adjust

a e 6 **8**

Step 3:	Connect clip lead between TP5 and ground.
Step 4:	Measure the voltage between TP2 and ground with the DMM.
Step 5:	Check that reading is 0 V ± 5 mV or less. If it is, skip the next ste
Step 6: is within	Adjust R14, CH 1 OFFSET until the voltage between TP2 and gro ±5 mV of 0 V.
Step 7:	Measure the voltage between TP4 and ground with the DMM.
Step 8:	Check that reading is 0 V ± 5 mV or less. If it is, skip the next ste
Step 9: within ±	Adjust R38, CH 2 OFFSET until voltage between TP4 and ground 5 mV of 0 V.
Step 10:	Remove grounding lead from TP5.

١