MODEL 1,250A
CRYSTAL FREQUENCY STANDARD
P/N 12797317
REVISION B
OPERATION AND MAINTENANCE MANUAL SERIAL NO \qquad

示

AUSTRON
Table of Contents

1. GENERAL DESCRIPTION 1-1
1.1. SCOPE OF SECTION 1-1
1.2. PURPOSE OF EQUIPMENT 1-1
1.3. MODEL VARIATIONS 1-1
1.4. DESCRIPTION OF CHANGES FOR SPECIAL OPTIONS 1-2
1.5. SPECIFICATIONS OF EQUIPMENT 1-11
1.6. CONTROLS, INDICATORS AND CONNECTORS 1-12
2. INSTALLATION 2-1
2.1. SCOPE OF SECTION 2-1
2.2. UNPACKING AND INSPECTION 2-1
2.2.1. Initial Inspection 2-1
2.2.2. Circuit Boards 2-1
2.3. OPERATIONAL INSTALLATION 2-1
2.3.1. Power Connections 2-2
2.3.2. Cable Connections 2-2
2.3.3. Installation 2-2
2.4. PREPARATION FOR RESHIPMENT 2-2
3. OPERATING INSTRUCTIONS 3-1
3.1. SCOPE OF SECTION 3-1
3.2. NORMAL OPERATION 3-1
4. FUNCTIONAL DESCRIPTION 4-1
4.1. SCOPE OF SECTION 4-1
4.2. CIRCUIT ANALYSIS 4-1
4.2.1. Power Supply 4-1
4.2.2. AUSTRON Model 1150 Oscillator 4-7
4.2.3. Sine Converter 4-7
4.2.4. Output Amplifiers 4-13
4.2.5. Chassis Functions 4-19
4.2.6. Output Filters 4-19
5. MAINTENANCE 5-1
5.1. SCOPE OF SECTION 5-1
5.2. TROUBLE ANALYSIS GUIDE 5-1
5.3. GENERAL MAINTENANCE 5-2
6. PARTS LIST 6-1
6.1. SCOPE OF SECTION 6-1
6.2. ORDERING REPLACEMENT PARTS 6-1
6.3. MODEL PARTS 6-1
INDEX Index-1

List of Figures

1-1: Schematic, Interconnect 1-5
1-2: Schematic, Pulse Amplifier 1-7
1-3: Assembly, Pulse Amplifier 1-9
1-4: Front and Rear Panels, Model 1250A 1-15
3-1: Phase Comparison 3-3
4-1: Schematic, Power Supply 4-3
4-2: Assembly, Power Supply 4-5
4-3: Schematic, Sine Converter 4-9
4-4: Assembly, Sine Converter 4-11
4-5: Schematic, Output Amplifier 4-15
4-6: Assembly, Output Amplifier 4-17
4-7: Model 1250A Top View 4-20
4-8: Model 1250A Bottom View 4-21
4-9: Schematic, Interconnect Board 4-23
4-10: Assembly Procedure Battery Hookup 4-25
4-11: Final Assy, Frequency Standard 4-27

List of Tables

1-1: Special Options 1-2
1-2: Model 1250A Specifications 1-11
1-3: Model 1250A Front Panel 1-12
1-4: Model 125@A Rear Panel 1-17
5-1: Troubleshooting Table 5-1
6-1: Parts List, Frequency Standard Shipping Assy 6-2
6-2: Parts List, Final Assembly 6-3
6-3: Parts List, Chassis Assembly 6-4
6-4: Parts List, Diode Bridge 6-6
6-5: Parts List, Power Supply 6-7
6-6: Parts List, 1150 Crystal Oscillator 6-8
6-7: Parts List, Sine Converter. 6-9
6-8: Parts List, Output Amplifier 6-11
6-9: Parts List, Output Filter (A6 and A7) 6-13
1.1. SCOPE OF SECTION

Section One introduces the AUSTRON Model 1250A Crystal Frequency Standard unit. Provided here is the description of the equipment, its purpose, specifications, operating controls and indicators.

1.2. PURPOSE OF EQUIPMENT

The AUSTRON Model 1250A Frequency Standard is designed to perform as a secondary standard. As such, it generates highstability output frequencies at $5 \mathrm{MHz}, 1 \mathrm{MHz}$ and 100 kHz . The AUSTRON Model 1258A employs a high-quality, high-temperature bake-out crystal unit which, together with special oscillator circuitry, is mounted in a proportional oven. A high-stability feedback amplifier is used in connection with an automatic gain control (AGC) system to maintain the crystal drive power at the low constant value that is necessary to attain high frequency stability.

The Model 1250A operates from an ac source of $115 / 230$ Vac or 17 Vdc to 35 Vdc . Also incorporated is an internal battery pack which allows the oscillator to operate for ten hours, should primary power fail.

The Model 1250 A utilizes high quality silicon semiconductors. Other component parts have been chosen for reliability and long life. In order to facilitate servicing, the Model 1250A has been designed for easy access to all important components.

1.3. MODEL VARIATIONS

The Model 125øA has several variations of the standard unit available.

The following paragraphs list the special options and describe the changes to the standard Model 1250A Crystal Frequency Standard for each of these special options. The following table lists the various special options.

MODEL VARIATIONS (continued)
Table. 1-1: Special Options.

Option $\frac{\text { No. }}{-81}$.
-02

Description
AUSTRON $\mathrm{P} / \mathrm{N} 3 \varnothing 4973 \varnothing 6-1$. Separately buffered, dual outputs to the rear of the unit only.

AUSTRON P/N 30497306-2. Seven separately buffered 1 MHz TTL outputs, one on the front and six on the rear. No 100 kHz outputs.
1.4. DESCRIPTION OF CHANGES FOR SPECIAL OPTIONS

Special option $-\varnothing 1$, separately buffered dual outputs on the rear of the unit only.

For this option, the front panel outputs 5 MHz (J3), 1 MHz (J4), $1 \varnothing 0 \mathrm{kHz}$ (J5) and output filter, A6, are moved to the rear panel and mounted under the existing matching outputs. A separate output amplifier PCB, A8, is added for these outputs. Output amplifier, A8, is identical to output amplifier, $A 5$, and these inputs are wired in parallel.

Special option - 02, seven separately buffered 1 MHz TTL outputs, one on the front and six on the rear. The 100 kHz outputs have been deleted.

For this option, connections to the 100 kHz output amplifier section of 1A1A5 are not connected. Pulse amplifier PCBs $\mathrm{P} / \mathrm{N} 10394595$ (A8) and P/N 10394595-3 (A9) have been added. The timing components have been changed to give approximately 500 ns pulse.

The Interconnect schematic, Figure 1-1, Pulse Amplifier schematic, Figure 1-2, and Pulse Amplifier PCB Assembly, Figure 1-3, are furnished as maintenance aids.

The Pulse Amplifier PCB contains four identical pulse shapers and line drivers.

IC (U1) is a one-shot multivibrator which accepts a TTL signal from the Sine Converter PCB. The output of the one-shot is a pulse of fixed duration, determined by R2 and C6. Q1, Q2 and Q3 form a line driver capable of delivering a 5 volt pulse to a 50 ohm load.

Only the required circuits will be connected.

DESCRIPTION OF CHANGES FOR SPECIAL OPTIONS (continued)
The pulse amplifiers, $A 8$ and A9, have the following component changes.

C6, C11, C16, C21
C7, C8, C12, C13, C17, C18, C22, C23

CR2, CR4, CR6, CR8
R2, R1®, R24, R32
R4, R12, R20, R28
R8, R16, R24, R32
Q1 through Q12

FROM TO
$1000 \mathrm{pF} \quad 100 \mathrm{pF}$

470 pF DELETE
1N5235A \quad 1N4734A
$2.2 \mathrm{k} 18 \% \quad 7.15 \mathrm{k} \quad 1 \%$
$6.8 \mathrm{k} 10 \% \quad 2.2 \mathrm{k} \quad 10 \%$
$3.3 \mathrm{k} \quad 18 \% \quad 39$ ohms 18%
2N3904 MPS3646

∞
\leftarrow

FOR PART No.	USE CIRCUIT
10394595	ALL
$10394595-1$	'A"
$10394595-2$	$A^{\prime} \dot{*} B^{\prime}$
$10394595-3$	$A, B \dot{B}$

REVISIONS		
ZONELTR	DESCRIPTION	DATE
A	Redrawn to ado dash Nor. Pep Eco llb4	12.10.7
B	ECO 1192: ADDED NDTE 2	1.6 .72
C	CR2,4,6乡8 TrPE No. WAS 1N5235; ECO*1657	3-15.7
D	703 SN59I2J WAS 703 SN54I2IN PER $\text { ECO } 2090$	10.14.7
E	REVISED PARTIS LIST PER ECO 2891	4.16 .7
F	ADDED NOTE 3 PER ECO. 3215	12.17.75
G	REVISED P/L PEA ECO. 3556	2-11-

1.5. SPECIFICATIONS OF EQUIPMENT

The Model 1250A Crystal Frequency Standard consists of a Model 1150 Crystal Oscillator, dividers and output amplifiers which are powered by a supply which has a voltage regulator and standby batteries. The following table provides specific information on the Model 1250A.

CAUTION

The Model 1150 Oscillator is a sealed unit and as such is not repairable. Any attempt to open this unit voids the warrant. Send to factory for repair or replacement.

Table. 1-2: Model 1250A Specifications.

Physical Specifications

Height	3.5 in
Width	17 in (19 in with furnished rack mount adapters)
Depth	11.68 in behind the rack panel,
Weight	20 lbs 12 oz
Output terminals	$5 \mathrm{MHz}, 1 \mathrm{MHz}$ and 100 kHz front and rear BNC type. Clock and external

Electrical Specifications

Input voltage

Standby
Battery recharge
$115 / 230$ Vac ± 10 percent, 48 Hz to 420 Hz .17 Vdc to 35 Vdc negative ground. 12 W maximum. Internal Nicad battery pack provides ten hours of standby power at $25^{\circ} \mathrm{C}$. 14 to 16 hours.

Operating Specifications
Output frequency $\quad 5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$ and 1 MHz clock drive sinusoidal.
Output voltage $\quad \geq 1$ rms into 50 ohms, clock
Alarm output Contact closure on primary failure.
Contacts rated 5a, 120 Vac.
Frequency
Adjustments Fine Adjustments
Coarse Adjustment ≥ 300 X 10 to the $-9 t h$.
External Adjustment $\geq 5 \mathrm{X} 10$ to the -8 th with 5 Vdc to -5 Vdc applied.

SPECIFICATIONS OF EQUIPMENT (continued)

Stability:

Long term

Medium term
Short term
Retrace

Ambient
Load
Supply

Harmonic
distortion
Non-harmonically
related outputs
Storage
temperature
Operating
temperature
Humidity

1.6. CONTROLS, INDICATORS AND CONNECTORS

Figure 1-1 shows all panel controls, indicators and connectors for the Model 1250A. Specific information is provided in the following tables.

Table. 1-3: Model 1250A Front Panel.

REFERENCE
M1

S5

DESCRIPTION
Circuit test meter

FUNCTION
Displays relative operation of circuit selected by circuit test switch.

Selects battery voltage, regulated voltage, oven current, 5 MHz amp drive, 1 MHz amp drive, 100 kHz amp drive on a relative scale.

CONTROLS, INDICATORS AND CONNECTORS (continued)

REFERNCE
R3

A3

S3

DS2

S4

DS3

DS1

J3
J4
J5

DESCRIPTION
Fine frequency adjustment

FUNCTION
A 5000 division dial which reads frequency in parts $X 10$ to the -10 th the range is approximately 000.0 X 10 to the -10 th to 999.9×10 to the -10 th .

Removal of the seal screw allows access to the adjustment capacitor which has a total range of $\geq 300 \times 10$ to the -9th. (Use AUSTRON tool number Ø2096ø81.)

In the down position the internal batteries are on trickle charge and in the up position on high charge.

Is lighted when the internal batteries are on high charge.

Momentary switch that disables STBY after ac power is applied. The RESET position may be up or down but the switch moves only to the RESET position and returns to NORMAL when released.

Indicates that the primary ac has failed at some time.

Indicates the presence of primary ac.

5 MHz output port.
1 MHz output port.
100 kHz output port.

CONTROLS, INDICATORS AND CONNECTORS (continued)
Table. 1-4: Model 1250A Rear Panel.

REFERENCE
J6
J7
J8
J9

J10

XF2

XF1

XF3

S2

J2

S1

J 1

DESCRIPTION
(BNC) 5 MHZ
(BNC) 1 MHZ
(BNC) 100 KHZ
(BNC) CLOCK OUTPUT
(BNC) TUNING VOLTAGE

BATT

AC

DC

ON / POWER

EXT POWER
ALARM
$115 / 23 \varnothing$

POWER

FUNCTION

5 MHz output port.
1 MHz output port.
100 kHz output port.
A 1 MHz sine at ≥ 0.5 Vrms into 1 kilohm.

Input port that accepts dc voltage in range of ± 5 Vdc to adjust the frequency a total of ≥ 5 X 10 to the -8 th .

1 A Slo-Blo fuse which protects the battery pack.

1 A Slo-Blo fuse which protects the power transformer.

1 A standard fuse which protects the voltage regulator.

3PDT switch connects ac, external dc and internal batteries to the standard.

MS connector accepts 17 Vdc , to 35 Vdc pin A negative ground and pin B positive dc input, pins C and D provide contact closure (5 A, $12 \emptyset$ Vac rating) when primary ac fails.

Select 115 Vac or $23 \varnothing \mathrm{Vac}$ operation.

Input port for primary ac.

2. INSTALLATION

2.1. SCOPE OF SECTION

Section Two describes the steps required to prepare the Model 1250A Crystal Frequency Standard for operation and reshipment to another location. Included in this section are instructions for unpacking, inspection, installing and storing the unit, along with lists of fundamental electrical requirements and accessories.
2.2. UNPACKING AND INSPECTION
2.2.1. Initial Inspection

Immediately report any equipment damage to the carrier making delivery and to AUSTRON, Inc. Inspect internal components and circuits by removing the dust covers. Examine exterior and interior parts carefully.

2.2.2. Circuit Boards

Exercise care when removing or installing circuit boards. The recommended installation procedure is to align the board contacts with the connector, then carefully insert the board as far as it will go.

NOTE
Component side to the right when facing the front panel.

CAUTION
Turn power off before removing or installing boards.

2.3. OPERATIONAL INSTALLATION

The following accessories are received with the Model 1250A.

1. One three conductor power cord for 115 Vac operation.
2. One mating dc and ALARM connector.
3. One cable clamp for MS type connector.
4. Two sets of spare fuses.
5. Two technical manuals.
6. One PCB extender board.
7. One tuning wand.

OPERATIONAL INSTALLATION (continued)

2.3.1. Power Connections

This unit operates on 115 Vac or 230 Vac ± 10 percent, 48 Hz to 440 Hz . Before connecting the power cable to the source, verify switch 1A1S1 is in the correct (115 or 230) position and that 1 Alfl is 1 amp Slo-Blo 3 AG for 115 Vac or 8.5 amp Slo-Blo for 230 Vac .

2.3.2. Cable Connections

With the MS type connector supplied, fabricate a cable to supply the dc standby power. The connectors as as follows:

Pin Connection

	A
SUPPLY	B
	C
ALARM	D

GND
17 Vdc to 35 Vdc
Contact closure
Rated at 5 A 120 Vac

2.3.3. Installation

The Model 1250A is rack-mounted in a standard 19-in rack or bench-mounted on a stable surface, as required. Choose a location away from components producing high temperatures.

2.4. PREPARATION FOR RESHIPMENT

Turn power off. Check to see that mounted components are in place and secure.

CAUTION

If shipment or storage duration of greater than $3 \varnothing$ days or storage temperatures greater than $-40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ is anticipated, the Nicad batteries should be removed by a qualified technician.

For shipping, enclose the unit in a suitable water-and-vapor-proof plastic bag. Heat seal or tape the plastic bag to ensure a moisture-proof closure. When sealing the bag, keep trapped air volume to a minimum.

Ensure shipping container is a rigid box of sufficient size and strength to protect the equipment from damage. The original shipping container and packing material may be reused if it is still in good condition.
3. OPERATING INSTRUCTIONS

3.1. SCOPE OF SECTION

Section Three provides instructions for operating the Model 1250A Crystal Frequency Standard. Included are general descriptions for operation. Please read the following paragraphs before operating the unit.

3.2. NORMAL OPERATION

After installing the unit, place the power switch level, S2, in the ON position (up).

Check the circuit test monitor and verify the following:

1. BATT between $4 \varnothing$ and $6 \varnothing$.
2. REG between 40 and $6 \varnothing$.
3. OVEN less than 10 (oven cold).
4. 5 MHz between 40 and 60 .
5. 1 MHz between 40 and 60 .
6. $1 \varnothing \varnothing \mathrm{kHz}$ between $4 \varnothing$ and $6 \varnothing$.

Check the battery charge switch, S3, by placing the lever in the up position. Note the CHARGE indicator, DS2, lights and battery-voltage indicator moves up scale slightly. Place the battery charge switch in the down position.

Disconnect the ac power cord, W1. Note the standby indicator, DS3, is on and pins C and D on the external power and ALARM indicator, J2, read zero ohms. Reconnect the ac power cord and note that C and D are now open.

The line indicator, DS1, is on. Place the standby reset switch, S4, in the RESET position and release; note the STBY indicator is dark.

Check the battery power-up circuit in the following manner, when the unit under test (UUT) has charged or partially charged internal battery pack. Remove the ac power and the external dc power. Place the power in the OFF position (down). Place the power switch in the ON position (up). Set the circuit test switch, S 5 , to the REG position. Place the standby reset switch, S4, in the RESET position and release. The regulated voltage is present on the meter, M1. Reconnect the ac and dc power.

Verify the output at the $5 \mathrm{MHz}, 1 \mathrm{MHz}$ and 100 kHz ports are present and at least 1 Vrms into $5 \varnothing$ ohms load. Also, check the clock output for $1 \mathrm{MHz} \varnothing .5$ Vrms into a 1 kilohm load.

NORMAL OPERATION (continued)
At this time, allow six hours for the Model 1250A to stabilize.

CAUTION
Do not make any frequency adjustments during this time.

Check the circuit test monitor in the OVEN position and verify it reads between $4 \varnothing$ and $6 \emptyset$. ,Record the values of all monitor positions at this time and save as an indicator of proper operation for future reference.

After stabilization, the frequency may be corrected with the fine frequency control, R3, by comparing the output to a reference source with a phase comparator (AUSTRON Model 1201A) or a frequency meter. Refer to Figure 3-1.

When corrections can no longer be made with the FINE frequency control, return the control to 750 on the dial and remove the COARSE tuning access screw. With the tool provided (82096081), engage the tuning capacitor and set the oscillator on frequency. Allow fifteen minutes for the oven to stabilize. Make the final frequency correction with the fine frequency control.

External frequency adjustment is made in the following manner. Set the FINE frequency control on the front panel to 750 when using ± 5 Vdc applied to the TUNING VOLTAGE input port, J10, on the rear panel.

Other input voltages up to $2 \emptyset \mathrm{~V}$ may be used as long as the algebraic sum of the input voltage and the fine tuning dial reading, read in volts ($\varnothing . \varnothing \varnothing \mathrm{V}$ to 9.99 V), is greater than zero. Because of the non-linearity of various voltage/dial combinations, it is advisable to calculate frequency versus voltage curves to determine the gain constant for various servo loop applications.

Batteries should be charged for sixteen hours after they have been depleted to the point that the cut-out circuit on A2 has disconnected them.

Figure 3-1: Phase Comparison.
4.1. SCOPE OF SECTION

Section Four details the theory of operation of the Model 1250A Crystal Frequency Standard. Included are block diagrams, schematics, detailed circuit descriptions and assembly drawings.
4.2. CIRCUIT ANALYSIS

The following circuit descriptions detail the functions and purposes used in operating the Model 1250A.

4.2.1. Power Supply

The Model 1250A power supply is designed to perform several functions, such as automatic battery switchover, automatic external de switchover, automatic low voltage battery cut-out, ac interruption indication and electrical tuning.

Diode CR1 is used as an external dc switch, when back biased by the bridge input the external dc is cut off. The transistor $Q 1$ is used as a series regulator to supply the load. The reference voltage for Q1 is supplied by the batteries through relay K 1 , which is held closed by $Q 2$ whose bias is furnished by CR3 which along with resistors R1, R2 and R3 detect the battery voltagé.

The gate of the SCR CR3 is fired by the ac cut-out relay; this lights the standby lamp until the reset is pressed.

Components C2, R7, R8 and R9 form a linearizing circuit for the oscillator varicap.

Resistors R1ø and R11 are used for voltage monitoring.

4.2.2. AUSTRON Model 1150 Oscillator

The AUSTRON Model $115 \emptyset$ Oscillator employs a highquality, high temperature bake-out crystal unit which, together with special oscillator circuitry, is mounted in a proportional oven. A high-stability feedback amplifier is used in connection with an automatic gain control (AGC) system to maintain the crystal drive power at the low constant value that is necessary to attain high frequency stability.

The Model 1150 Oscillator is a sealed unit and as such is not field repairable. Any attempt to open this unit voids the warranty. Send to the factory for repair or replacement.

4.2.3. Sine Converter

The sine converter PCB contains a 5 MHz clipper, 5 MHz buffer gate, a divide-by-five stage, a decade divider and two sine converter buffer amplifiers.

The 5 MHz sine wave from the internal oscillator is supplied through isolating resistor R2 and coupling capacitor C1 to the input of a two-stage direct coupled amplifier made up of Q1 and Q2. The output of this amplifier is a 5 MHz pulse which has the proper characteristics to drive (U1B), (U1C), (U1D) which comprise a 5 MHz buffer gate. The output of (U1C) is a 5 MHz TTL signal which is supplied to (U2).

IC (U2) is a divide-by-five stage which produces a 1 MHz TTL output from the 5 MHz TTL input. The 1 MHz TTL output from (U2) is fed through a low pass filter R9, C6, to the base of a collector tuned RF amplifier. The resulting 1 MHz sine wave at the secondary of $T 1$ is used to drive the 1 MHz output buffer.

IC (U3) is a decade divider which produces a 100 kHz TTL output from a 1 MHz TTL input supplied from (U2). The 100 kHz TTL signal is fed through a low pass filter R8 and C5 to the base of Q4, a collector-tuned output amplifier. The 100 kHz signal present at the secondary of $T 2$ is used to drive the $1 \varnothing 0 \mathrm{kHz}$ output buffer.

4.2.4. Output Amplifiers

The output amplifier PCB contains three similar amplifiers which operate in a like manner. For example, we will discuss the 5 Mhz amplifier.

Components R1, CR1 and C1 form a monitoring circuit to check the input to the amplifier. Crystal Y1 in an input filter with R2 as its load. The transistors Q1 and Q2 form a two-stage common emitter, collector-tuned amplifier with negative feedback. The feedback ratio is determined by $R 7$ and $R 6$. These amplifiers have been designed to allow a minimum level change for a maximum load change.

2		1		
REVISIONS				
ZONE		DESCRIPTION	DATE	F
	-	RELEASED	3.23 .7	${ }_{\sim}^{\prime}$
	A	Reviser Picture To Asies With Screen Cinuses PEE ECO * 1432	5-に・7	
	B	ECO 1518:C10 WAS 470; ADDED 150Ω RES ACROSS Y2	1328:	
	C	ECO 22IO: IDENTIFIED WINDINGS ON TI. T $2, \& T 3$; ADDED VALUES TO Y। \& Y 2	2.1373	
	D	EEVSEL CANTS LIST UEE ECO. 2900,	4 16.7	
	E	REVISEE PARTS LIST \& SCREEN ECO 302	12-17-7?	i
	F	LOESD NOTE FOR T3 FEF E:0 $=480$	($2 \cdot 5 \cdot \delta]$	
	6	PIL REVISED PERECD 798I WRM	102285	6
	H	D/L CHANGE ONLY OT- ECO9343	2.58	$\underline{1}$

NOTE:

WHEN INSTALLING T3, CONNECT
PRIMARY FINISH LEAD WITHOUT

	$\begin{aligned} & \text { QTY } \\ & \text { REQD } \end{aligned}$	$\begin{gathered} \text { ITEM } \\ \text { NO } \end{gathered}$	REF	DES		PART	NO	NOMENCLATURE					
	-1	LIST OF MATERIAL											
		UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES do mot scail orawing						AUSTRON INC					A
		TOLERANCES unless otheawist spicific			ENÄ\|NEEP	14.	$3 \operatorname{minc} x_{0}$	PCBOARD ASSY. OUTPUT AMPLIFIER					
		DEC	FRACT	ANG	CHECKED	BARKER	$\frac{3.2376}{3.17 .76}$						
$25497307 *$	$\frac{1250 \Delta}{\text { USED ON }}$	MATERIAL:						$\begin{gathered} \text { SIZE } \\ 2 \end{gathered}$			10396986		
NEXT ASSY													
APPLICATION								SCALE 1:1				SHEET	1

4.2.5. Chassis Functions

The Model 1250A chassis performs several functions, such as: battery pack mounting, high and low charge, unregulated dc. supply, and oscillator decoupling.

The internal Nicad battery pack is mounted to the inside rear support member. These batteries have a four ampere-hour capacity which powers the Model 1250 A for ter hours at $25^{\circ} \mathrm{C}$. The batteries are the reference for the voltage regulator, A2.

WARNING
Do not operate unit with the batteries removed.

WARNING
Do not short Nicad batteries; high currents are available which will damage tools, wiring and batteries.

The low charge current for the batteries is through R1 and the high charge current through R1 and R2 connected in parallel by switch S3B.

The unregulated de supply is composed of $T 1, C 1$, and bridge A1. The input is selected by $S 1$ for 115 Vac or $23 \varnothing \mathrm{Vac}$.

Choke L1 and capacitor C1 form a decoupling network of the Model 1150 Oscillator.

The relay K1 performs the alarm function; when the primary ac fails, it also fires the standby lamp circuit located on A2.

4.2.6. Output Filters

The two output filters have three LC filters which are tuned at $5 \mathrm{MHz}, 1 \mathrm{MHz}$ and $1 \varnothing \varnothing \mathrm{kHz}$. These filters are mounted on the output $B N C$ connectors on both the front and rear panels.

5. MAINTENANCE

5.1. SCOPE OF SECTION

Section Five provides the technician with the general approach to maintaining the Model 125øA Crystal Frequency Standard. Included are trouble analysis guides and general maintenance procedures. Please review Section Four, Functional Description, for detailed information.

5.2. TROUBLE ANALYSIS GUIDE

The following troubleshooting table provides specific information on symptoms and probable causes.

Table. 5-1: Troubleshooting Table.

Symptom

1. LINE indicator DS1 is dark.
2. CHARGE indicator fails when LINE is lighted.
3. STBY is dark.
4. Battery circuit test reads high.
5. Reg. circuit test reads high.
6. Oven circuit test reads low.
7. 5 MHz circuit test reads low.

Probable Cause

1. $\overline{A C}$ power not available.
2. Power switch not on.
3. Power cord not connected.
4. $23 \varnothing \mathrm{Vac}$ selected when on 115 Vac.
5. Indicator burned out.
6. Indicator burned out.
7. Switch S3 open.
8. Indicator burned out.
9. SCR circuit on A2.
10. Relay K1 bad.
11. Blown F2.
12. Open S2.
13. Battery pack open.
14. Check battery circuit test.
15. Q1 on A2 shorted.
16. K1 on A2 not closed.
17. A3 is in warmup stage.
18. Supply voltage to A3 low.
19. Defective A3.
20. Check output of A3 with A4 and A5 removed; should be 1 Vrms.
21. Check A5 meter circuit.

Troubleshooting Table (continued)
8. $\frac{1 \mathrm{MHz} \text { circuit test }}{}$ reads low.
9. 100 kHz circuit test reads low.
10. 5 MHz output not present. Circuit test meter reads $O K$.
11. 1 MHz output not present. Circuit test meter reads OK.
12. 100 kHz output not present. Circuit test meter reads OK.
13. Clock output not present.
14. Tuning voltage input has no effect.
15. A3 has no output.
16. Cannot adjust coarse frequency.
17. Batteries will not operate unit for 10 hours.

Probable Cause

1. Check output of A4 with A5 removed; should be 1 Vrms.
2. Check A5 meter circuit.
3. Check output of A4 with A5 removed; should be 1 Vrms.
4. Check A5 meter circuit.
5. Check output of A5.
6. Check ${ }^{\text {A6 }}$ or A7.
7. Check output of A5.
8. Check A6 or A7.
9. Check output of A5.
10. Check A6 or A7.
11. Check A4.
12. Check A2.
13. Defective A3.
14. Check supply A2.
15. Remove A4 and A5; if still not present, A3 is defective.
16. Tuning tool broken.
17. Defective A3.
18. Not charged for 16 hours.
19. High charging circuit not delivering 300 to 500 mA .
20. Replace batteries.

5.3. GENERAL MAINTENANCE

Check capacity of Nicad batteries every six months. Deep discharge and recharge for sixteen hours. When batteries do not give required standby capacity, replace them.

No other periodic maintenance is required.

6. PARTS LIST

6.1. SCOPE OF SECTION

Section Seven provides the list of replaceable parts which include the reference designator, the part description, and the part number. For convenience in ordering from local suppliers, the manufacturer's part number and the manufacturer's Federal Identification Code (FIC) are also given where applicable.

6.2. ORDERING REPLACEMENT PARTS

To order replacement parts from AUSTRON, Inc., address the order to:

AUSTRON, Inc.
P. O. Box 14766

Exit 248, N. IH 35
Austin, Texas 78761
Specify for each part, the AUSTRON part number, revision letter, part description, circuit reference designator and the printed circuit board on which the part is located. To order parts not listed in this section, give a complete description of the function of the part and its location in the unit.

Manufacturer part numbers as shown will change occasionally as vendor items are reevaluated or as improved components become available. The equivalent part currently used in production at the time orders are received will be shipped. Where the manufacturer's part number or FIC is missing, any reputable manufacturer's part of the appropriate value, indicated in the description, may be used.

6.3. MODEL PARTS

Refer to the parts list for AUSTRON part numbers for the Model 1250A Crystal Frequency Standard. All screws are standard hardware items.
ASSENRLY FRFQ STE 5, 1MHZ:IONY.HZ WIET
ASSEMRLY NLMAER 30497306
RFFENENCE DESIGNATOR PRFFIX
UUIANTITY 1 Ha
FEF UES PART NESCRIPTION
THidthg TUOL

AIISTRON PART	MFG PART	FIC
02096081		24672
10393765		24672
12797317		24672
25497307		24672
551013-0006	AN3057-6	81352
55110ヶ-(0019	MS3106A-14S-2S	9rant
552001-0019	312001	75915
552nol-n019	312001	75915
552001-0019	$3120 n 1$	75915
552rul-nul9	312001	75915
552001-0019	312001	75915
552002-0010	313001	75415
552002-0010	313001	75915
552002-0010	313001	75915
552002-0010	313001	75915
552007-0010	313001	75915

```
ASSEMHLY FINAL ASSY FRFG STU
ASSFMALY NLMAFR 25497307
R&FERFNCE UESIGNATOR PREFIX I
gUUANTITY l FA
```


PAFG PAKT

551100-7935

CIINNECTIR BNC

24 VDC
HEF DFS

ASSEARLY FC'3 ASSY: DIONE BRIDGF ASSEMRLY NIJMHER 1 O395977
LEFEREISE [IFSIGNATUR PREFIX IAIAI
OIIANTITY 1 EA
REF DES PART RESCPIPTION
AlISTRIN PART
MFG PART
FIC
CK1 GOUPRV 1 A
CR2 GOOPKV IA
CH3 GOOPFV IA
CY4 GOUPRV IA

1114005
1N4OO5
1N4OC5
1N4ON5

81349
81349
81349
81349

ASSEMALY FCB ASSY, POWFR SIIPPIY
ASSFMALY UESIGNATUR PRFFIX IAIAZ GUANTITY 1 EA FART DESCRIPTION
$C 1$
$C 2$
CR 1
CR 2
CR 3
CR 4
$K 1$
$\operatorname{HID} 1$
$H F 2$
$H P 3$

$651102-0102$
$659012-0202$
$651107-0692$
$651107-0472$
$651107-0152$
$651102-0102$
$653 n 01-4751$
$653001-1002$
$653001-4752$
$653001-1503$
$653001-3013$
7 72MJE 3055
7022 1H2218 $50100 n-6261$
$520641-0001$

ヶUTO-UEU9U? $608 \cap 17-0475$
7011114002
$7 \cap 11 N 960 B$ $7 n 2 C 103 Y y$
$554201-n u n 1$
02096034
$50100 n-6261$

PEF DFS
voszt JヨOOW LSI7 Stavd TVONViv

ASSEMBLY SFEC XTAL OSC 1150 (70-RSNEF) ASSENHLY NUMBER 3029583R
KFFFHEPSCE DFSTGNATUR PRFFIX 1A1A3
QUANTITY
1 EA
REF DES PAKT DESCRIPTIUN
AUSTROIN PART
MFG PART
FIC
THIS IJNIT IS SEALEL ANU AS SUCH IS HOT FIEIU RFPAIPARLE. RFTUKN TU FACTURY FOR KFPAIR OR REPLACEMENT.

MANIJAL PARTS LIST MDUFL 1250 A

ASSFMHLY FC ROARE ASSY-OUTPUT FILTFRIAG\&ATI

 LSSF:HRLY MIMBEF. 10397323REFERFHCE LESIGNATOR PREFIX $1 \Delta I A G$ QUANTITV 1 EA

KEF LES	PART DESCRIPTIUN						AlISTRON PART	MFG PART	F1C
Cl	CAP DIP	MICA		no PF	500 V	05\%	603non-0222	TM19-222J	02799
C2	CAD DIP	MICA		00 PF	100 V	05\%	6n3non-0102	CD15FA107Jn3	09023
C3	.018 UF	50V	10 CAP	ILM			607050-0183	7190IAR183K50OAX	01002
LI	SMHL FI	TER	INOUCTUR	4.6UH			75197469		24672
L?	1MH2 FI	LER	INUUCTUR	251JH			75197468		24672
L3	INUIJCTU	, , 100	KHZ FILT				75197467		24672

INDEX

A
AUSTRON Model 1150 Oscillator, 4-7

C
Cable Connections, 2-2
Chassis Functions, 4-19
CIRCUIT ANALYSIS, 4-1
Circuit Boards, 2-1
CONTROLS, INDICATORS AND CONNECTORS, 1-12
D
DESCRIPTION OF CHANGES FOR SPECIAL OPTIONS, 1-2
Dwg. No. 10394595-* Rev G, 1-9
Dwg. No. 10395533 Rev L, 4-5
Dwg. No. 10396025-* Rev S, 4-11
Dwg. No. $1 \varnothing 396986$ Rev H, 4-17
Dwg. No. 12394695 Rev A, 1-7
Dwg. No. 12396096 Rev D, 4-9
DWg. No. 1239610B Rev F, 4-3
Dwg. No. 12397320 Rev A, 4-15
Dwg. No. 12397328 Rev A, 4-23
Dwg. No. 12398452 Rev -, 1-5
Dwg. No. 12497325 Rev -, 4-26
Dwg. No. 12497326 Rev -, 4-21
Dwg. No. 12497327 Rev -, 1-15
Dwg. No. 20197336 Rev A, 4-25
Dwg. No. 25497307-* Rev C, 4-27

F

FUNCTIONAL DESCRIPTION, 4-1

G

GENERAL DESCRIPTION, 1-1
GENERAL MAINTENANCE, 5-2

```
I
Initial Inspection, 2-1
INSTALLATION, 2-1, 2-2
```

M
MAINTENANCE , 5-1
MODEL PARTS, 6-1
MODEL VARIATIONS, 1-1

N
NORMAL OPERATION, 3-1
0
OPERATING INSTRUCTIONS, 3-1
OPERATIONAL INSTALLATION, 2-1
ORDERING REPLACEMENT PARTS, 6-1
Output Amplifiers, 4-13
Output Filters, 4-19

```
P
P/L No. 10395533, 6-7
P/L No. 10395977, 6-6
P/L No. 18396025, 6-9, 6-10
P/L No. 10396986, 6-11, 6-12
P/L No. 10397323, 6-13
P/L No. 20497308, 6-4, 6-5
P/L No. 25497307, 6-3
P/L No. 3@295838, 6-8
P/L No. 30497306, 6-2
PARTS LIST, 6-1
Power Connections, 2-2
Power Supply, 4-1
PREPARATION FOR RESHIPMENT, 2-2
PURPOSE OF EQUIPMENT, 1-1
S
SCOPE OF SECTION, 1-1, 2-1, 3-1, 4-1, 5-1, 6-1
Sine Converter, 4-7
SPECIFICATIONS OF EQUIPMENT, 1-11
T
TROUBLE ANALYSIS GUIDE, 5-1
U
UNPACKING AND INSPECTION, 2-1
```

