SECTION PAGE
I
GENERAL INFORMATION
1-1 INTRODUCTION 1
1-7 WARRANTY 2
1-8 SPECIFICATIONS 3
II INSTALLATION
2-1 ANTENNA INSTALLATION 7
2-3 RACK MOUNTING 7
2-5 INSTRUMENT START-UP 7
III OPERATION
3-1 INTRODUCTION 9
3-3 WWVB LOCK 9
3-6 DISPLAY 9
3-10 HOURS OFFSET 10
3-12 12/24 HOUR CLOCK OPERATION 11
3-15 PROPAGATION DELAY 11
3-19 1 HZ 11
3-21 1 KHZ 13
3-23 IRIG B 13
3-30 SLOW CODE 14
3-35 60 Hz 14
3-39 EXTERNAL OSCILLATOR 14
3-44 IRIG H. 15
3-48 PARALLEL BCD TIME OUTPUT 15
3-59 RS-232 TIME OUTPUT 21
3-62 CONNECTOR AND PIN ASSIGNMENTS 21
3-64 INITIAL SET-UP 21
3-69 SWITCH SELECTABLE SPECIAL FEATURES 23
3-71 INTERFACING THE CLOCK TO USERS SYSTEM 23
3-73 DEFAULT OPERATION 23
3-75 USER COMMANDS OR MODES 24
3-77 RS-232 OPERATION MODES 24
3-109 IEEE-488 OUTPUT 29
3-121 IEEE-488 OPERATION MODES 31
3-144 DAYLIGHT SAVINGS TIME CORRECTION 35
3-150 12/24 V.D.C. SUPPLY 36
IV THEORY OF OPERATION
4-1 BLOCK DIAGRAM 60-DC 37
4-12 R.F. BOARD-ASSEMBLY 86-40 39
4-14 ANALOG BOARD-ASSEMBLY 86-40 39
4-34 DIGITAL BOARD-ASSEMBLY 86-42 44
4-41 DISPLAY BOARD-ASSEMBLY 86-43 46
4-44 POWER SUPPLY-ASSEMBLY 86-52 46
4-48 REMOTE DISPLAY DRIVING (IRIG B) 47
4-52 PARALLEL OUTPUT OPTION 86-44 47

TABLE OF CONTENTS (cont.)

IV THEORY OF OPERATION (cont.)
4-56 RS-232 ASSEMBLY 86-46 48
4-59 IEEE-488 ASSEMBLY 86-47 48
4-62 IRIG H 48
v MAINTENANCE AND TROUBLESHOOTING
5-1 MAINTENANCE 49
5-11 TROUBLESHOOTING 50
5-13 ANTENNA INSTALLATION 51
5-16 POWER SUPPLY 51
5-20 WWVB SIGNAL. 52
5-22 MICROPROCESSOR ASSEMBLY 53
5-24 ANALOG BOARD. 54
5-28 SYMPTOMS AND POSSIBLE CAUSES 55
VI SCHEMATICS AND PARTS LISTS
6-1 SYMBOL DESIGNATION REFERENCE 86-40 58
6-2 PARTS LOCATION-ASSEMBLY 86-40 58
6-3 SCHEMATIC-ASSEMBLY 86-40 59
6-4 PARTS LOCATION-ASSEMBLY 86-41 60
6-5 SCHEMATIC-ASSEMBLY 86-41 61
6-6 SYMBOL DESIGNATION REFERENCE 86-41 62
6-6 SYMBOL DESIGNATION REFERENCE 86-41 63
6-7 PARTS LOCATION-ASSEMBLY 86-42 64
6-8 SYMBOL DESIGNATION REFERENCE 86-42 64
6-9 SCHEMATIC-ASSEMBLY 86-42 65
6-10 SYMBOL DESIGNATION REFERENCE 86-43 66
6-11 PARTS LOCATION-ASSEMBLY 86-43 66
6-12 SCHEMATIC-ASSEMBLY 86-43 67
6-13 PARTS LOCATION-ASSEMBLY 86-44 68
6-14 SYMBOL DESIGNATION REFERENCE 86-44 68
6-15 SCHEMATIC-ASSEMBLY 86-44 69
6-16 PARTS LOCATION-ASSEMBLY 86-46 70
6-17 SYMBOL DESIGNATION REFERENCE 86-46 70
6-18 SCHEMATIC-ASSEMBLY 86-46 71
6-19 SYMBOL DESIGNATION REFERENCE 86-47 72
6-20 PARTS LOCATION-ASSEMBLY 86-47 72
6-21 SCHEMATIC-ASSEMBLY 86-47 73
6-22 PARTS LOCATION-ASSEMBLY 86-48 74
6-23 SYMBOL DESIGNATION REFERENCE 86-48 74
6-24 SCHEMATIC-ASSEMBLY 86-48 75
6-25 PARTS LOCATION-ASSEMBLY 86-52 76
6-26 SYMBOL DESIGNATION REFERENCE 86-52 76
6-27 SCHEMATIC-ASSEMBLY 86-52 77
6-28 PARTS LOCATION-ASSEMBLY 86-53 78
6-29 SYMBOL DESIGNATION REFERENCE 86-53 78
6-30 SCHEMATIC ASSEMBLY 86-53 79
6-31 REAR PANEL ASSEMBLY 220-30 80
6-32 PARTS LIST 220-30 80
6-33 PARTS LIST 221-30 80

TABLE OF CONTENTS (cont.)
VI SCHEMATICS AND PARTS LISTS (cont.)
6-34 SUBCHASSIS ASSEMBLY 221-30.................... 80
6-35 MODEL 60-DC FINAL ASSEMBLY 151-30........... 80A
6-36 PARTS LIST 151-30................................... 80A
VI I ANTENNA INSTALLATION-MODEL A-60LW
7-1 INTRODUCTION... 82
7-3 EQUIPMENT REQUIRED TO INSTALL MODEL $\quad . . .$.
7-4 INSTALLATION PROCEDURE.......................... 82
7-10 TROUBLESHOOTING MODEL A-60LW................... 84
7-13 GENERAL.. 84
7-15 MAINTENANCE.. 85
VIII ANTENNA INSTALLATION-MODEL A-60FS
8-1 INTRODUCTION.. 88
8-4 INSTALLATION... 88
8-8 MAINTENANCE. ... 89
8-13 TROUBLESHOOTING.................................... . . 90
IX WWVB TIME CODE
9-1 INTRODUCTION. .. 93
9-3 CODE AND CARRIER.................................... 93
9-5 MARKER GENERATION..................................... 93
9-7 MARKER ORDER AND GROUPS........................... 94
9-9 INFORMATION SETS.................................... 94
9-12 DIGITAL INFORMATION.................................. 95
x GREAT CIRCLE MAP
10-1 GREAT CIRCLE MAP.................................. 97
XI FIELD INTENSITY-WWVB
11-I MEASURED FIELD INTENSITY........................ 98
XII IRIG B AND IRIG H
12-1 INTRODUCTION... 99
12-4 IRIG CODE FORMAT.................................... 99
12-11 CONTROL FUNCTIONS................................. 100

SECTION I

GENERALINFORMATION

1-2 This manual has been designed and written to provide the owner of the Model 60-DC WWVB Synchronized Clock with all the data and information needed to operate and utilize all its features.

1-3 The information included in this manual is as complete as possible and includes normal maintenance and adjustment data that may be required to facilitate field repair of the unit.

1-4 The Model 60-DC has been designed to receive the National Bureau of Standards radio station WWVB, transmitting on 60 kHz , decode the time information and display time of year on a front panel display. Also available are outputs for supplying the time information to other equipment. The Synchronized Clock in its standard configuration provides a front panel display of days, hours, minutes, and seconds with Eive rear panel BNC connectors with IRIG $\mathrm{B}, 1 \mathrm{~Hz}, 1 \mathrm{kHz}$, Precision 60 Hz , and Slow Code locked to the display. The electrically outputted time (and options if ordered), may be in either Universal Coordinated Time (UTC), more commonly referred to as Greenwich Mean Time (GMT), or in local time. This is done through the proper time zone offset selected by the rear panel thumbwheel switches. The Model 60-DC is shipped to display the time of year in the twenty-four hour format. By simply removing the cover and switching the position of the small switch on the microprocessor circuit board, the unit can be converted to display and output time in the more conventional twelve hour format.

1-5 This instrument has been designed to be completely automatic, only requiring antemna installation and connection of the unit to the power source. Once the instrument is turned on, the microprocessor will lock to the signal from WWVB, decode and display the time. From that point on, the unit will require no further attention and will provide time to an accuracy of $\pm .5 \mathrm{~ms}$, continually updated by and phase locked to the National Bureau of Standards, In the event of loss of signal, the unit will continue operation on its internal crystal time base. If power should fail, upon restoration, the unit will again read the time signals and start displaying the time as transmitted by WWVB.

1-6 The Synchronized Clock is guaranteed to operate at any location within 1800 air miles of the transmitter in Boulder, Colorado. The unit can also be expected to operate properly at any location within the Continental United States and other areas over 1800 miles from the transmitter where WWVB's time code can be received. Our experience indicates that the receiver will operate satisfactorily down to signal strengths of $20 \mu \mathrm{v} / \mathrm{m}$, when there is not an otherwise overriding R.F. signal.

WARRANIY

TRUE TIME warrants each instrunent it manufactures to be free from defects in material and workmansinip for a period of one year from the date of delivery to the original purchaser. Under this warranty any instrument which is retumed to us (freight pre-paid) and is found by us to be defective in material or workmanship will be repaired or replaced (at our option) at no charge to the customer and returned freight pre-paid.

Our obligation under this warranty is limited to servioing or adjustment of any instmument retumed. Items not covered by this warranty are: fuses, batteries, and any ilzminated parts or damage caused by accident or physical destruction of the instrument.

This warranty is expressly in lieu of all other obligations or liabilities on the part of TRUE TIME. TRUE TIME neither assumes nor authorizes any other person to asswe for them any other tiability in connection with our sales.

RECEIVER	60 kHz - National Bureau of Standards
FREQUENCY:	Station WWVB.
SENSITIVITY:	$0.5 \pm \mathrm{V}$.
BANDWIDTH:	Effective Signal Bandwidth, code recoveryno interference between successive code bits.
	Effective Noise Bandwidth, code recoveryless than +2 Hz .
	Effective Signal Bandwidth, 1 Hz sync. $- \pm 1 \mathrm{kHz}$.
	Effective Noise Bandwidth, 1 Hz sync. - $\pm 2 \mathrm{~Hz}$.
TIMING ACCURACY:	1) +0.5 ms . of N.B.S. transmitted time, excluding propagation delay. 2) The time difference between neighboring clocks is considerably improved over UTC timing accuracy. Consult the factory for specification and conditions.
TIME BASE STABILITY:	Better than 50μ s when phase locked to WWVB. Other times crystal controlled to $+6 \times 10^{-6}$.
DISPLAY:	㘶" high planar discharge. Displays hours, minutes and seconds. Day-of-Year, optional.
DISFLAY ACCURACY:	50 ms sec. early. Whenever colons are not flashing, display may be from 100 ms sec. to 0ms sec. early.
NOMINAL TURN-ON TIME:	Five minutes from power on and signal reception with 90% confidence under average signal conditions.
OPERATING TEMP:	0° to $50^{\circ} \mathrm{C}$.
REAR PANEL OUTPUTS:	
1 Hz :	Rising edge on time, drives ten TTL loads or CMOS. High 10%, Low 90%. See Section 3-19.
IkHz:	Rising edge on time, drives two TTL loads or CMOS. High 10%, Low 90%. See Section 3-21.

DRIVING（IRIG B）：IRIG B Time Code is provided on a rear panel BNC connector．Standard IRIG B Time Code is an amplitude modulated 1 kHz carrier．This output can also be easily field converted to TTL compatable D．G． level shift time code．See Section 3－23．

SLOW CODE：
$60 \mathrm{HZ}: \quad$ Provided on BNC connector as frequency source to drive a synchronous motor through a power amplifier．Capable of sourcing 100 ata at 2.4 V and sinking 1.6 MA at ． 4 V ．（TTL Load）．The output square wave has an unusual duty cycle．The 60 Hz is a 50% duty cycle over 50 ms （ 3 cycles）．

Cycle \＃1	High 9ms，Low 8ms
Cycle $⿰ ⿰ 三 丨 ⿰ 丨 三$	

See Section 3－35．
EXTERNAL
OSCILLATOR（OPT．）Input level of less than 4 V and greater than 2.4 volts（TTL）sine wave or square wave is required．Any frequency from 100 kHz to 10 MHz in multiples of 100 kHz is sa－ tisfactory．No unit adjustment is needed regardless of frequency．Used as clock timebase when not phase locked to WWVB． See Section 3－39．

IRIG H（ OPTION）：BNC output of standard IRIG H format TTL DC level shift supplied unless otherwise requested．If lkHz amplitude modulated carrier requested，IRIG B will automatically be supplied in D．C．Level Shift format． See Section 3－44．

PARALLEL BCD
TIME（OPTION）：If ordered，Parallel BCD time of year is provided on rear panel 50 pin＂D＂connector． Days，hours，minutes，seconds and milli－ seconds are provided．Lines indicating worst－case time error of $+1,+5, \pm 50$ and +500 ms drives 2 standard＂TTL＂loāds or ＂CMOS＂．See Section 3－48．

RS-232 (OPTION):	The displayed time of year is outputted in EIA Standard RS-232C configuration via a "Motorola ACIA". Output format is D D D H H M M S S and an indicator of the time quality, CR/LF. Baud Rate and "ACIA" options are dip switch selectable. See Section 3-59.
IEEE-488 (OPTION)	IEEE Buss interface is also available. The time is outputted in ASCII format, with the most significant digit first (100 's of days). Among operating modes is time on demand to the millisecond level, or marked time to the milliseconds level. See Section 3-96.
HOURS OFFSET:	Rear panel thumbwheel switch allows subtraction of " 0 " to "ll" hours from transmitted UIC time. See Section 3-10.
12/24 HOUR OPERATION:	Dip Switch Located inside unit allows use as 12 hour clock in place of 24 hour format as shipped. See Section 3-12.
SIZE:	$1-3 / 4^{\prime \prime} \times 17^{\prime \prime} \times 10^{\prime \prime} \text { ' }(4.4 \times 43.2 \times 26.7 \mathrm{~cm})$ behind panel. Mounts in standard 19" (48.9cm) EIA rack system, hardware included. $24^{\prime \prime}$ (60.9) hardware available.
WEIGHT :	$7 \frac{1}{4} \mathrm{lbs}$. (3.5 kg) Ship Wt. $12 \mathrm{lbs}$. (5.4 kg) .
POWER:	$95-135 \mathrm{VAC}, 60-400 \mathrm{~Hz}$, less than 25 volt amps Others available on request.

FIGURE 1-2 MODEL 60-DC DIMENSIONS

SECTION II

INSTALLATION

2-1 ANTENNA INSTALLATION

2-2 The Model 60-DC Synchronized Clock is shipped ready for operation and will require no adjustments. The first step in set-up and operation of the unit is to install the antenna. If the unit has been ordered with either the Model A $-60 F S$ or the Model $A-60 L W$ antenna manufactured by True Time Instrument Company, refer to the appropriate section of this manual for their installation instructions. Leadin cable such as 50 ohm RG58/U is recommended. This coax is available through True Time Instrument Company in 50 and 100 foot lengths.

2-3 RACK MOUNTING
2-4 If it is desired to mount the Model 60-DC in a standard $19^{\prime \prime}$ rack system, the user can use the rack mounting ears provided with the unit. These ears may be attached to the side of the cabinet by removing the two 8-32 flat head screws on one side of the instrument and placing the screws through the counter-sunk hole in the bracket and reinstalling the screw. The unit now may be mounted in a 1-3/4" opening in any EIA Standard 19" rack system.

2-5 INSTRUMENT START-UP
2-6 After the antenna installation is complete as described in Section 2-2 above, the lead-in coax should be connected to the rear panel BNC connector labeled "ANTENNA". Connect the power cord to the socket on the rear panel and plug the unit into an appropriate power source. The power switch on the front panel may now be turned on.

2-7 Initial indication of proper operation will be the colons, which will cone on, blink off and then stay on.
After 30 to 45 seconds the "WWVB LOCK" LED on the front panel should light, indicating reception of the signal from WWVB and within five minutes the display should light indicating the proper time. Detailed explanation of each feature of the Model $60-\mathrm{DC}$ is more fully described in Section III of this manual.

2-8 One of the most often overlooked and yet most important factors in the installation and operation of the

Model-DC is proper installation of the antenna. Without a proper antenna installation, the signal from the transmitter will not be received and thus the unit cannot possibly function properly. In many cases "just to try it out", (when the A-60FS antenna is ordered) an attempt will be made' to operate the unit with the antenna inside of a building. This, as often as not, results in inability to phase lock to the signal. In some cases phase lock may be obtained, but the low signal level in these cases will be too low for the unit to read the time code information. Thus, the display will not light or will require extremely long periods of time to read two time frames properly and to turn on the digital display. If it is desired to wiew the received WWVB signal on an oscilloscope, refer to Section 5-21.

OPERATION

3-1
 INTRODUCTION

3-2
The Model 60-DC WWVB Synchronized Clock provides the user with a means of obtaining time traceable to the U.S. National Bureau of Standards with an accuracy of +.5ms. For stability the time base is phase-locked to the carrier of WWVB, which is transmitted to an accuracy of a few parts in 0^{-12}. The time-of-year information broadcast by WWVB is displayed in day-of-year, hours, minutes and seconds on the front panel. Also, available are outputs of this time information in the form of IRIG H, Parallel BCD, RS-232 compatible interface, or IEEE-488 compatibility. The Model $60-\mathrm{DC}$ has been specifically designed to minimize operator set-up and will provide many years of service without attention.

3-3 WWVB LOCK
3-4 Located on the left hand lower corner of the front panel is a LED labeled "WWVB LOCK". This green LED will light any time the unit is receiving sufficient signal from WWVB to allow the internal time base to phase lock to the carier frequency of 60 kHz . When the unit is initially turned on, if adequate signal is present, this LED will light within 30 to 45 seconds. If during the course of operation phase lock with the transmitter is lost for over 16 seconds this light will go out. If phase lock is lost for extended periods of time, due to the long time constant of the phase lock loop, it will take somewhat longer than 45 seconds to re-acquire phase lock when reception is regained.

3-5 Phase lock will be maintained continually in most areas and the only occasion for loss of lock will be short periods of time during the period when the day/night line is between the transmitter in Boulder, Colorado and the location of the receiver. This time is referred to as "diurnam" and can result in the signal level dropping to almost zero and returning to normal levels within a period of less than $1 / 2$ hour. The second possible cause for loss of reception would be a transmitter failure. Although this is a very rare situation, it should be considered if reception cannot be obtained. In SECTION 3-8 to follow, a complete description of display indications of time accuracy, based on phase lock with the WWVB carrier, is explained.

3-6
DISPLAY
3-7 The front panel display of time is blanked when the unit is initially turned on, because the correct time is not known. The time information broadcast by WWVB is a "slow code" having a time frame of one minute. The time information is broadcast in the first 35 seconds of each minute. Requirements
for the display to light are: 1) the unit must obtain phase lock with the carrier of WWVB and, 2) two consecutive minutes of time code must be read which agree as to the time. When these two criteria are met the display will light showing the correct time in days, hours, minutes, and seconds, Coordinated Universal Time (UTC) more commonly referred to as Greenwich Mean Time (GMT). Correction to local time, conversion to a 12 -hour clock in place of the 24 -hour time base as transmitted and correction for propagation delay are covered in the following sections.

3-8 The display has been designed to indicate to the user the accuracy of the time information being displayed and on the time output lines, if ordered. After the display turns on it will indicate the worst case accumulated drift of the time information should phase lock with the transmitter be lost. When the unit has accumulated loss of $10 c k$ for 92 minutes since the last synchronization to $\pm 5 \mathrm{~ms}$., the colons will flash. The flashing colons indicate uhat the estimate of the worst-case error of the display and outputted time is +50ms. of N.B.S. time. When the unit has been in operation for a cumulative 22 hours without phase lock since the last synchronization, the complete display will flash. This flashing is certain to attract the operators attention and indicates that the time as displayed and outputted may have a worst case error of more than $\pm 500 \mathrm{~ms}$. ($1 / 2$ second).

3-9 Display or colon flashing will stop when the signal from WWVB is regained, phase locked to and the time code is read. Under normal operation this will occur without operator attention. It is very unlikely that either of these conditions will occur within reasonable distances from the transmitter. Due to the nature of the unit to phase lock to the carrier frequency down to very low signal levels, persistent flashing of the colons or display may be an indication of poor reception due to local interference or antenna location and/or installation. Refer to Section V "Maintenance and Troubleshooting" for additional information on this subject.

3-10 HOURS OFFSET
3-11 Located on the rear panel is a thumbwheel switch labeled "HOURS OFFSET". This switch is set for "0" at the factory which means the displayed time will be Coordinated Universal Time as broadcast. To change the hours on the display to read local time, set the switch to the number of hours your location is offset from Greenwich, England. For example, if you are located in the Eastern Time Zone and desire to display Local Standard Time, the switch should be set for "S". If, in this case, the display was indicating 1800 UTC, the clock would subtract 5 hours and display 1300 hours for Local Standard Time. If the unit has been ordered with electrically outputted time (Parallel BCD, RS-232, IEEE-488), these outputs will agree with the display. Additional information on these outputs is included in the following sections. See SECTION 3-144 for Daylight Savings Time information.

The Model $60-\mathrm{DC}$ is shipped from the factory for operation on the 24 -hour clock system as broadcast by the National Bureau of Standards. If it is desired to convert the clock to a 12-hour clock display, a small internal switch can be turned.

3-14 To convert a clock to the l2-hour format refer to Figure 3-1 on the following page. Remove the four screws retaining the lid and slide the $12 / 24$ hour select switch to the $12-$ hour position. Replace the cover and reinstall the screws.

3-15 PROPAGATION DELAY

3-16 This feature is included with the Model 60-DC to allow the microprocessor to compensate for the delay in the displayed and outputted time and timing marks due to the time required for the signal to travel to the receiver from the transmitter.

3-17 This feature consists of two switches on the Digital Board Assembly. To adjust these switches, first remove the four screws which hold the top cover in place, remove the lid and set it aside. Refer to Figure 3-1 for identification of the "Propagation Delay Switches". The two switches can be combined to provide for a total of 99 ms , propagation delay for the unit. The switch toward the rear panel provides 0 to 9 ms . and the switch toward the front adds to this in steps of ten from 0 to 90 ms . Therefore, if it is desired to compensate for 19 ms . propagation delay, the front switch would be turned to (for 10 ms) and the rear switch to 9 (for 9 ms).

3-18
To calculate the delay in the signal to your location, first determine the number of air line miles from the transmitter location (Ft. Collins, Colorado) to the receiver's location and divide that number by 186 . The resulting number will be the number of milliseconds delay in the signal from the transmitting antenna to your antenna. For example, if your location is 1350 (air) miles from the transmitter the signal will require:

$$
\frac{1350 \text { miles }}{186 \mathrm{miles} / \mathrm{millisecond}} \quad=7.26 \mathrm{~ms}
$$

Rounding off this answer gives 7 milliseconds delay. Therefore, the switch should be set for '7". If it is desired to use the time data to the +0.5 ms . accuracy of the unit, the .26 milliseconds rounded off here should be used in further calculations involving the time data. After the switch has been set, replace the lid and screws thus preventing accidental readjustment of this setting by others.

3-19 $\quad 1 \mathrm{~Hz}$
3-20 The 1 Hz is provided as a rear panel BNC and can be used for a wide variety of timing functions. This output is a pulse going high on the second, remaining high for $100 \mathrm{milli}-$

FIGURE 3-1 PARTS LOCATION - MODEL 60-DC
seconds and going low for the remaining 900 milliseconds. This output is driven from a 2 N3904 (Q3) on the microprocessor board (Assy. 86-42, see SECTIONVI). The collector of Q3 is pulled up to +5VDC with a 3.3 K ohm resistor. This output is taken off of Pin \#3 of assembly $86-42$ and capable of driving 10 TTL loads.

3-21 $\underline{l \mathrm{kHz}}$
3-22 The 1 kHz rear panel output is similar in form to the 1 Hz above. It is a square wave going high on time, remaining high for 100 microseconds and low the remaining 900 microseconds. This output is driven by assembly 86-4l (see SECTION VI). This is then fed to assembly 86-42 in interconnecting wire(s) and to the rear panel from $86-42$ Pin \#17.

3-23 IRIG B
3-24 The primary purpose of the IRIG B time code output is to drive slave displays manufactured by True Time Division. This output consists of the standard IRIG B time code. Refer to SECTION XII for a full description of this code.

3-25 When using this code for other than driving the True Time Model RD-B, it should be noted that four "Control Functions" are used. These control functions encode estimated time accuracy as fully described in SECTION XII. See SECTION 3-52 for information on the derivation of these accuracy indicators.

3-26 This output is supplied on a rear panel BNC connector. When shipped, this output is in a 1 kHz carcier amplitude modulated format but can be field converted to D.C. level shift code format. In addition to driving remote displays, this output can be used to synchronize commercially available Time Code Generators or direct recording on magnetic tape.

3-27 The modulated 1 kHz format is a sine wave driven by op. amp. U22(LM324) in series with 100 ohm (RI06). The high level of the code is 5 volts peak to peak +0.5 v ; the low level is 2 volts peak to peak +0.2v. This output is fed through Sl (the "AM" modulation switch) to the $86-42$ board via Pin \# "P" and to the rear panel from terminal number 18.

3-28 If it is desired to convert the IRIG B time code from the amplitude modulated form as shipped to a level sbift output, it is necessary to remove the lid. See FIGURE 3-1, "IRIG-B TTL/AM Switches". Turn the switch labeled "AM" "OFF" and turn the switch labeled 'TTL" "ON".

3-29 The "TTL" level shifted IRIG code is driven by transistor Q3(3904) and is capable of driving 10 standard TTL inputs. The level shifted signal is fed through S2 ("TTL" modulation switch) to the $86-42$ board via Pin \# " P " and to the rear panel from terminal number 18. Note that $S l$ and $S l$ should not be closed simultaneously.

3-31 The "Slow Code" output from the Model 60-DC has been provided primarily for the purpose of providing timing marks on drum recorders such as the Kinemetrics Inc. Model VR-1. This output is a single line which goes high once per minute. On minute marks the output remains high for two seconds, on hour marks the line is held high for 4 seconds and for the day mark, a six second high is provided.

3-32 This output is driven by Q1 on assembly 86-42. This is a MPS3702 transistor and will source 40 ma. at 4.0VDC. This drive is provided from Pin \#2 on the assembly 86-42 through a wire to the rear panel BNC.

3-33 A second format of this slow code is provided and can be easily field converted. If the wire from Pin \#2 of assembly $86-42$ is connected to Pin \#l on the assembly, the complement of Pin \#2 described above is provided. (See Fígure 3-1, "Slow Code Pin 1 and Pin $2^{\prime \prime}$). Pin \#1 output is driven by Q2 (2N3904) with approximately 6 K ohm pull up to 5VDC. This will drive 2 TTL loads. When wired in this manner, the output on the rear panel BNC will be normally high. On the minute it will go low 2 seconds, 4 seconds on the hour and 6 seconds for a day indicator.

3-34 NOTE: If "External Oscillator" option is ordered in conjunction with Parallel BCD, RS-232 or IEEE-488 output options, the "Slow Code" output is not on a rear panel connector but the user is free to lift the lid and obtain this output from Pin \#l or \#2 of assembly 86-42 for use.
$3-35 \quad 60 \mathrm{~Hz}$
3-36 The precision 60 Hz output on the rear panel BNC has been provided primarily for the purpose of supplying a known 60 Hz signal to drive synchronous motors. This output, when supplied through a power amplifier such as the Kinemetrics Model PAl, will provide a constant 60 Hz signal for driving drum recorders independent of local power line variations.

3-37 A quasi-square wave is provided for this purpose with transitions on exact milliseconds. The half cycle periods are $8 \mathrm{~ms}, 8 \mathrm{~ms}, 9 \mathrm{~ms}, 8 \mathrm{~ms}, 8 \mathrm{~ms}$, and 9 ms , etc., then repeating the pattern. This provides exactly a 60 Hz square wave after the average of three cycles.

3-38 This output is driven from a 2 N 3904 transistor (Q4) on the microprocessor board (Assembly 86-42 see SECTION VI). The output is from the 86-42 assembly, via the terminal labeled " 60 Hz " and wired to the rear panel connector. This output is capable of driving 10 TTL loads.

3-39 EXTERNAL OSCILLATOR (Special Order Option)
3-40 If optionally ordered, this rear panel input provides
for a local lab standard type of oscillator to be utilized as a clock time base during periods when phase lock with WWVB is lost.

3-4i The input frequency for this option may be anywhere between 100 kHz and 10 MHz in increments of 100 kHz . The signal can be a sine wave or square wave with the low level less than 0.4 V and the peak greater than 2.4 (TTL). This input is presented from the rear panel BNC through a coax to the input of U_{1} (74LS90), which has a 10 K ohm pull up to +5 VDC . This input therefore is one TTL load.

3-42 Operationally, any time the Model 60-DC is unable to phase lock to the 60 kHz carriet of WWVB, the clock time base will utilize the provided input in the "External Oscillator" BNC connector. If a reference frequency is not provided on this BNC, the $60-\mathrm{DC}$ will continue to operate on its own internal crystal.

3-43 When the situation arises that lock to WWVB is lost, even if a cesium oscillator is used for the external oscillator, the indications of time drift continue. Therefore, the colons on the display and whole display will blank and flash in the usual manner to indicate loss of WWVB reception even in case of a "perfect" external time base. The output time ercor message in IRIG B, Parallel BCD, RS-232 and IEEE-488 also function to indicate loss of accuracy.

3-44 IRIG H (Special Order Option)
3-45 When ordered, IRIG H is provided on a rear panel BNC. If this is ordered in conjunction with Parallel BCD or RS-232 or IEEE-488, the 1 Hz described in SECTION 3-19 is deleted in favor of this output. The 1 Hz is available on assembly $86-42$ as described but is not on a rear panel connector. The user can easily open the lid and obtain this 1 Hz if desired.

3-46 The format of the IRIG H time code is covered in SECTION XII.

3-47 As shipped from the factory, the IRIGH code is in D.C. level shift format. This output is provided through a 2N3904 (on Assembly 86-42) with a 3.3 K ohm pull up to +5 VDC . On request, this output can be supplied as a 1 kHz amplitude modulated carrier. In this case, the IRIG B will be supplied as DC level shift. (See SECTION 3-23) The 1 kHz generation and modulation system, originally used for the IRIGB, will then be used for the IRIG H, thus providing a 1 kHz carrier amplitude modulated in IRIG H format as described in SECTION 3-23.

3-48 PARALLEL BCD TIME OUTPUT (Special Order Option)
3-49 The Parallel BCD Time Output option is designed to synchronize other equipment at the time provided by the National Bureau of Standards. This output consists of 42 lines of BCD data from loo's of days to units of milliseconds as shown in Figure 3-2. Also included with this option are four lines to
indicate the worst case error on the time outputted. Each of four lines indicate errors in excess of: $+500 \mathrm{~ms},+50 \mathrm{~ms},+5 \mathrm{~ms}$ and +1 ms respectively. Hz and 1 kHz lines $\vec{a} \mathrm{a} e$ available $\overline{o n}$ the output connector which can be used to indicate to the user when the BCD time data on the lines are changing states. If this option is included, a 50 Pin ' D " connector has been installed on the rear panel.

3-50 All of the 42 BCD lines are driven by \#CD4050B's powered by 5 volts and are capable of driving two tTl loads or multiple CMOS loads. These lines are high to indicate a one in that position in the BCD code. For further information regarding the output of these lines and their capabilities, refer to SECTION VI.

3-5l The pin of each output is shown in Figure 3-2 on the following page.

3-52 During normal operation, after start-up and syncbronization with the WWVB, the four time quality lines will be in a low state. When phase lock with the transmitter is lost, the Model $60-\mathrm{DC}$ will provide the user with a worst-case estimate of the accumulated clock drift based on the VCXO drift rate. This estimate is provided by each of the four lines changing to the high state in turn as the clock time base drifts from synchronization with N.B.S. Below is a table which shows the pin \#, the worst case error when this line is high, and the duration of loss of lock with the transmitter required for the line to change to the high state.

PIN \# EXPECTED ERROR
PERIOD WITHOUT LOCK
50
14
15
+1.0 MS .
8 MINUTES
22 MINUTES
92 MINUTES
17
$\pm 5.0 \mathrm{MS}$. $\mp 50.0 \mathrm{MS}$. ¥500.0 MS.(1/2 SEC.)

22 HOURS
Each of these lines is driven by a RCA \#CD4050 and is capable of driving two TTL loads or multiple CMOS loads. It will be noted that when the +50 ms line goes high, the colons on the display will flash and when the +500 ms line goes high, the complete display will flash.

3-53 When phase lock is regained, the 1 ines will again go low as the unit re-corrects to the proper time. On initial turnon of the instrument or after a power failure, the $\pm 500 \mathrm{~ms}$ line will remain in the high state until the display isturned on, thus indicating that the time on the parallel output lines is not correct to the accuracy indicated by the other lines, regardless of their state. This line can therefore be used as a read inhibit line since the data should not be read when this line is in the high state. Refer to the 1 Hz and 1 kHz description below for additional parameters on reading the time of the Parallel Output option.

3-54 The 1 Hz output line on Pin \#16 is driven by a \#CD4050B and is capable of driving two TTL loads or multiple CMOS loads. This line goes to the high state on time and remains high for 900ms. At any time the 1 Hz line is high, the data on the parallel output lines from the seconds level up is not changing states and is available for reading.

3-55 If it is desired to read the milliseconds lines as well as the seconds through days, the kHz line should be utilized as an indicator that the lines are not changing states. The 800's of milliseconds down to l's of milliseconds are driven by synchronous counters and may be changing states during the first 1/2 microsecond of any millisecond.

3-56 The 1 kHz line is driven by a $\#$ CD4049 B and is capable of driving two TTL loads or multiple CMOS loads. The 1 kHz output can provide information to the user in two formats. The first format is as shipped from the factory. The second output format can be converted to in the field by two simple internal modifications.

3-57 As supplied from the factory, the 1 kHz output on Pin \#9 of the " D " connector goes high on the millisecond for 100 microseconds and then goes low for the remaining 900 microseconds. Since the state of the Parallel Output Time data may be changing state during the first $1 / 2$ microsecond of any millisecond, the transition from the low to the high state has been delayed to allow the milliseconds counter to stabilize. The rising edge of the 1 kHz signal may be used as a Data Strobe. If, tather than one point in time, a time period of when it is "OK" to read is desired, the time period starting at the rise in level of the 1 kHz line and continuing for the next $100 \mathrm{micro-}$ seconds can be used. This 1 kHz line should be used in conjunction with the +500 ms line as described above to determine if the time data is correct and readable.

3-58 The second format for the 1 kHz output line will provide an output which will go to the high state approximately 3.0 microseconds before the millesecond and low 2 microseconds later. This line will not go to the low state if the estimated time error of the instrument is worse than +500 ms and will also stay in the high state after initial turn-on until the data on the parallel output lines are correct. This line, therefore, provides one line which, when in the low state indicates that the time data is "OK" to read. To convert the Model 60-DC to this configuration on the 1 kHz line, remove the bottom cover of the instrument and locate assembly 86-44. For identification of this Assembly and its parts, see Figure $3-4$ of this manual. Locate che jumper wires (looks like a $1 / 4$ watt resistor with one black band) labeled JPR3. Unsolder the end connected to the hole labeled "A" and solder it into the hold labeled "B". Unsolder the jumper marked JPR2 and remove it from the board. In the place of JPR2, solder in a 33 k ohm resistor ($1 / 4$ watt $+5 \%$ carbon resistor preferred). Replace the cover and the screws, the conversion is now complete.

```
FIRST FORMAT (AS SHIPPED FROM FACTORY)
```


SECOND FORMAT (FIELD INSTALLABLE OPTION)

FIGURE 3-3 MILLISECOND COUNTER TIMING DIAGRAM 1 kHz SIGNAL SHOWN (PIN \#9 OF OUTPUT CONNECTOR)

FIGURE 3-4 PARTS LOCATION - PARALLEL BCD OUTPUT OPTION

3-60 The RS-232 Time Output option is an additional cost option for the True Time Synchronized Clocks. This option provides time communication to the user via a bi-directional asynchronous RS-232 port. This time information provides National Bureau of Standards Time of Year as well as other information to the user.

3-61 The output is compatible electrically and mechanically with the EIA Standard RS-232C as described for a data terminal.

3-62 CONNECTOR AND PIN ASSIGNMENTS
3-63 The output connector mounted on the rear panel of the unit providing the interface with external data processing equipment is a "TRW" Part Number "DC-25P" or equivalent. The individual connections are:

PIN \#	DESCRIPTION
1	Chassis Ground
2	Transmitted Data (uo user)
3	Received Data (from user)
4	*Request to send (internally connected to \#5)
5	*Clear to send (internally connected to \#4)
6	Not Used
7	Signal Ground
$8-24$	Not Used
25	*IRIG B (See SECTION 3-23)

* These are non-standard connections which are none the less compatible with most data terminal equipment.

3-64 INITIAL SET-UP
3-65 As shipped from the factory the unit is set for: BAUD RAUE: 300
PARITY: ODD
STOP BITS: ONE
If it is desired to set these parameters to others, remove the four screws retaining the bottom cover and lift off the bottom lid.

3-66 The RS-232 output circuit (assembly 86-46) is in the center of the unit, see FIGURE 3-5.

3-67 The transmission and reception rates are selected by "BAUD RATE SWITCH S2". One and only one pole of S2 should be set "ON" at any given time. The rates provided are: llo, l50, 300 , $600,1200,2400,4800$ and 9600 baud.

3-68 Positions 3, 4, and 5 of "CONTROL SWITCH Sl" select the number of data bits, number of stop bits and the sense of character parity. The selection is per the following:

S-1 \#3	S-1 \#4	S-1 \#5	OUTPUT FORMAT				
ON	ON	ON	Even Parity + 2	Stop	Bits + 7	Data	Bits
OFF	ON	ON	Odd Parity +-2	Stop	Bits +7	Data	Bits
ON	OFF	ON	Even Parity + 1	Stop	Bit +7	Data	Bits
OFF	OFF	ON	Odd Parity + 1	Stop	Bit +7	Data	Bits
ON	ON	OFF	No Parity Bit 2	Stop	Bits + 7	Data	Bits
OFF	ON	OFF	No Parity Bit 1	Stop	Bit +8	Data	Bits
ON	OFF	OFF	Even Parity + 1	Stop	Bit + 8	Data	Bits
OFF	OFF	OFF	Odd Parity + 1	Stop	Bit +8	Data	Bits

3-69 SWITCH SELECTABLE SPECIAL FEATURES
3-70 Through the "CONTROL SWITCH Sl" positions 1,2,6,7, and 8 the user can select certain special features.

SWITCH Sl
POSITION
1
2
6
7
8

3-71
3-72 1) Select Baud Rate if different from 300.
2) Select number of Data Bits,Stop Bits and sense of Paricy. Set S1 \#3,\#4 and \#5 accordingly.
3) Check mating connector for correct type.
4) Check that transmit and receive connections are consistent with your system. "TRANSMIT DATA", Pin \#2 is from the clock to the user, "RECEIVE DATA", Pin \#3 is from the user to the clock.
5) Set user selectable "SPECIAL FEATURES". See 3-70.

3-73 DEFAULT OPERATION
3-74 When the unit is initially powered-up, the clock will start to transmit Time-of-Year information on the second, according to the settings of $S l$ and $S 2$. The time information is as described in the SECTION 3-79.

3-75 USER COMMANDS OR MODES
3-76 Below is a complete list of the available user "COMMANDS" or "MODES".

MODE	DESCRIPTION
C	CLOCK MODE, this is the default mode.
F	FORMAT MODE, allows re-formatting output message.
M	ALARM CLOCK MODE, provides output at any user selected time.
N	RESET M MODE, resets alarm time as previously set in "M MODE".
R	RESET MODE, resets the unit to the default mode.
T	TIME MODE, transmits time on demand to the user.
U	DUT_{1} MODE, transmits the DUT_{1} as sent by NBS.

3-77 DESCRIPTION OF RS-232 OPERATION MODES
3-78 C MODE - CLOCK MODE
3-79 When the unit is initially turned on, the RS-232 option automatically defaults to $t i e$ once per second output mode, with the following format:

> (SOH) DDD : HH:MM:SSQ(CR) (LF)

Where: DDD are the three digits representing day-of-year.
HH are the two digits representing the hours.
MM are the two digits representing the minute.
SS are the two digits representing the second.
Q is the time quality indicator which may be:
INDICATOR EXPECTED ERROR PERIOD WITHOUT LOCK

(space)	less than 1.0 ms.	0 MINUTES
$\dot{*}$	$\pm 1.0 \mathrm{MS}$.	8 MINUTES
$\#$	$\pm 5.0 \mathrm{MS}$.	22 MINUTES
7	$\pm 50.0 \mathrm{MS}$.	92 MINUTES
$?$	$\pm 500.0 \mathrm{MS} .(1 / 2 \mathrm{SEC})$.	22 HOURS

In this format the (SOH), (CR) and (LF) are ASCII control characters.

See Section 3-52 for information on time quality indicators and duration of loss of lock to obtain each level of indication.

3-80 The synchronization of the NBS Time with the above output message occurs within one bit time of the start of the (CR) character. If greater timing accuracy is desired, it is recommended that the "M" Mode be used. See SECTION 3-88.

3-81 After entry into any other mode described here, this mode can be re-entered by the user sending an ASCII "C" or "R" over the RS-232 interface. If an ASCII ' C ' is used, the format of
the output will be in the default mode unless it has been restructured via the "F" Mode. See SECTION 3-82. Using a "R" will totally "reset" the format to the "default" format.

3-82 F MODE - FORMAT MODE
3-83 If the user desires to change the format of the output message the "F Mode" has been provided. Lets say eliminate the day-of-year, or possibly to add the milliseconds to the output format. This output port has this capability. To enter this mode the user sends an "F" to the clock and the unit is placed in the "FORMAT MODE". The unit then awaits the format string, which consists of a 17 character dummy time message, day-of-year through time quality character. As each of the. 17 characters is received it controls its respective position in the output format. An "X" in any position suppresses the output of its respective position, In the delimiter (where the colons usually are) positions, any character received for that position will be outputted. In the other non-delimiter positions, any character other than an " X " or any of the ASCIl control characters (see SECTION 3-76) allows that position to be outputted as understood by the clock's time system. Be certain not to use a " M " as the character for minutes or the clock will see this as a command to enter the "M MODE". The format for the output message can be selected within the limits of the maximum format described below:

$$
(\mathrm{SOH}) \text { DDD_HH_MM_SS_SSSQ(CR)(LF) }
$$

3-84 Each " " above represents a single delimiter position which can be almost any ASCII character, typically colons, that are desired in the time output format. Once the time format message to the unit has been completed by the entry of these 17 characters, the current time will be sent in the new format as a verification of acceptance for the operator. lt should be noted that the last three "S's" in the string above, which represent the milliseconds, are not available in the "C" mode, even if so formatted. This is due to the fact that the time is sent out on the second thus sub-second timing is not necessary. At any point if a (L.F.) character is sent, it will terminate the input string. [i,e. Fxxxx(LF)will output(SOH) HH:MM:SS.sssQ(CR)(LF)].

3-85 EXAMPLE - F MODE
If the RS- 232 port receives:
F123/12:34:56.789Q
the results will be the output of the current day-ofyear, a "/", the hour, ${ }^{\prime}$ ":", the minutes, a ":", the seconds, a".", the milliseconds and the time quality indicator. This string will be preceded by (SOH) and followed by a (CR) (LF). If the RS- 232 port receives:

FXXXXXXXXXXXXX123X
the results will be the output of only the fractional part of the seconds, preceded by (SOH) and followed by (CR) (LF).

3-87 This mode allows the user to preset a time, in the future, into the unit memory and be notified when this time occurs. An "M" followed by the desired alarm time, presets this time into the memory. The desired time is then echoed and the RS232 output option then waits for that time to occur. When this desired time occurs, an "M"is sent over the RS-232 interface. This "M" can be suppressed by the switch sl position 1 , see SECTION 3-70.

3-88 As a second indication that the alarm time is present, the unit can be converted to pull Pin \#4 of RS-232 connector low during the alarm time. This can be accomplished by referral to FIGURE 3-5. First remove the jumper labeled "JPR2" which connects Pin 4 to Pin 5. Now, Pin \#4 will be held low through the alarm time and high otherwise. This form of time indication is suggested when the user desires the highest possible time precision from the Model $60-\mathrm{DC}$ with the RS-232 output option.

3-89 As in the "F MoDE" described above, when inputting an alarm time, all of the delimiters must be included for place holding. An "X" in any position makes that a "don't care" digit. If a "Line Feed" (LF), is placed in any position, the input is terminated and the successive time digits are set to "0". Other than this case, all 16 time characters must be sent.

3-90 EXAMPLE - M MODE
3-91 If the RS-232 port receives:

$$
\mathrm{M} 185 * 11: 06: 04.387(\mathrm{CR})
$$

The alarm feature of this unit will trip at 11:06:04.387 on the 4th of July and an "M" would be sent out over the RS-232 link. If the Request to Send line had been converted as described in 3.88 above, the Pin \#4 would be held low for that one millisecond. Any mode entered except 'N" will cancel alarm time.

If the RS-232 port receives:
M185*11: XX: XX. XXX
An "M"would be transmitted at eleven o'clock on the 4 th of July and the Request to Send line would stay low for the hour or through 11:59:59.999.

Model 60-DC from the " M " mode, request and receive the NBS Time, and quickly return to the " M " mode.

3-94 R MODE - RESET MODE
3-95 This "RESET MODE" can be used to change the unit back to the initial 'default mode" (C mode) identical to operation when the Model is initially turned on. When a "R" is received, the unit automatically goes to the "default format" thus into the " C " mode, and ignores any format previously given.

3-96 The initial output string after an " R " command is received by the Model $60-D C$ is not reliable either as to the data, time or carriage return. This is due to internal synchronization with the data rate. This is also true when the data rate is changed in the " R " or " C " modes. It is always recommended that following any resetting of the switches Sl or S 2 the unit be powered down and back up, thus assuring a total proper reset of the RS-232 parameters.

3-97 T MODE - TIME MODE
3-98 When a "T" is received, the time as of 9 bits after the center of the start bit of the received 'T" character is saved in a buffer. It is then immediately output in the current format. No further data is output on the RS-232 interface until receipt of one of the valid Mode control character sequences listed in SECTION 3-76. This feature is often to the advantage of a user who desires to have the output of the RS-232 port inactive for long periods of time and only respond on request.

3-99 A single time-of-year message can also be initiated by an "external trigger". The "CLEAR TO SEND" line, Pin \#5, of the RS-232 interface is used to trigger this feature. When this line is pulled low by a signal having either TTL or RS- 232 characteristics, the current time is stored until this line is again pulled high. This stored time is then output over the RS-232 interface in the current format.

3-100 Since this "external trigger" takes precedence over any other mode or command, it is normally locked out by a jumper wire on the RS-232 interface assembly. If it is desired to use this mode, remove the bottom cover and refer to Figure 3-5. Cut or unsolder the jumper labeled "TRIGGER MODE" in the picture. Remember when this jumper is cut this trigger takes precedence over all other normal commands and they are locked out whenever the "CLEAR TO SEND" is held low.

3-101 It may also be desirable to remove the jumper at the rear edge of the circuit card which connects the "REQUEST TO SEND" and "CLEAR TO SEND" lines together (Pins 4 and 5). This will not affect the operation of the output option, but may have an affect on other equipment in the system.

```
3-102 U MODE - DUT1 MODE
```

3-103 When the Model 60-DC receives a "U" over the RS-232 interface, the response will be the current correction to UTC-NBS to obtain UTI. This correction is transmitted via WWVB and is referred to as DUT. The message consists of 3 items.

1) Sign of correction
2) 3 digit correction in milliseconds
3) (CR) (LF)

3-104 The sign is a "+" or a "-", indicating that the correction must be added to or subtracted from UTC-NBS to obtain the proper value for UT_{1}.

3-105 The 3 digit correction is normally transmitted as an integral number of hundreds of milliseconds, such as +400 . Thus the last two digits should always be zero.

3-106 Four question marks (????) will be transmitted if successive transmissions of DUT_{1} do not agree.

3-107 A complete description of the information transmitted by WWVB is described in SECTION IX.

3-108 NOTES

1) (SOH), (CR) and (LF) are the ASCII characters 01 , $O D$ and $O A$ in hexadecimal form. They are not under control of the FORMAT MODE. The (SOH) is sometimes referred to as (CTRLA).
2) During output, transmissions are continuous, with the end of the stop bit of one character coinciding with the beginning of the start bit of the next character.
3) The RS-232 output port will remain in the current mode which it is in at any time, until one of the valid ASCII Mode control characters is received. See SECTION 3-76 for the list of the valid Mode control characters.
4) Input and output is via a MOTOROLA Part Number MC6850 (or equivalent). Refer to the manufacturers data sheet for further information.

INTRODUCTION

3-111 The IEEE-488 output option is available on the Model $60-\mathrm{DC}$ to provide the user with a communication port via the IEEE488 bus. This option is compatible electrically and mechanically with the IEEE-488 standard 488-1978. Messages are sent and received using strings of ASCII coded characters. The IEEE-488 Interface Capability Codes for the 60-DC are listed below. Understanding these symbols may be especially useful to the system's engineer as they completely describe the products' interface capability. IEEE standard 488-1978 describes these functions in detail.

SH1 AH1 T8 L4 SR1 RL0 PP2 DC1 DTl C0 E1
SHl Source Handshake Full capability
AHl Acceptor Handshake T8 Talker

L4 Listener
SRl Service Request
Full capability
Basic talker, serial poll, unaddress if MLA.
Basic listener, unaddress if MTA
Full capability
RLO Remote Local
PP2 Parallel Poll
DCl Device Clear
DTl Device Trigger
C0 Controller
El Driver Electronics

No capabilty
Local configuration
Full capabilty
Full capabilty
No capabilty
Open collector

3-112 HARDWARE

3-113 The user interface with the option is through a standard IEEE-488 connector. The "BUS ADDRESS' is set by a dipswitch on the output option circuit card. To access this switch, remove the four screws which hold the bottom cover in place, remove the cover. Note the circuit board in the center with the components facing you. On the board end toward the front panel you will find the 8 position switch. The "Address" is set using positions l-5 of this switch. This switch encodes the address in binary format:

EN	POSITION	\#1 IS "ON"	A BINARY	IS ENCODED
WHEN	POSITION	\#2 IS "ON"	A BINARY	2 IS ENCODED
WHEN	POSITION	\#3 IS 'ON"	A BINARY	4 IS ENCODED
WHEN	POSITION	\#4 IS "ON"	A BINARY	8 IS ENCOOED
WHEN	POSITION	\#5 IS "ON"	A BINARY	16 IS ENCODE
		POSITION \#6	NOT USED	
		POSITION \#7	NOT USED	
		POSITION \#8	NOT USED	

3-114 The Model 60-DC is shipped from the factory with an address of "5". Therefore, switch number 1 and 3 are "on" and all others are in the "off" position.

3-116 Also located on this circuit board are two terminals. One is provided for "EXTERNAL TRIGGER IN" and the other "EXTERNAL TRIGGER OUT". These are not provided on rear panel connectors but are available for the user to bring out if he desires. The use of these triggers will be covered in SECTION 3-127.

3-117 SOFTWARE
3-118 Communications over the bus take place using strings of ASCII characters as mentioned earlier. The output strings from the clock are always terminated by a Carriage Return, Line Feed sequence. The Bus management "EOI" is asserted with the line feed character. The longest string of characters output by the clock on the bus is 20 characters including the cariage return and line feed.

3-119 The Input strings of the Model 60-DC must be terminated by a line feed or an EOI. The input string will be checked for:
A) A LF or EOI by the end of the 32 character input buffer to avoid buffer overflow.

If LF or EOI is not encountered, then the SRQ line will go low. The status of the serial poll register will be in accordance with the Tektronix's proposed interface standard March 1977 indicating a Command Error.

$$
\mathrm{B} 8=0 \quad \mathrm{~B} 7=1 \quad \mathrm{~B} 6=1 \quad \mathrm{~B} 5=0 \quad \mathrm{~B} 4=0 \quad \mathrm{~B} 3=0 \quad \mathrm{~B} 2=0 \quad \mathrm{~B} 1=1
$$

B) When a string is being input, if over 200 ms elapse bet ween consecutive characters, then the SRQ will go low. The serial poll register indicating a Command Error as in part A (above). Note: This 200 ms time out means that the characters can not be manually handshaked into the $60-\mathrm{DC}$ one by one from a keyboard. The whole string must be input by the controller.

3-120 Operation of the clock outputs on the bus are organized by five different modes. A particular mode is initiated by sending the clock a string containing a mode-defining character. The first valid mode-defining character in the string received defines the mode the clock will be set in.

The valid modes are:

MODE	DESCRIPTION
	FORMAT MODE, allows re-formatting output message.
M	ALARM CLOCK MODE, provides output at any user
	Selected time.
N	RESETM MODE verification of marked time in memory.
T	TIME MODE, transmits time on demand to the user.

3-122 This mode allows the user to establish a desired format for the time message. The format is determined by the strings of characters sent to the unit following the receipt of the "F". This format string consists of 17 characters to format the time response of the clock. Each character in the string controls its respective position in the new output format of the clock.

3-123 An "X" in any position of this string suppresses the output of its respective position of the time message. The positions between the days and hours, the hours and minutes, the minutes and seconds, seconds and thousandths are referred to as delimiter positions. Any character inserted in the input string to format the clock in these positions will be repeated in that position.

3-124 The format of the unit can be selected within the limits of the maximum format as stated below. Any character inserted in the time message positions will enable reading of that time message position. In the following example D's are used to enable the days, H's are used to enable the hours, M's are used to enable the minutes, S's are used to enable the seconds, T 's are used to enable the milliseconds, and Q is used to enable the Time Quality Flag (see SECTION 3-139 for Q description).

DDD_HH_MM_SS_tttQ
3-125 Each " " above represents a delimiter position and can be any ASCII character except " X ".

3-126 EXAMPLE:
If the option port receives: F123/12:34:56.789Q the resulting response by the clock will be the day of year, a slash, the hours, colons, the minutes, colons, the seconds, a period, the thousandths, the time quality character, carriage return and line feed.

Secondly, if FXXXXXXXXXXXXX123X is received by the unit, the resulting response will be to print only the fractional part of the second followed by a carriage return and line feed.

If the format string is terminated short of the 17 characters, the positions in the time string after the termination of the format message will be unchanged by the format operation.

3-127 MODE M
3-128 This mode allows the user to preset a time in the future and to be notified when that time occurs. An "M" followed by the desired alarm time presets that time into the unit.

When the desired time occurs, a "service request" is initiated and the "External Trigger" output line (see SECTION 3-116) is set low. When the preset time has passed the "External Trigger" line is returned to the high state. The.serial poll register will contain an ASCII 'M". This is an undefined reply with respect to the Tektronix proposed standard.

3-129 After the alarm time has been input, a check on the string is performed. Invalid cbaracter check consists of:

1) Is each ASCII character within its minimum and maximum values?
2) Verify that the days do not exceed 366. (No check to see if leap year.)
3) Verify that the hours do not exceed 12 hours, if in 12 hour format, or 23 hours if in 24 hour format.
4) Verify that the minutes and seconds do not exceed 59.

3-130 Where errors are detected, "?" are placed. In order to observe the exact detected error locations if any, "N" mode must be used. (See SECTION 3-120.)
A) If an invalid character has been input and " N " or " M " Mode has not been used within 200 ms , then the SRQ line will go low. The status of the serial poll register will be in accordance with Tektronix's interface standard indicating an Execution Error.

$$
\mathrm{B} 8=0 \quad \mathrm{~B} 7=1 \quad \mathrm{~B} 6=1 \quad \mathrm{~B} 5=0 \quad \mathrm{~B} 4=0 \quad \mathrm{~B} 3=0 \quad \mathrm{~B} 2=1 \quad \mathrm{~B} 1=0
$$

B) If "N" Mode or "M" Mode is used within 200 ms to verify the alarm time, input another alarm time, then SRQ will not be initiated.

3-131 The service request will be cleared by a device clear command, by setting a new alarm time, by reading the alarm time using 'N" mode (see SECTION 3-120), or by a serial poll.

3-132 When an alarm string is input, all of the delimiters must be included as place holders. An ' X " in any position makes that digit a "don't care" digit. If a line feed is placed in any position, the string is terminated and sets the successive digits to "O".

3-133 EXAMPLE:

$$
M 185 * 11: 06: 04.387
$$

This input to the unit would trip the alarm featurear 11:06:04.387 on the 4th of July and the external trigger would be held low for that millisecond.

$$
M X X X * X X: X X: X X \text { (line feed) }
$$

This configuration would provide a service request at the start of each second and the external trigger output line would be held low for one millisecond.

3-135 Mode "N" is provided for the purpose of verifying the alarm time programmed into the unit. When the Model 60-DC receives a N, the response will be to load the previous programmed "M" mode time into buffer for user access. After the string has been read by the user, the Model 60-DC clears the SRQ line and returns to " M " mode.

3-136 A check is performed to detect if an incomplete " N " mode was performed. This means executing "N" mode without addressing the clock as a talker. The problem that will arise from this is that the SRQ will not be cleared and the clock will never return to check for the alarm time. Therefore, in " N " mode there is a 200 ms wait during which the clock checks to see if addressed as a Talker. If not, then $S R Q$ will go low and the serial poll register will indicate a Command Error. If addressed as Talker during the time out period, the clock will transmit the command string. After transmitting the complete string, the Model 60-DC returns to " M " mode.

3-137
MODE T
3-138 When a "T" is received, the time as of the completion of the handshake of the string terminator (LF or EOI) is saved in a buffer. This saved time can then be read out by addressing the clock as a talker and retrieving the time message. If the unit does not have a format specified by the "F" Mode, the default format of the time response will be:

DDD HH MM SS.tttQ (CR) (LF)
3-139 This format being day-of-year, hours, minutes, seconds, milliseconds and time quality character. This is 19 characters including the carriage return and line feed.

3-140 "Q" is the time quality indicator, showing the estimate of worst case expected time error:

INDICATOR EXPECTED ERROR PERIOD WITHOUT LOCK
(ASCII SPACE) less than 1.0 ms .
+1.0 MS . $\mp 5.0 \mathrm{MS}$. $\mp 50.0 \mathrm{MS}$. $\mp 500.0 \mathrm{MS} .(1 / 2 \mathrm{SEC}$.

0 MINUTES
8 MINUTES
22 MINUTES
92 MINUTES
22 HOURS

3-141 Either a "Group Execute Trigger" command or a positive transition on the "External Trigger In" line will also catch the time for output. If a "T" or a "Group Execute Trigger" is received, the time will be caught whether or not any previously caught time has been read. The "External Trigger In" line will ignore the positive transitions after the first one, until the time has been completely read out.

3-143 As an aid to the user in learning to interface their IEEE-488 System to the True Time Model 60-DC with IEEE-488 output: below are sample programs. These programs are proven to operate with the Model $60-\mathrm{DC}$. We trust these will be of assistance. Most of the problems encountered by users in initially interfacing with the Model 60-DC on the "BUS" seem to have been in specifying the clock's address, and in properly handing the terminating sequence of $\langle C R\rangle,\langle L F\rangle$ which the clock needs and supplies.

1. HP 9825A Program;

2. HP 9830A Program:

3. "PET" Program:

Program to set time string format and read time from True Time Clock via the IEEE-488 bus using a PET.

10 OPEN 5,5 Informs PET of clock's address on the bus
20 PRINT\#5,"FDDDXHHXMMXSSXTTTX" Sets clock format to omit delimiters, TQ flag
30 PRINT\#5,"T" Instructs clock to catch time
40 INPUT\#5, AS:IF ST< 0 THEN 40 Reads time from clock
50 PRINT AS
Displays time

10	RUS Clear	Just in case
20	GUSS ADDESS 00101	5 in binary
30	bus print ${ }^{\text {P/ }}$	Address clock 35 listener; 5end "T<CRLF ${ }^{\text {a }}$
40	bus In	Address clock as talker; readedisplay tine string

3-144 DAYLIGHT SAVINGS TIME CORRECTION
3-145 Effective Spring of 1982 the National Bureau of Standards began including a bit in the WWVB Time code to inform the users when the United States is on Daylight Savings Time. This bit is number 57 in the time code transmission as described more fully in SECTION IX of this manual.

3-146 This control bit will be set to " 0 " during periods of Standard Time (October to April under present law) and to a "l" during periods when Daylight Savings Time is in effect (April to October under present law). This bit will be changed at WWVB during the 24 hour period preceding 2:00AM Eastern time on the appropriate days.

3-147 For users of the Model 60-DC who are using the synchronized clock with the "HOURS OFFSET" on the rear panel set to "0", this change in the WWVB time code will not change your displayed or outputted time. This will allow these users to continue to function in "UTC" which is unaffected by the DST laws.

3-148 For those users with the "HOURS OFFSET" switch on the rear panel in other time settings, the Model 60-DC will automatically correct for the changes in DST. Both the displayed time and any electrical output of the time will be changed to provide the user with the DST corrected time. For those users of the Model 60-DC located in areas which do not observe United States Daylight Savings Time, it will be necessary to change the rear panel "HOURS OFFSET" switch twice a year to continue to display the correct local time.

3-149 Since WWVB inserts this bit at any time within the 24 hour period prior to the appointed 2:00AM change time, if a user was to turn his clock on prior to this 2:00AM time but after the bit was inserted, the display on the $60-\mathrm{DC}$ would be offset by one hour of the correct local time. This, of course, would then be correct at 2:00AM local time. For those users who do not power down and power up during this particular time the display and outputted time will be corrected at $2: 00 \mathrm{AM}$ at the time zone for which your unit is set by the 'HOURS OFFSET" switch.

3-151 The D.C. Supply Option is available at extra cost and is installed in place of the standard 95-135 VAC $60-400 \mathrm{~Hz}$ power supply. This option allows the clock to operate from direct current sources of a nominal 12 or 24 VDC ratings. The D.C. Supply option will operate with an input voltage between the absolute limits of 11 and 32 V.D.C. The power required will be approximately 20 watts, depending on the other options installed and the input current will decrease as the input voltage increases.

3-152 Power connection is made through a pair of " 5 way binding posts" located on the rear of the unit. They are spaced $3 / 4$ " apart to accept the common "double banana plug". The positive terminal is red and the negative terminal is black. Neither is connected to the chassis ground.

SECTION IV

THEORY OF OPERATION

4-1 BLOCK DIAGRAM - MODEL 60-DC
4-2 Refer to Figure 4-1 below to assist in the clarification of the overall operation of the Model 60-DC as described here.

FIGURE 4-1 BLOCK DIAGRAM - MODEL 60-DC

4-3 The Mode1 60-DC has been designed to provide time information synchronized with the National Bureau of Standards. This is done by reading the time code signal
transmitted by radio station WWVB and using this time information to initially set the clock and using the carrier frequency to derive the clock rate.

4-4 As an overview, the Model 60-DC consists of several peripheral blocks operating under the control of the central processor, a Motorola MC6802.

4-5 The Digital Board, Assembly 86-42, consists mainly of program storage memory, read-write data storage memory, interface circuits and the 6802 processor. This central processor is capable of communicating with the other functional blocks, receiving data and transmitting control signals. This results in synchronizing the time outputs with the signal as transmitted by WWVB.

4-6 In synchronizing the time with the WWVB signal, there are two tasks. First, synchronizing the local standard with the WWVB seconds, and second, decoding the time code received. These functions are accomplished by two-way communication between the Analog Board, Assembly 86-41, and the Digital Board.

4-7 Contained on the Analog Board is the circuitry for synchronizing the local seconds with those of the received carrier. This 1 Hz sync circuitry, under the control of the processor, sends a pulse coincident with the WWVB second to the central processor. This pulse is generated after averaging approximately 50 seconds of code.

4-8 Also, contained on the Analog Board is the 60 kHz phase lock loop. This circuit provides the timing to keep the time scale locked to NBS time after the current time has initially been determined. The decoding circuitry sends the processor the code value for each second. Thus, the processor can determine if each second was a " 0 ", " 1 ", or ten-second marker " P ".

4-9 Provisions have been made on the Analog Board for providing a rear panel output capable of driving a remote display (using an IRIG B format). This output code is generated on the Digital Board in a level shift form and sent to the Analog Board where it amplitude modulates a 1 kHz sine wave carrier.

4-10 The Display Board, Assembly 86-43, under the control of the processor, displays the decoded time. The Display Board operates in a multiplexed mode with left and right digit information.

4-11 Parallel BCD Time output, RS-232 C and IEEE-488 Interface are available on special order. They are added to the Model $60-\mathrm{DC}$ as an additional circuit board. These assemblies utilize the same data as the display and proper synchronizing signals. Please note that only one of these three options may be installed on any clock.

4-12 R.F. BOARD - ASSEMBLY 86-40
4-13 The WWVB receiver circuit board supplies power to the active antenna and provides a controllable gain at 60 kHz . The bandwidth is about +1 kHz , with two tuned stages and maximum gain at $60 \mathrm{kH} \bar{z}$ of 85 db .

FIGURE 4-2 WWVB RECEIVER, R.F. BOARD

4-14 ANALOG BOARD - ASSEMBLY 86-41
4-15 The theory of operation of the Analog Board may best be understood by referring to the block diagram and the Assembly 86-41 Schematic in Section 6-6 of this manual.

4-16 U_{I} constitutes a 60 kHz gain stage with a fixed gain of 45 db . The output of U is rectified, filtered, and fed back to the gain control input of the R.F. Board 86-40. This AGC loop maintains the output of U_{1} at .5 to 1.5 V RMS over an antenna input signal range of 0.1 mv to $10^{5} \mu \mathrm{v}$.

4-17 The output of U_{1} goes to the 60 kHz PLL comprised of the 7.68 MHz VCXO, the divider chain U_{5} and U_{7}, the phase detector U_{3} and U_{4} and the loop filter U_{9}. The control range of the VCXO is $\pm 6 \mathrm{ppm}$. U5 is used to divide the 7.68 MHz by 2 for the processor clock and signal by 128 and 64 to give

60 kHz and 120 kHz . The exclusive OR gate U_{6} provides a 90° phase shifted output at 60 kHz which drives the balanced mixer U_{3}. This signal feeds a balanced to single ended converter $U_{4 D}$ whose output saturates at $\pm 30^{\circ}$ (under clean signal conditions). U_{9} is the loop filter with $\mathrm{R}_{43}, \mathrm{R}_{44}$ and $\mathrm{C}_{1} 5$ chosen to give values of wn=. 25 radians/second $\zeta^{4}=1.7$ for clean signal and $\omega \mathrm{n}=.08$ radians/second, $\zeta=.6$ for noisy signal conditions.

4-18 The bias and symmetry controls consist of trim pots, R_{40} and R_{46}. These controls serve to null the drift rate of the loop filter under noisy and no signal conditions.

FTGURE 4-3 ANALOG BOARD - ASSEMBLY 86-41

4－19 The in－phase 60 kHz output from the divider chain goes to a second balanced mixer U_{2} ．This mixer functions as a synchronous detector with its balanced output converted to single－ended by $U_{4 C} . R_{23}$ ，the en－ velope bias adjust sets the WWVB envelope output to Zero（referenced to +5 volts）for no signal input．

4－20 WWVB Phase lock detection is accomplished by $\mathrm{U}_{4} \mathrm{~B}$ ．This stage compares the filtered envelope voltage with a fixed reference level to determine if phase lock is maintained with WWVB．A low output on Pin $⿰ ⿰ 三 丨 ⿰ 丨 三 一$（ in － dicates phase lock．

4－21 The output of U_{8} is a 1 kHz waveform phase－ locked to WWVB．This waveform goes to the Digital Board 86－42 and is counted，forming the basic timing for the clock．

4－22 To obtain 1 Hz synchronization the WWVB envelope is sampled by a bank of capacitors，implemented by analog multiplexers U_{15} and U_{16} ．Reference to Figure $4-4$ may aid in clarification of this function．

FIGURE 4－4 1 HZ SYNC．－TIMING DIAGRAM

4-23 Figure 4-4 represents the action of the 1 Hz sync. circuit during Mode 1 operation. Mode 1 operation seeks to synchronize the clock to WWVB within $\pm 50 \mathrm{~ms}$. During Mode 1 , only 10 of the 16 capacitors are used. The WWVB envelope is repeatedly connected, through R_{75}, to each capacitor during the same tenth of the second for a total of about 40 scans. Each capacitor thus accumulates about 4 seconds of time comnected to WWVB. The charge pattern, due to the WWVB signal, on the capacitors grows with each scan, while noise tends to average to zero.

4-24 The WWVB time code is such that the envelope is always high for $2 / 10$ ths second before the exact second and always low for $2 / 10$ ths of a second after the exact second, During the remaining time in any second it may be either high or low. It is this drop in envelope level which the 1 Hz synchronization circuitry seeks to find.

4-25 As the multiplexer repeatedly scans the capacitors, the charge pattern that builds reflects this drop in envelope; the capacitor that is scanned just before the drop occurs accumulates more charge than the capacitor scanned just after the drop in envelope level. This drop is detected by comparing the charge on each capacitor with that on the previous capacitor as remembered by the sample and hold U_{21}. When the difference exceeds a reference level, the 1 Hz sync. pulse generated informs the processor that the enveiope drop has occurred.

4-26 The reference level for the above mentioned comparison is the sum of two parts. One is a fixed level and the other is proportional to the WWVB signal. The fixed level prevents false synchronization when the signal from WWVB is not present, while the proportional part enables the synchronization time to remain about constant regardless of the WWVB signal level.

4-27 A similar process is repeated when the scan step rate is increased to 10 ms , and 1 ms . to progressively refine the agreement of the clock time with that of the WWVB envelope drop. For the finer resolution scans, all sixteen capacitors are used. This allows extra margin for each scan window, which is needed when the WWVB second occurs at +5 scan steps from the clock second. It should be noted that this algorithm provides an effective signal bandwidth that is independent of the noise bandwidth, provided enough scans occur.

4-28 After the clock has been synchronized with the WWVB second, the time code stripper comes into play. Figure 4-5 depicts this time code recovery operation.

$0.05 e 0$.	0.1	0.8	0.3	0.4	0.5	0.5	0.7	0.8	0.9	0.0

FIGURE 4-5 BLOCK DIAGRAM- TIME CODE RECOVERY

4-29 U_{13} AND J_{13} respectively sample the high and the low portions of the WWVB envelope. This sampling produces averaged high and Low values of V_{H} and V_{L}. The difference between V_{H} and V_{L} is the basic measure of signal level used to derive the time code.

4-30 The mean value of V_{H} and V_{L} is used in conjunction with the WWVB envelope to produce a voltage shifted version of the envelope. This signal swings equally in both directions about the reference level. This "normalized envelope" drives an integrator which is reset from . 0 to . 2 of each second. From . 2 to . 8
seconds, the time code information is transmitted and the integrator weights it all equally. At time . 8 seconds, the output of the integrator constitutes a best estimate of the value of the current seconds code character. Digitizing of this estimate is done by comparison with $\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}$ in an effort to eliminate signal level dependence.

4-31 Since the integration time constant is $\frac{1}{4}$ the integration interval, the integrator output at 0.8 seconds is -4 X (Normalized Envelope Voltage) in the absence of noise. The "Normalized Envelope Voltage" is the signal at pin 7 of $\mathrm{U}_{10 \mathrm{~B}}$. This amounts to $2\left(\mathrm{~V}_{\mathrm{H}^{-}} \mathrm{V}_{\mathrm{T}}\right)$ for a "P", zero for a "1" and $-2\left(V_{H}-V_{L}\right)$ for a logic " 0 ". The reference level for the " P " comparator is $+\left(V_{H}-V_{L}\right)$ and for the " 0 " comparator is - $\left(\mathrm{V}_{\mathrm{H}}-\mathrm{VL}_{\mathrm{L}}\right)$. These levels are automatically midway between the levels they are meant to distinguish.

4-32 R69 is provided as a "1" bias adjustment which allows nulling of the offset voltages of $U_{1 O B}$ and $U_{12 D}$.

4-33 U_{11} is an output buffer used to convert the 0 to 10 V op. amp. outputs to 0 to 5 V logic levels for use by the Digital Board. U_{17} and U_{18} are used as input buffers which condition the Digital Board outputs to a 0 to 10 V swing as required by the Analog Board.

4-34 DIGITAL BOARD ASSEMBLY 86-42
4-35 See Section VI for schematic of the digital board. The digital board utilizes a M6802 microprocessor as the central processor. The processor controls data flow over a multiline bus in a typical microprocessor configuration as a controller, stored program memory, read write data memory, and input/output interface. U2, U3, U4 are the I/O interface devices. All communcations with the other areas flow through them. U12, U13 are type 2114 rams and comprise the read/write memory used for storage of program variables. U5, U7, 2716 e-proms are used for program storage. U9, U10, Ull, U15, TTL, MSI chips perform acidress decoding to direct data flow to and from the proper devices. U14 genexates a reset pulse to ensure orderly start of operating at turn on.

4-36 The function of the $86-42$ board is determined within a wide range, by the program stored in U5-U8. It is beyond the scope of this document to describe in detail the operation of this program, however, a general outline is provided in the software section to aid in understanding of the clock's behavior.

4-37 $\mathrm{U}_{2}, \mathrm{U}_{3}$, and U_{4} are Motorola MC6821's (PIA's) which are used to interface the constantly changing buss lines to the external portions of the Model 60-DC.

4-38 Timing is generated within the 6802 which divides the 3.84 MHz input clock signal by 4 and generates the required timing signals.

4-39 U_{14} provides a reset signal on powering up the Digital Board while $\mathrm{U}_{9}, \mathrm{U}_{10}, \mathrm{U}_{11}$ and U_{15} perform address decoding.

4-40 If the reader is interested further in the operation of the microprocessor and its associated chips, he should refer to literature available from Motorola which more fully describes the operation of the MC6802.

FIGURE 4-6 DIGITAL BOARD- ASSEMBLY 86-42

4-42 The display assembly is depicted in the block diagram, Figure 4-7 below. Each pair of digits is selected, one pair at a time. When a given pair is selected, the appropriate digits are presented (in BCD) to the 7 -segment decoder drivers U_{1} and U_{2}. These I.C.'s then illuminate the proper segments in the selected digit pair. Each millisecond, a new pair of digits is selected, making a complete scan in 5 milliseconds.

FIGURE 4-7 BLOCK DIAGRAM- DISPLAY BOARD

4-43 The left digit information associated with the hundreds of days is also used for control functions. It is used to control the WWVB "LOCK" LED, the colons, and the blanking of the display. These control functions are exercised via a 4 bit latch (U_{3}).

4-44 POWER SUPPLY
4-45 See Section For schematic of power supply assembly.

4-46 The power supply itself is a standard design and needs no explanation.

4-47 The reset circuit, U6, senses ripple on either of the +5 V supplies and generates a negative going pulse which goes to the reset flip-flop on Assembly 86-42, forcing a program reset as long as ripple is resent on either +5 V line. This protects against erratic operation during times of low line voltage.

4-48 REMOTE DISPLAY DRIVING (IRIG B)
4-49 The Remote Display (IRIG B Time Code) is generated on the Digital Board in a level shift form and converted to an amplitude modulated 1 kHz form on the Analog Board.

4-50 The 1 kHz carrier is generated by means of a weighted sum of 10 outputs from U_{8}, each of which goes high for $100 \mu \mathrm{sec}$. in each millisecond. Through suitable weighting of the contribution of each successive $100 \mu \mathrm{sec}$. interval, an approximateion of a 1 kHz sinewave results. Low pass filtering removes most of the harmonics created by this generation technique. U_{23} modulates this carrier and since both the carrier and modulation are synchronous with the WWVB signal, they are synchronous with each other. Modulation level changes occur at positive zero crossings of the carrier, insuring a glitch-free output.

4-51 The Model 60-DC is delivered with the IRIG B code output in the amplitude modulated 1 kHz format. To change to a level shift format, remove the lid and locate the two switches in the right rear corner of the analog board (86-41). Note that only one switch is to be on at a time. For a level shifted form, turn off 'AM" and turn on 'TTL".

FIGURE 4-8 BLOCK DIAGRAM- REMOTE DISPLAY DRIVING OPTION

4-52 PARALLEL OUTPUT OPTICN ASSEMBLY 86-44
4-53 The parallel output option provides logic level output of the same time as shown on the display. It does this by demultiplexing the display data lines and latching the data in a buffer consisting of U19-U27. On the second, the data in this buffer is strobed into the out-
put buffer, U10-U18. The data in the output buffer is sent to the outside world thru drivers Ul-U9 to provide increased drive capability.

4-54 A millisecond counter, U31-U33, together with drivers U28-U30, provide milliseconds output, and also control loading of time into the output buffer. This counter is synchronized with NBS time via the "time ok" line thru trigger latch U35.

4-55 The function of $U 37$ and its associated circuitry, is to provide either an edge or a level for controlling sampling of the BCD output lines. U36 is an output driver for several miscellaneous outputs. A timing diagram, showing the relationship of the 1 kHz line to the data output lines is shown in Figure 3-3 to assist in reading the lines during the time when they are stable.

4-56 RS-232
4-57 See Section VI for schematic of Assembly 86-46. Ul, a Motorola MC6850 ACIA, handles the conversion between processor bus data and serial data. U4 and U5, line driver and receiver type 1488 and 1489 respectively, convert between NMOS and RS232 signal levels. U6, a Motorola MC 14411 BAUD rate generator with Yl provides an assortment of clock rates, one of which is selected by 52 to drive the ACIA. U3, a 74LS138 decodes addresses, to direct information f1ow, while U2, an 81LS96, permits reading of the option switches, Sl.

4-58 Use of this option is covered in Section 3-60.
4-59 IEEE-488
4-60 See Section VI for schematic of Assembly 86-47.
The TEEE-488 (GPIB, HPIB) interface uses Ul, a Motorola MC68488 GPIA, to handle the handshaking and other bus management activities. Interface to the bus is thru U4-U7, MC3448 bus transceivers, with U4, a 74LSl38, provides address cecoding, while U2, an MC6821, allows reading the device address switches, and sending and receiving external triggers.

4-61 Use of the option is under program control and is described separately. See Section 3-98.

4-62 IRIG-H
4-63 IRIG-H Time Code is generated by the 6802 microprocessor. The signal path is thru U3 pin 39 and buffer transistor Q5. The voltage swing is 0 to 5 V . The timing is described in Section XII.

5-1 MAINTENANCE

5-2 The Model 60-DC has been designed to provide maintenance free operation for many years. The instrument contains only seven adjustments, most of which will never require resetting. The adjustments are: two tunable coils in the R.F. Board, WWVB Envelope Bias, WWVB Phase Lock Bias, WWVB Phase Lock Symmetry and an adjustment for setting the VCXO center frequency.

5-3 Although it is highly unlikely that any of the adjustments in the Model $60-\mathrm{DC}$ will require resetting for the life of the instrument, the procedure for each adjustment is included below. All of the following adjustments can be performed with an oscilloscope, a signal generator capable of outputting 60 kHz at about 1 mv and an antenna for receiving the signal from WWVB.

5-4 R.F. BOARD TEST (86-40)
I. Ground AGC line to $86-40$ Board, Pin \# 2 on 86-42 Assembly.
2. Inject 60 kHz (AC coüpled) into antenna input. Set the generator level such that the output just saturates - then reduce by $\frac{1}{2}$.
3. Adjust cores for max. output.

5-5 ANALOG BOARD ALIGNMENT (86-41)
(Note: Analog Board Tests are performed with scope ground at +5VDC. BE SURE SCOPE IS FLOATING.)

5-6 ENVELOPE TRIM
With the signal input of the $86-41$ Board shorted (pins $3 \& 4$) view T.P. AC with scope and adjust R23 for an output of -20 mv . (scope reference @ $+5 \mathrm{VDC}$.)

5-7 VCXO ADJUSTMENT
Remove input ground and supply WWVB to antenna input. With T. P. AD on scope, set the ceramic trimmer (C22) for a voltage of $-2 V$ (with reference $a^{a}+5 \mathrm{~V}$) This adjustment should be done in very small steps allowing several seconds for the long time constant of the loop to stabilize. If
phase lock cannot be obtained by this method, it will be necessary to use a frequency counter to set the VCXO. Using a high impedance probe, attach probe to the collector of $\mathrm{Q} 2(2369)$. Adjust the ceramic trimmer to provide $7,680,010 \mathrm{~Hz}$ output on counter. The unit should now phase lock. (The long R-C time constant of the loop may be circumvented by a momentary short between T.P. "AD" and T.P. "AK", which discharges Cl5.) After phase lock, a slight adjustment of the trimmer will move the control voltage to the desired -2VDC level.

5-8 PHASE LOCK BIAS
While viewing T.P. AD, remove antenna and short pins 3 \& 4 of Analog Board. Adjust R40 for zero volts drift (<l00mv/min.)

5-9 PHASE LOCK SYMMETRY
Remove short from pins 3 \& 4. Connect scope ground to T.P. AN and view T.P. AM with unit not phase locked. Adjust R46 for a symmetrical swing above and below the ground reference.

5-10 CODE BIAS ADJUSTMENT
Reconnect to antenna and allow unit to sync through Mode 5 - trigger scope on the rising edge of 1 Hz (T.P. AE) and observe T.P. AF (scope reference +5VDC). Adjust trim pot R69 such that the "P"s are as high as the "ゆ"s are low - and the 'l"s should be at the reference level (+5 V).

5-1. TROUBLESHOOTING

5-12 If a failure of the Model 60-DC occurs, it is reconmended that the unit be returned to the factory for repair. Due to the nature of this microprocessor-based instrument, field repair by unfamiliar personne 1 may be very difficult. If it is not possible to return the unit to the factory the following section as well as the SCHEMATICS (SECTION VI) and THEORY OF OPERATION (SECTION IV) of this manual may be of assistance in locating the cause of a malfunction. First, we will cover the most common problem areas to assist in isolating general malfunctions and second, probable causes of various observed malfunctions will be covered.

5-14 As mentioned in Section 2-8 the most important, yet most overlooked factor in proper operation of the Model 60-DC is proper selection of a site and installation of the WWVB antenna. Without a proper antenna installation the signal from the transmitter will not be received and the unit cannot possibly function properly. in many cases "just to try it out" (when the A-60FS antenna is used) an attempt will be made to operate the unit with the antenna inside of a building. This, as often as not, results in inability to phase lock to the signal. In some cases phase lock may be obtained, but the low signal level in these cases will be too low for the unit to read the time code information. Thus, the display will not light or may require extremely long periods of time to read two time frames properly and turn on the display.

5-15 After the antenna installation has been completed, connect the instrument to the proper power source. Turn on the power switch and the colons should light, turn off for $\frac{3_{2}}{2}$ second and on again, remaining on. Looking down in the display window, below each pair of digits should be a faint flickering light (display "keep alives"). This will indicate that the microprocessor is scanning the display assembly. Within 50 seconds the "WWVB LOCK" LED on the panel will light and within five minutes the display should light indicating the proper time. If any of the above indications fails to occur the following sections will be of assistance in locating the malfunction.

5-16 POWER SUPPLY
5-17 The first area to verify in any troubleshooting approach is that the power supply is operating properly and that no circuit board or component is drawing the supply voltage down. If no indication of operation is evident from the front panel, check to be certain that the $A C$ source is operational. Next, remove and test the fuse on the rear panel. When these are determined to be operational, remove the top and bottom covers on the Model 60-DC and refer to Section VI forSchematics and Parts Lists of the Power Supply (Assembly 86-52).

5-18 The output voltages from the power supply should be within $+5 \%$ of the specified values. A low supply voltage cañ be caused by a defective part on the Power Supply Assembly or by components in other parts
of the instrument drawing excessive power from the supply. Disconnect the flat cable connected to the power supply board and check the voltage again. If the supply voltage remains low, the problem is a component on the Power Supply Assembly. A common problem on other assemblies will be an integrated circuit which has failed and is drawing excessive current. These normally can be located by touch since they will be very hot. Disconnection of each circuit assembly in turn may aid in locating an assembly which is drawing excessive power.

5-19 Too high a voltage noted on a power supply output is an indication that a problem exists on the Power Supply Board.

5-20 WWVB SIGNAI.
5-21 If the power supply is operating properly, the colons light and the keep alives are flickering (a solid light in only one or two is an indication of improper microprocessor operation), the WWVB signal as seen by the receiver should be checked. This WWVB signal can be viewed with an oscilloscope connected to T.P. AJ in the left rear corner of Assembly 86-41. The WWVB signal, more fully described is Section IX of this manual, consists of a 60 kHz R.F. carrier which is amplitude modulated, dropping in level by 10 db once/second. On the next page are pictures of this signal in a very clean state and a state showing a very noisy condition. When viewing the 60 kHz carrier on the scope you must be able to vaguely see the 60 kHz carrier with the 1 Hz drop in carrier level. If this can be seen through local noise interference, the $60-\mathrm{DC}$ will be able to decode the time information. If only hash and noise spikes at random times and rates are seen, it can be certain that the antenna or R.F. assembly are not operating properly. See Section 5-5 for a description of the alignment procedure for the R.F. Receiver which will check it for operation. The antenna operation can be checked as described in Sections VII and VIII.

VERY CLEAN WWVB SIGNAL

POOR SIGNAL FROM WWVB

SIGNAL FROM WWVB NOT VISABLE - NOISE ONLY

5-22 MICROPROCESSOR ASSEMBLY
5-23 The first indication that the Digital BoardAssembly $86-42$ is not operating properly is that the keep alives in the display will not be flickering. One or two will be bright spots and the remaining will not be lit, the problem lies in the Assembly 86-42. The first area to check is that the assembly is receiving its "clock". This comes from the Analog Board and is supplied on Pin L. This pin should have a 3.84 MHz TTL level signal. The 7.68 MHz oscillator can be seen on Assembly 86-41, U_{5} Pin 非1. The second area to examine for failure
is the 1 kHz which comes from the Analog Board on Pin X ． This 1 kHz interrupt has a 90% duty cycle．If it is found that both the 1 kHz and 3.84 MHz signal are op－ erating properly and the display keep alives do not flicker，the problem lies in the Digital Board．Check this assembly to be certain that the I．C．＇s are tight in the socket and that there are no shorts on the board．It is possible that conductive lint could short between the close traces on this board．Further troubleshooting of this assembly should be referred to those familiar with the operation of microprocessors．

5－24 ANALOG BOARD
5－25 If the above mentioned sections appear to be operating properly，a brief inspection of various sections of the Analog Board may isolate the difficulty． Look at the WWVB envelope with a scope．Connect a scope to test point＂AC＂and connect the scope ground to the tab of the 5 volt regulator（U24）in the left rear corner of this assembly．（Make sure that the scope is floating．）This signal may have noise super－imposed and will drop from high to low on the second．Inter－ fering signals will not generally have a code on them which will make them distinguishable from the WWVB signal．

5－26 If the unit has lost phase lock and the signal from WWVB is present，the phase lock can be adjusted as described in Section 5－7 of this manual．When this unit has phase locked to WWVB the 1 Hz lock can be checked． With the scope triggered by T．P．＂AE＇，look at the WWVB envelope T．P．＂AC＂．This envelope should drop in level 0.2 seconds after the sweep starts．Watch the 1 Hz sync．progress to higher precision by watching the output of U_{20} Pin $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ 丷 木 ⿴ 囗 十$（CA3130）．After initial turn－on this should hop around in 0.1 second steps for about a minute． It should then reset to +5 volts reference and another scan of loms．steps should build up right around the 0.0 second．After another minute，it resets and the $1.0 \mathrm{~ms} . /$ step starts．This takes longer，and times out to reset at 2 minutes if this level of sync．is not achieved．

5－27 With all of the above functioning as described， the unit will turn on displaying the correct time．Below is a list of possible observed symptoms and their related causes to assist in isolating specific problems．

5-29 1. "WWVB LOCK" LED does not light
a. Poor antenna installation causing lack of signal. See Section 5-13.
b. Analog Board Alignment
c. Other integrated circuits in the above areas not properly operating. This could be detected by inability to make adjustments specified above.
d. LED defective
2. "WWVB LOCK" LED remains on for over 40 seconds after the antenna is disconnected.
a. Envelope bias trim pot incorrectly adjusted, see Section 5-6.
3. When the unit is turned on the colons do not light.
a. Unit not connected to power source.
b. Fuse blown.
c. Power Supply failure, see Section 5-16.
d. Digital Board not functioning, see Section 5-22.
e. Broken wire to the Display Board Assembly.
f. Two or more LED's in the display not operational.
4. Unit turns on properly as described, after a period of operation the display goes off (one digit may remain lit) and the keep alives are not flickering.
a. Failure as described in Section 5-22 caused by heat build-up in the instrument or in one I.C..
5. When the unit is turned on the "WWVB LOCK" LED lights properly, the colons light, but the display never turns on indicating the time.
a. Analog Board Alignment.
(check 1 Hz sync.)
6. When unit "Times In", the display lights properly but digits displayed are not correct (every other digit incorrect or like segments not lighting properly). a. If a wire to the Display Board from the Digital Board is broken, the same bit of
every other digit will be affected.
b. If the display drivers (DM8880) are not operating the same segments of every other digit will not be operating.
c. If only one segment of one digit is not operating, that segment may be burned out. This can be seen visually.
7. If the display blinks (after 24 hours), this is an indication of not remaining phase locked to the transmitter. See Section 3-8 for proper operational description of this feature.
a. Analog Board Alignment, see Section 5-5.
8. Parellel Time Output lines are not correct. These lines should agree with the display as they are driven in parellel with the display. a. See Parellel BCD Putput option Schematic in Section III and trace defective lines to find inoperative I.C. or other failure on Assembly 86-44.
9. Remote Display Driving Output (IRIG B) inoperative.
a. Check to see that a level shift IRIG B code is coming from Assembly 86-42 to Assembly 86-41 on Pin 非 of the edge connector.
b. Check $\mathrm{U}_{17}, \mathrm{U}_{22}$ and U_{24} for proper operation.
c. Be sure that either IRIG B switch is on, but not both.

5-30 This concludes the Troubleshooting Section of the manual. If the above information has not resulted in repair of the instrument, please contact the factory for assistance.

SECTION VI

SCHEMATICS AND PARTS LIST - MODEL 60-DC

6-1 SYMBOL DESIGNATION REFERENCE 86-40

SMMBCL	$\underset{\text { PEAKIE TIME }}{\text { TEAE }}$	DESCRIPTION
C1	27-8-25	Cap. Alum Electro, 10nf 25v*
c2	27-8-25	Cap. Alum Electro. 10 uf 25v*
c3	24-1	Cap. Folystyzene 2000 pf
C4	32-29	Cap. Tant. Luf
C5	27-1-50	Cap. Alum Electro, luf 50V**
C6	24-1	Cap. Polystyrene 1000pf
c7	36-83	Cap. Momelithic .0luf
cs	27-1-50	Cap. Alum yiecrro, Iuf 500**
69	32-29	Cap. Tanc. Iuf
Cl0	27-1-50	Cap. Alum Elecrro, luf 500**
C11	27-1-50	Cap. Alum Electro, luf 50y**
	*Gap. Tant. 22uf 15 V can be used **Cap. Tant. 1.0 uf 15 V can be used	
LI	42-3	Coll R.F. Assembly
$\underline{L 2}$	42-2	Cotl R.F. Assembly
PWB	85-40	Printed Whring Board
Q1	175-1	RGA
Q2	175.1	RCA $\sqrt{1 / 40032}$
R1	2-85	Res. Carbon 3.3K
R2	2-125	Reg, Carbon 150k
R3	2-59	Reg. Carbon 270 hms
\$4	2-177	Rea, Carbon 22 M
E 5	2-49	Res. Carbon 1000huns
36	2-145	Res. Carben 1. OMeg
27	2-177	Ren. Carbon 22 Meg
88	2-59	Res. Carben 2700hms
R9	2-65	Res, Carbon 470 ¢fma
RIO	2-49	Res. Carbon 1000 mm

6-2 PARTS LOCATION-ASSEMBLY 86-40

6-3 SCHEMATIC-ASSEMBLY 86-40

SYMBOL	TRUE TII施 PART \ddagger	DESCRIPTION	SXMBOL	$\begin{aligned} & \text { TRUE TIME } \\ & \text { PART } \# \end{aligned}$	DESCRIPTION
61	27-8-25	Cap. Alum Electro, 10uf 25 Vt	D1	57-1	Diode 1N4148
C2	36-95	Cap. Monolithic, 0.luf	L2	57-1	Diode IN4148
C3	27-8-25	Cap. Alum Electro, 10uf 250*	D3	35-12	Varicap MV2112
C4	32-45	Cap, Tant 22uF 15 V			
C5	36-95	Cap. Monolithic, 0.1uf	JPR	317-12	Jumper, 12 wire
c6	36-95	Cap. Monolithic, 0.1uf			
67	36-95	Cap. Monolithic, 0.Iuf	PWB	85-41	Printed Wiring Board
C8	32-29	Cap. Tant 1. Duf 15 V			
C 9	36-95	Cap. Monolithic, 0,1uf	82	175-4	Transistor MPS 3702
C10	36-95	Cap. Monolithic, 0.luf	Q2	175-3	Transistor MPS 2369
Cll	36-95	Cap, Monolithic, 0.1 uf	Q3	175-2	Transistor 2N3904
612	27-8-25	Cap. Alum Electro, 10uf 25v**			
C13	27-8-25	Cep. Alum Electio. 10uf 250 ${ }^{\text {a }}$	RI	2-49	Resistor, Carbon 100 ohms
614	36-83	Cap. Monolithic, Dluf	82	2-49	Registor, Carbon 100 ohms
CI 5	28-43	Cap. Polyester 3.3uf	8.3	2-145	Resistor, Carbon 1M
616	36-50	Cap. Monolithic 470pf	R4	2-89	Resistor, Carbon 4.7K
C17	27-8-25	Cap. Alum Electro, 10uf $25 \mathrm{~V}^{*}$	R.5	2-141	Resistor, Carbon 680K
C18	36-95	Cap. Monolithic, 0. luf	R. 6 8.7	$2-138$ $2-97$	Resistor, Carbon 5l0k
C19	29-41	Cap. Dipped Mica 220pf	R.7 R 8	2-97	Resistor, Carbon 10K
C20	29-29	Cap. Dipped Mica 68pt	R88	$2-73$ $2-97$	Resistor, Carbon 1 K Resistor, Carbon 1.0 K
C21	29-20	Cap. Dipped Mica 33pf	R910	$2-97$ $2-89$	Resistor, Carbon Jok Resistor, Carbon 4.7k
$\mathrm{C2} 2$	33-29	Cap. Cer. Trimper 4/20pf	R10 R11	2-89	Resistor, Carbon 4.7 K Resistor, Carbon 4.7 K
C 23 C 24	$29-15$ $36-95$	Cap. Dipped Mica 20pf Cap. Monolithic, 0.1 uf	R12	2-89	Reststor, Carbon 4.7 K
C25	32-45	Cap. Tant 22uF 15 V	R13	2-121	Resistor, Carbon look
026	32-45	Cap. Tant 22uf 15V	R14	2-132	Resistor, Carbon 300K
C 27	28-43	Cap. Polyester 3.3uf	R15	2-121	Resistor, Carbon 100k
C28	27-8-25	Cap. Alum Electro, louf 25v**	R16	2-133	Resistor, Carbon 330K
C29	27-8-25	Cap. Alum Electro, 10uf 25Vtic	R17 Rl	2*145	Resistor, Carbon IM Resistor Carbon 100M
C30	27-8-25	Cap. Alum Electro, 10uf $25 \mathrm{v**}$	R18	2-203	Resistor, Carbon 100M Resistor Carbon 1M
631	27-8-25	Cap. Alum slectro, 10uf 25\%*	R20	2-145	Resistor, Carbon lM
C. 32	28-19	Cap. Polyester . 3 urf	R21	2-106	Resistor, Carbon 30k
C33	28-19	Cap. Polyester . 33 uf	R22	2-157	Resiscor, Carbon 3.3M
C34	28-19	Cap. Polyester - 334 f	R23	$20-7$	Trim Fot, 100 K (BEK-72PMR)
C35	28-19	Cap. Polyester . 33 uf	R24	2-81	Resistor, 'Carbon 2.2 K
C36	28-19	Cap. Polyester . 33 uf	R25	2-81	Resistor, Carbon 2.2 K
¢38	$28-19$ $28-19$		R25	2-89	Resistor, Carbon 4, 7K
C39	28-19	Cap. Polyester . 3311 f	R27 R28	2-89	Resistor Carbon 4.7 k
C40	28-19	Cap. Polyester . 33uf	R29	2-89	Resiscor', Carbon 4.7K
C41	28-19	Cap. Polyester . 33 uf	R30	2-89	Resiscar, Carbon 4.7 K
${ }_{64}{ }_{6}$	28-19	Cap Polyester . 33 u f	R31	2-89	Resistor', Carbon 4.7K
643	$28-19$ $28-19$	Cap. Polyester . 330 f	R32	2-113	Resistor', Carbon 47K
C45	28-19	Cap. Polyester . 33 uf			
$\mathrm{C}_{4} 6$	28-19	Cap. Polyester . 33 uf	NOTE:	All resist	are $\frac{2}{\text { matat }}$ + 5%
647	28-19	Cap. Polyester . 33 uf	NOIE.	All resistor	are
C48	36-58	Cap. Monolithic . Opluf	* Cap	Tant 1, Ouf	can be used
C49	29-29	Cap. Dipped Mica 68pf	** Cap.	Tant 22uf	can be used
C50	36-83	Cap, Monolithic, .0luf		Tant 22ut	
C51	36-95	Cap, Monolithic, 0.luf			
C52	36-58	Cap, Monolithic . 0014 F			
C53	27-8-25	Cep. Alum Elecrro, louf 25Vi*			

	SYMBOL	TRUE TIME PART 笋	DESCRIPTION	SYMBOL	$\begin{aligned} & \text { TRUE TIME } \\ & \text { PART } \end{aligned}$	DESCRIPTION	SYMBOL	TRUE TIME PART \#	DESCRIPTION
	R33	2-113	Resistor, Carbon 47K	R76	2-153	Resistor, Carbon 2. 2 M	51	65-1	Switch 1 Pos.Dip
	R 35	2-81	Resistor, Carbon 2.2 K	R77	2-133	Resiator, Carbon 330K	S2	65-1	Switch 1 Pos.Dip
	R36	2-81	Resistor, Carbon 2.2 K	878	2-97	Resistor, Carbon 10K			
	R37	2-121	Resistor, Carbon 100K	R79	2-73	Reststor, Carbon 1K	U1	176-3130	I.C. RCA FC 3130
	R38	2-121	Resistor, Carbon 100K	R80	2-73	Reststor, Carbon 1K	U2	176-1496	I.C. Mot. MC1496L
	R39	2-161	Resiscor, Carbor 4.7M	R81	2-89	Resistor, Carbon 4, 7 K	U3	176-1496	I.C. Mot. MCl496L
	R40	20-7	Trim Pot., l00k (BEK-72FMR)	R82	2-116	Resistor, Carbon 62K	44	175-324	I.C. Nat. LM324
	R41	2-140	Resistor, Carbon 620k	R.83	2-116	Resistor, Carbon 62K	U5	176-4024	I.C. RCA 4024
	R42	2-140	Resistor, Carbon 620K	R84	2-149	Resistor, Carbon 1. 5M	06	$176-4030$	I.C. RCA 4030
	R43	2-177	Resistor, Carbon 22M	R85	2-149	Resistor, Carbon 1.5M	U7	176-4017	I.C. RCA 4017
	844	2-1.61	Resistor, Carbon 4.7M	R86	2-121	Resistor, Carbon 100K	U8	176-4017	I,C. RCA 4017
	R45	2-121	Resistor, Carbon look	R87	2-123	Resistor, Carbon l20K	U9	176-3130	T.C. RCA \$C3I30
	R46	20-7	Trim Poc., 100 K (BEK-72PMR)	R88	2-165	Resistor, Carbon 6. 3M	010	176-324	I.C. Nat. Lut 24
	R47	2-1.13	Resistor, Carbon 47K	k89	2-128	Resiscor, Carbon 200K	U11	176-4049	I.C. RCA 4049
	R48	2-49	Resistor, Carbon 100 ohms	R90	2-126	Resistor, Carbon 160K	U12	176-324	T.C. Nat. IM324
	R49	2-59	Registor, Carbon 680 ohms	R91	2-115	Restator, Carbon 56K	U13	176-4016	I.C. RCA 4016
	R50	2-77	Resistor, Garbor 1.5K	R92	2-145	Resistor, Carbon IM	U14	176-4016	I.C. RCA 4016
	R51	2-131	Registor, Carbon 270K	R93	2-114	Resistor. Carbon 51K	U15	176-4051	I.C. RCA 4051
	R 52	2-69	Resistor, Carbon 680 ohns	R94	2-115	Resistor, Carbon 56k	U16	176-4051	I.C. RCA 4051
	R53	2-131	Resistor, Carbon 270 K	R95	2-118	Resistor, Carbon 75K	017	176-3900	I.C. Nat. LM3900
	R54	2-153	Resistor, Carbon 2, 2M	R96	2-145	Resiscor, Carbon lM	U18	176-3900	I.C. Nat. LM3900
	855	2-89	Resistor, Carbon 4,7K	897	2-118	Resistor, Carbon 75k	UI9	176-3900	I.C. Nat. LM3900
	R56	2-113	Resistor, Carbon 47 K	898	2-126	Resiacor', Carbon 1.60k	U20	176-3140	1.C. RCA 3140 (or 3130)
0	857	2-12].	Resfator, Carbon 200k	R99	3-101	Registoz, Carbon 15k	U21	176-3140	I.C. RCA 31.40 (or 3130)
ω	R58	2-121	Resistor, Carbon 100K	R100	2-89	Resistor, Carbon 4.7 K	U22	176-324	I.C. Nat. LM324
	R59	2-121	Resistor, Carbon 100K	R101	2-109	Resistor, Carbon 33k	U23	176-4016	I.C. RCA 4016
	R60	2-121	Resistor, Garbon 100K	R102	2-121	Resistor, Carbon 100k	U24	176-7805	I.C. FSC 7805 UC
	R61	2-121	Resistor, Carbon 100K	R103	2-128	Resistor', Carbon 200k	U25	176-7805	I.C. FSC 7BOSUC
	R62	2-121	Resistor, Carbon 100k	RI04	2-128	Resistor, Carbon 200k			
	R63	2-89	Resistor, Garbon 4.7k	R105	2-115	Resistor, Carbon 56 K	Y1	59-7.680	Crystal 7.680MH2
	R64	2-113	Resistor, Carbon 47K	R106	2-49	Resistor, Carbon 100 ohms			
	$R 65$	2-113	Resistor, Carbon 47K	R107	2-89	Reststor, Carbon 4.7K			
	R66	2-121	Resistor, Carbon 100K	R108	2-89	Resiator, Carbon 4.7k			
	R67	2-121	Resistor, Carbon 100K	R109	2-97	Registor, Carbon 10K			
	R68	2-1.69	Resistor, Carbon LOM	R110	2-89	Resistor, Carbon 4.7 K			
	869	20-7	Trim Pot., 100 K (BEK-72PMR)	R111	2-140	Resistor, Carbon 620K			
	R70	2-128	Resistor, Cazbon 200k						
	R71	2-128	Resistor, Garbon 200K						
	R72	2-121	Resistor, Carbon 100 K						
	R73	2-19	Resistor, Carbon 5.6 ohms	NOTE: A 11 resistors are kwatt $+5 \%$					
	R74	2-59	Resistor, Carbon 270 ohms						
	R.75	2-177	Resistor, Carboa 22M						

PART 非

Cl	36-5B	Cap. Monolithic .00luf
02	36-58	Cap. Monolithic , ODIuF
03	36-58	Cap. Monolithic . ODluf
64	36-58	Cap. Monolithic .00luf
C5	36-55	Cap. Monolithic .luf
C6	36-95	Cap. Monolithic .luf
D 1	58-4	LED, Red. H.P. \#\#5082-46
D2	58-4	LED, Red. H.P. \#5082-46
D3	58-4	LED, Red, H.Y. \#55082-46
D4	58-4	LED, Red, H.P. ${ }^{\prime} 5082-46$
D5	58-4	LED, Red, H.P. \#S5082-46
D6	58-4	LED, Red, H.P. \#5082-46
D7	58-1	LED. Green
D8	58-1	LED, Green
TWB	85-43	Princed Wiring Board
Q1	175-MPS A43*	Transiator MPS A43
Q2	175-2N4889	Traneistor 2N4889
Q3	$175-\mathrm{MPS} \mathrm{A43*}$	Tranaistor MPS A43
Q4	175-2N4889	Transistor 2N4889
05	175-MPS A43*	Transistor MFS A43
06	175-2N4889	Transistor 2N4885
Q7	175-MPS A43*	Transistor MPS A43
Q8	175-2N4889	Transistor 2M4889
Q9	175-MPS A43*	Transiator MPS A43
Q10	175-2N4889	Trangistor 2N4889
Q1I	175-2	Transistor 2N3904
Q12	175-2	Transistor 203904
Q13	175-2	Transiacor 2 N 3904
Q14	175-2	Transistor 2N3904
Q15	175-2	Transistor 2 N3904

SMEOL	$\underset{\text { PABT TIME }}{ }$	DESCRIPILON
R1	2-81	Res. Casbon 2.2
R2	2-11.7	Res. Carbon 68 k
R3	2-105	Res. Carbon 22 K
R4	2-136	Res. Carbon 430 K
R5	2-93	Res. Carbon 6.8
R6	2-117	Kes. Carbon 68 K
87	2-105	Res. Carbon 22 K
R8	2.136	Res. Carbon 430
R9	2-93	Res. Carbon 6.8
E10	2-117	Res. Carbon 68k
K11	2-105	Res, Carbon 22 K
R12	2-136	Res. Carbon 430
R13	2-93	Res. Carbon 6,8
R14	2-117	Res. Carbon 68K

* Motorala Only

Note: All reaistors are $1 / 4 \mathrm{~W} \pm 5 \%$

6-11 PART LOCATION-ASSEMBLY 86-43

SMMBOL	TRUE TIME PART	OESCRIPTION
C1	36－58	Gap．Monolichic ． 001 l
62	36－5．	Cap．Monalithic ． 001 l
C3	36－58	Cap．Monolithic ． 001 uf
C4	36－58	Cap．Monolichie OOLuf
C5	36－58	Cap．Monotithic ．OOLuf
C6	36－59	Cap．Monolithic ． 001 uf
57	36－56	Cap．Monolithic OOLuf
cg	36－58	Cap．Monolithic ．OOluf
C9	29－33	Cag．Dipped Mica l00pf
C10	36－50	Cap．Monolithic 470pi
Cll	36－95	Cap Manolithic 0．luf
Cl 2	36－95	Cap．Monolithie 0．luf
C19	36－95	Cap．Monolithic 0．luf
C14	36－95	Cap．Monolithic O．Luf
J1	372－505	Connecsor 50 Pin 0
J2	379－16	16 Pin I C．Connectar
JPR1	2－0	Jumper
JPR2	2－0	Jumper
JPR3	2－0	Jumper
PWB	85－44	Printed Wiring Board
R1－R6	12－121	Res．S．I．Package l00k
R 7	2－97	Res．Carbon lok
R8	2－97	Res．Catbon lok
R9	2－109＊	Res．Carbon 33k
R10	2－97	Res．Carbon 10k
R11－R17	11－89	Res．S．I．P． 4.7 K
R18	2－105	Res．Carbon 22 K
Note：All resistors are $1 / 4 \mathrm{~W}+5 \%$ ＊Option replacing JPR－2（Special Order Dnly）		
U1	176－4050	I．C．RCA 非050
U2	176－4050	I．C．RCA $\$ 4050$
サ3	176－4050	I．C．RCA 144050
44	176－4050	I．C．RCA 54050
U5	176－4050	I．C．RCA 44050
46	176－4050	I．C．RCA ${ }^{\prime \prime} 4050$
U7	176－4050	I．C．RCA 14050
08	176－4050	I．C．RCA $1 / 4050$
U9	176－4050	I．C．RCA ${ }^{\text {P }} 4050$
UL0	176－4042	I．C．RCA $\$ 4042$
U1I	176－4042	I．C．RCA
U12	176－4042	I．C．RCA 14042
せI3	176－4042	I．C．RCA 54042
U14	176－4042	I．C．RCA 154042
U15	176－4042	I．C．RCA $1 / 4042$
U16	176－4042	I．C．RCA $1 / 4042$
UI7	176－4042	I．C．RCA $1 / 4042$
U18	176－4042	I．C．RCA \ddagger 妆 042
U19	176－4042	I．C．RCA ${ }^{\text {F }} 4042$
U20	176－4042	I．C．RCA 44042
U21	176－4042	I．C．RCA ${ }^{\text {H }} 4042$
U22	176－4042	I．C．RCA
U23	176－4042	I．C．RCA F4042 $^{\text {a }}$
U24	176－4042	I．C．RCA 144042
U25	176－4042	T．C．RCA 14042
U26	176－4042	I．C．RCA 34042
U27	176－4042	I．C．RCA 74642
U28	$176-4050$	I．C．RCA \＃4050
U29	176－4050	I．C．RCA $\# 4050$
U30	176－4050	I．C．RCA 44050
U31	176－40162	I．G．RCA 4 440162
032	176×40162	I．C．RCA \＃40162
U33	176－40162	I．C．RCA \＃40162
U34	176－4049	I．C．RCA
U35	176－4013	I．C．RCA ${ }^{\text {F }} 4013$
U36	176－4050	I．C．RCA $\$ 4050$
U 37	176－4001	I．C．RCA 44001

SYMBDL	$\begin{aligned} & \text { TRUE TIME } \\ & \text { PART } \end{aligned}$	DESCRIPTION
C1		NOT USED
C2		NOT USED
C3		NOT USED
C4	36-95	Cap. Monolithic .luf
C5	36-95	Cap. Monolithic.luf
C6	36-95	Cap. Monolithic. 1 uf
C7	36-95	Cap. Monolithic . Luf
C8	36-50	Cap. Monolithic 470pf
69	36-50	Cap. Monolithie 470pf
J1	372-25P	Socket 25 Pin 'D'
J2		NOT USED
J3	386-40	Connector, Male, 40pin
54	385-40	Connector, Female, 40pin
JPR-1	317-12	Jumper $\frac{1}{2}$
JPR-2	2-0	Jumper
JPR-3	2-0	Jumper
JPR-4		NOT USED
JPR-5	387-40	Cable, 40 cond, 10' long
PWB	85-46	Princed Wiring Board
Q1	175-4	Transistor, MPS 3702
Q2	175-3	Transistor, MPS 2369
R1	2-169	Res. Carbon 10M
R2		NOT USED
R3		NOT USED
R4		NOT USED
R5		NOT USED
R6		NOT USED
R7-R13	11-121	Res. S.I.P. 100 K
R14	2-121	Res. Carbon 100k
S1	65-8	Switch, 8 Pos. SPST Dip
S2	65-8	Switch, 8 Pos. SPST Dip
U1	176-6850	I.C. 6850
U2	176-81LS96	I.C. 81LS96
U3	176-74LS138	I.C. $74 \mathrm{LS138}$
U4	176-MC1488	I.C. MC1488
U5	176-MC1489	I.C. MC1489
U6	176-MC14411	I.C. MC14411
Y1	59-1843.2	Crystal L. 8432 MHz
Note:	All	rs are $1 / 4 \mathrm{~W} \pm 5 \%$

6-21 SCHEMATIC-ASSEMBLY 86-47

6-24 SCHEMATIC-ASSEMBLY 86-48

SYMBOL	true time PART \#	DESCRIPTION
C1	27-12	Cap, Electro 20uf 2000
c2	28-77	Cap. Electro 2000 uf 150
C3	27-8-25*	Cap. Alum Electro, 10uf 25V
64	27-8-25*	Cap. Alum Electro, louf 25 V
C5	27-28	Cap. Electro 400uf 50V
C6	27-28	Cap. Electro 400uf 50 V
C7	27-8.25*	Cap. Alum Elecrro, 10uf 25 V
C8	27-8-25*	Cap, Alum Electro, 10 uf 25 V
c9	36-95	Cap. Monolithic .luf
C10	36-95	Cap. Monolithic , luf
C12	36-95	Cap. Monolithic .luf
01	57-3	Diode 1N4005
D2	57-3	Diode 1N4005
D3	57-3	Diode 1, 4005
Di	57-3	Diode 104005
DS		NOT USED
D6	57-2	Diode 1N4002
D7	57-2	Diode 1N4002
D8	$57-2$	Diode 1N4002
D9	57-2	Diode 1N4002
D10	57-2	Diode 1N4002
D11	57-2	Diode 1N4002
012	57-2	Diode 1N4002
013	57-2	DLode 1N4002
J1	318-7	Socket, P Pin Strip
J2	318-6	Socket, 6 Pin Strip
JPR-1	2-0	Jumper
JPR-2	2-0	Jumper
PW6	85-52	Frinted Wirtmg Board
Q1	175-2	Transistors 2N3904
R1	7-133	Resistor Carbon 330k
R2	2-7?	Resistor Carbon l. 5k
R3	2-169	Resistor Carbon lomeg
R4	2-121	Resistor Carbon 100K
R.5	2-121	Resistor Carbon 100K
R6	2-89	Resistor Carbon 4,7K
E7	2-89	Resistor Garbon 4,7K
R8	2-97	Resistor Carbon 10K
Tl	54-2	Transformer
U1	176-7805	I.C. +5V Reg. FSC 7805 UC
U2	176-7805	I.C. + SV Reg. FSC 7805UC
U3	176-78912	I. C. +12V Reg. FSG 78M12
W4	176-7912UC	1.C. -12 V Reg. FSC 7912 OC
115	176-79105	I.C. $79 \mathrm{LO5}$
U6	176-3130	I.C. RCA \ddagger \#CA 3130

息

1	216.30	Rear Panel	1
2	365-1	Fuse Holder	1
3	342-1	Power Socket and Line Filter	1
4	61-1	Thumb Wheel Switeh	1
5	375-1	BNC Connector	3
6	256-. 375	Solder E亡¢, $375^{\prime \prime}$ I.D.	2
7	255-4-4	Spacer, 4-40 x ss' Threaded	1
8	240-4-2	Screw, 4-40 x ${ }_{4}^{\text {ri }}$ Long PHMS	1
9	240-4-3	Sorew, 4-40 x 3/8' Long PHMS	4
10	253-4	Washer fit Flat	1
11	265-4	Lockwasher ff 4 Internal	6
12	252-4	Ntit 4-40 Hex	4
13	277-2	Spacer, Circuit Board, ${ }^{\text {² }}$ Lg	2
14	241-6-2	Strew, 6-32 x '' Long PHMS $^{\prime \prime}$	4
15	277-6	Spacer, Circuit Board 3/8'r lg	2
16		MOT USED	
17		NOT USED	
18	61-2	Thumb Wheel (+ and -)	1
19	134-24	Wiring Harness (not shomm)	1
20	274-1	Plug, Hole	A. R
21	241-6-5	Serew, $6=32 \times 5 / 8{ }^{\prime \prime}$ Long FHMS	2
22	255-6-2	Spacer, $6=32 \times$ 年' Long Alum	2
23	363-.750	Fuse, $3 \mathrm{AG}, 3 / 4 \mathrm{~A}$,

6-33 PARTS LIST 221-30

ITEM	TRUE TIME PART NO.	DESCRIPTION	QTY
1	215-30	Sub-Chassis	1
2	277-2	Spacer, P.W. Board $\mathrm{f}^{\prime \prime \prime}$ Long	6
3	241-6-2		6
4	240-6-2	Screw, $6-32 \times$ ¢ Long PHMS	2
5	277-6	Spacer, P.W. Board, 3/8' Lg.	2
6	253-6	Washer, \#6 Flat	2
7	282-1	Adhesive, Locktite	A/R
8	73-18	Grommet, Rubber	1

7-16 The antenna tuning box Model A-60LW should not require service under normal operating conditions as it contains no active devices. If it should become evident that the unit is defective, it is best to return the tuning box to the factory for repair.

7-17 If it is not possible to return the unit, the end with the connector can be cut open with a small knife. After repair is complete, the end can be resealed with common PVC cement. The schematic and parts list is included below to assist in field repair.

Figure 7-1 A-60LW

SECTION VII

ANTENNA INSTALLATION

AND SERVICE MANUAL

MODEL A-60LW

SECTION VII

ANTENNA INSTALLATION AND SERVICE MANUAL MODEL A.60LW

7-1 INTRODUCTION

7-2 The Model A-60LW antenna is normally used in areas in which the signal strength is very weak or where noise interference problems exist. The first step in installation of your antenna is to check the nameplate on the unit and be certain you use the correct instructions for the antenna you have received. The installation instructions for the $A-60 \mathrm{LW}$ are below, and the instructions for the Model A-60FS are found in Section VIII.

7-3 EQUIPMENT REQUIRED TO INSTALL MODEL A-60LW ANTENNA
(All equipment must operate at installation site)
-AC Voltmeter capable of reading 0.3 volt full scale at 60 kHz .
-Signal generator capable of 60.0 kHz with 6-7 volts P-P or an audio oscillator with the same capabilities.
-Large variable capacitor (to 1500 pf) or decade capacitance box capable of increments of 100 pf .
-Soldering iron.
7-4 INSTALLATION PROCEDURE
7-5 非1 - After the model of your antenna is determined to be A-60LW, the next step is the installation of the receiving wire. This antenna utilizes as its signal receiving device a length of antenna wire, 200 feet of wire is supplied with the antenna kit. The antenna wire, when installed should be a minimum of 75 feet, but if space is available a longer length would give a larger capture area and thus a stronger signal. The longer wire will also result in a better signal-to-noise ratio. In determining the orientation of the wire, the installer must first ascertain the compass heading for Fort Collins, Colorado from the installation site. This can be found using the Great Circle Map found in Section XI of this manual. When the compass heading has been determined the antenna must point directly at Fort Collins. Once the direction of orientation has been determined, the wire should be
a minimum of two or three feet above the roof or ground. Height above the ground is of no particular concern, and the two or three feet is adequate. Be certain not to bend the antenna around any corners in an effort to make it longer, as this will cancel out part of the signal received on the correctly oriented section of the Wire. (See the drawing on the following page.)

7-6 非2 - Attach the tuning box (PVC tube) to one of the supports on one end of the wire just installed. Mount the tube in such a way that moisture is least likely to enter the tube. The unit has been sealed at the factory and is relatively water resistant as long as care is taken in mounting it with the terminals facing downward.

7-7 \#3 - Solder the wire antenna just installed to the terminal marked "A". The connection to the wire may be at any point on its length, but the distance from the antenna wire to the tuning box should be kept to a minimum. Connect the termianl on the antenna marked " G " to a good solid ground, using the excess antenna wire and the grounding clamp supplied. It is absolutely essential that this ground is provided.

7-8 非 4 - The physical installation of the unit is now complete and all that is required is the tuning of the system for maximum reception of the 60 kHz signal. Connect the AC voltmeter to the output BNC on the antenna. Adjust the generator to 60 kHz using a counter to set the output accurately. Connect this generator to an auxiliary antenna which can be a length of 50 foot long hook-up wire laid near the long wire previously installed. When this antenna is fed with 7 to 8 volts $P-P$ of 60 kHz from the oscillator it will provide a local source of 60 kHz strong enough to overcome any local noise at this frequency and strong enough to read on the voltmeter. Connect the variable capacitor across terminals "A" and "G" of the tuning box. Set the trimmer capacitor in the tuning box to its midpoint in capacitance, the maximum is marked by alignment of the two red dots. Tune the large variable capacitor or decade box until a sharp peak is noted on the $A C$ volt meter*. Log the reading obtained on the voltmeter for reference later. Remove the variable capacitor or decade box and substitute a dipped mica capacitor for its exact value. After the dipped mica capacitor is soldered in place of the removed capacitor, trim the trimmer in the tuning box for peak reading on the voltmeter. Compare the reading now on the voltmeter with that logged earlier. If the antenna is now in tune,
the readings will be identical. If the two readings are not in agreement the tuning should be rechecked to determine if maximum has been achieved.
*NOTE: IF A SHARP PEAK CANNOT BE FOUND ON THE AC VOLTMETER REFER TO THE TROUBLESHOOTING PORTION OF THIS MANUAL.

7-9 护5 - This completes the installation of the antenna. It is recommended that RG-58/U be used as leadin coax.

7-10 TROUBLESHOOTING MODEL A-60LW
7-11 排 - In very rare instances of an extrenely long antenna wire or a long wire to a ground source, it may be found that it is not possible to tune the antenna as previously described. This is due to the antenna-ground system resonating at a frequency lower than 60 kHz . If this symptom arises, first, check the ground connection, and if this appears to be in good condition, do the following:
a. Tune the generator driving the source antenna to a frequency lower than 60 kHz and see if a sharp peak can be found.
b. If this is found, return the generator to 60 kHz and connect the variable capacitor in series with the antenna and the Pin " A " on the tuning box.
c. The normal tuning procedure can now be accomplished using this series tuning capacitor.

7-12 \#2 - Check the ground connection. This should be as short as possible to a good ground source.

7-13 GENERAL
7-14 After tuning the antenna, if WWVB is not present on the receiver at the R.F. Test Point:
a. Be certain that the antenna wire is pointed toward Fort Collins, Colorado.
b. Check for a defective lead-in coax.
c. Try grounding the receiver case.
d. Moisture causing the antenna to become detuned by grounding out the antenna wire.

SECTION VIII

ANTENNA INSTALLATION

AND SERVICE MANUAL

MODEL A-60FS

ANTENNA INSTALLATION AND SERVICE MANUAL

MODEL A-60FS

8-1 INTRODUCTION

8-2 The Model A-60FS antenna is normally used in areas where the signal strength of WWVB is $100 \mu \mathrm{v} / \mathrm{m}$ or above. It is often used in applications which require it to be portable due to frequent moving of an installation. The first step in installing your antenna is to check the nameplate on the unit and the model number to be certain you are using the correct instructions for the antenna you have received. Model A-60FS instructions are below and the instructions for Model A-60LW are in Section VII.

8-3 Model A-60FS antenna has been specifically designed for operation with receivers manufactured by True Time Instrument Company. The factory should be consulted before connecting the antenna to any other receiver.

8-4 INSTALLATION
8-5 The installation of the antenna Model A-60FS requires only that the direction of Fort Collins, Colorado be determined and that the antenna be mounted horizontally as high in the air as is practical. The antenna is provided with a fitting which will allow it to be mounted on the end of a piece of comnon one-inch pipe. (l' Male Iron Pipe Thread) Once the unit is mounted, it should be directed such that the tubing points 90° from Fort Collins, Colorado. (The direction of Fort Collins can be determined by using the Great Circle Map included in this manual.) This orientation will allow the incoming signal to broadside the tube and obtain maximum reception.

8-6 When selecting a site for the antenna installation, several factors should be kept in mind. First, the antenna should be mounted a minimum of 25 feet from the receiver to prevent regeneration. Second, the antenna should not be mounted close to any steel structures (roof decking, pipes, air conditioning, etc.). Third, the signal-to-noise ratio will be improved by locating the antenna as far as practical from any local R.F. noise source (large electric motors, power lines, etc.). Finally,
in most cases the antenna will not be able to receive signal from WWVB is installed inside of a building, it must be outside.

8-7 After the unit is mounted, attach the lead-in coax (RG-58/U recommended) to the output BNC and the installation is complete. The antenna has been provided with a trimmer capacitor which has been factory tuned and locked for maximum reception. This antenna should not need retuning except in cases of extreme temperature, or after a long period of aging. Tuning procedure is included in the Maintenance Section of this manual.

8-8 MAINTENANCE

8-9 The Model A-60FS antenna contains a ferrite rod antenna coil and a preamp/line driver. The preamp contains only three active devices and should not require maintenance under normal conditions.

8-10 The antenna may need re-tuning when operating in extreme temperatures. Then it will be evident that the resonate frequency has shifted from the factory set 60 kHz , and this will cause a loss in signal strength. The best method of re-tuning the antenna is depicted in the block diagram below.

Figure 8-1 A60FS Block Diagram
8-11 Apply 12 volts through a 30 K ohm resistor to the BNC connector, and couple in a 60.0 kHz signal by wrapping a single turn of wire around the center of the antenna. Connect the wire to the signal generator through a 1 K ohm resistor; this resistor provides a constant current source.

8-12 This set-up and tuning should be performed at the approximate temperature the antenna is intended to operate. After the equipment is set-up as shown, remove the slot-head screw in the end of the antenna to allow access to the internal trimmer. The internal ceramic trimmer is adjusted with a small slot screwdriver. Tune the trimmer for maximum output at the BNC connector. Reinstall the screw. The antenna is now re-tuned for 60 kHz resonance at the temperature at which the tuning has been performed.

8-13 TROUBLESHOOTING
8-14 As mentioned in the Maintenance Section, the antenna contains only three active devices, all bipolar transistors. The most common types of failure that might be expected are:
a. Antenna has become de-tuned due to temperature extremes or aging.
b. Ferrite rod broken due to mechanical shock. c. Failure of one of the devices.

8-15 The first step in determining the cause of antenna failure is to set-up the test equipment as shown in the block diagram in the Section above. With a 80 mv (P-P) at generator output measured at Point AA, the antenna output should measure about 3.5 mv at resonance on the A.C. Voltmeter (10mv P-P). If this level is not present, re-tune the trimmer to peak output. Once the resonance is set with the trimmer, the -3 db points should occur at $\pm 500 \mathrm{~Hz}$ from resonance.

NOTE: Resonance frequency and Q will be shifted by nearby conductors; attempt to keep large conductors a minimum of 2 feet away from the antenna when in use or during test.

8-16 A broken ferrite rod will first become evident due to the inability to tune and obtain the proper output. To check for a broken rod, slowly increase the frequency of the generator and if the antenna resonance is found above 61 kHz , the cause is most likely a broken ferrite rod.

8-17 After re-tuning, if the antenna does not have an output, as above, it should be returned to the factory for repair.

8-18 In some cases it may not be practical to return the antenna. Below is information for performing field repairs.

8-19 After it has been determined by the above tests that the antenna is defective, use a sharp knife and cut open the end plate on the tubing on which the output connector is mounted. The preamp assembly can then be pulled out and repaired with the data and schematic on the following page. After repairs are complete, the end can be resealed with common PVC cement.

Figure 8-2

SECTION IX

wWVB TIME CODE

9-I INTRODUCTION
9-2 The National Bureau of Standards radio station WWVB, located in Fort Collins, Colorado (Latitude 40° $41^{\prime} 28.3^{\prime \prime} \mathrm{N}$, Longitude $105^{\circ} 02^{\prime} 39.5^{\prime \prime} \mathrm{W}$), transmits a modified IRIG H time code with a power of 13 kW E.R.P. The modified IRIG H time code is a binary coded decimal (BCD) with a one-minute time frame.

9-3 CODE AND CARRIER
9-4 On July 1, 1965, WWVB began broadcasting time information using a level-shift carrier time code. The code is broadcast continuously and is synchronized with the 60 kHz carrier signal. Beginning in mid 1973 these broadcasts were made on a continuous basis eliminating the periodic Tuesday shutdown.

9-5 MARKER GENERATION
9-6 As shown in the Figure below, the signal consists of 60 markers each minute, with one marker each second. (Time progresses from left to right.) Each marker is generated by reducing the power of the carrier by 10 db at the beginning of the corresponding second and restoring it.

1. 0.2 seconds later for an uncoded marker or binary "zero".
2. 0.5 seconds later for a binary "one".
3. 0.8 seconds later for a 10 -second position marker or for a minute reference marker.

Chart depicts 10 db carrier level drops as transmitted.

9-7 MARKER ORDER AND GROUPS
9-8 The 10 -second position markers, labeled PO through P5 on the diagram, occur respectively as the 59th, $9 \mathrm{th}, 19 \mathrm{th}, 29 \mathrm{th}, 39 \mathrm{th}$, and 49 th second pulses of each minute. The minute reference marker begins at zero seconds. Uncoded markers occur periodically as the 4th, $14 \mathrm{th}, 24 \mathrm{th}, 34 \mathrm{th}, 44 \mathrm{th}, 54 \mathrm{th}$ seconds pulses and also as the $10 \mathrm{th}, 11 \mathrm{th}, 20 \mathrm{th}, 21 \mathrm{st}, 35 \mathrm{th}, 55 \mathrm{th}, 56 \mathrm{th}, 57 \mathrm{th}$, and 58 th seconds pulses of each minute. Thus every minute contains twelve groups of five markers, each group ending either with a position marker or an uncoded marker.

9-9 [NFORMATION SETS
9-10 Each minute the code presents time-of-year information in minutes, hours, day-of-the-year, and the actual milliseconds difference between the time as broadcast and the best known estimate of UT_{1}. The first two BCD groups in the minute specifies the minute of the hour; the third and fourth $B C D$ groups make up a set which specifies the hour of the day; the fifth, sixth, and seventh groups form a set which specifies the day-of-year. A set made up of the ninth, tenth, and eleventh BCD groups, specifies the number of milliseconds to be added or subtracted from the code time as broadcast in order to obtain U_{1}. The relationship of the $U T T_{1}$ scale to the time as coded is indicated in the eighth group.

9-11 If UT 1 is "slow" with respect to the code time, a binary "one" labeled SUB (subtract) on the preceding Figure, will be broadcast in the eighth group during the 38 th second of the minute. If UT ${ }_{1}$ is "fast" with respect to the code time a binary "one", labeled ADD, will be broadcast in the eighth group during the 37 th and 39 th seconds of the minute. The twelfth group is not used to convey information.

9-12 DIGITAL INFORMATION
9-13 When used to convey numerical information, the four coded markers used as digits in a BCD group are indexed 8-4-2-1 in that order. Sometimes only the last two or three of the coded markers in a group are needed, as in the first groups in the minutes, hours, and days sets. In these cases, the markers are indexed $2-1$, or $4-2-1$, accordingly. The indices of the first group in each set which contains two groups are multiplied by 10. Those of the second group of such a set are multiplied by 1. The indices of the first group in each set which contains three groups are multiplied by 100 ; those of the second group are multiplied by 10 , and those of the third group by 1 .

9-14 Example: A specific example is indicated in the Figure 9-1. The occurrence of two binary "ones" in the "minutes set" indicates that the minute contemplated is the $40+2=42$ nd minute. Similarly, the two binary "ones" in the "hours set" indicate the $10+8=18$ th hour of the day, while the four binary "ones" in the "days set" indicate the $200+40+10+8=258$ th day of the year.

9-15. It is seen from the "UTI Relationship" group and the "UTI Set" that one should subtract, from any second in this minute, $400+200+100=700$ milliseconds to get an estimate of UTI. For example, the 35 th UTI interval would end 700 milliseconds (or 0.7 second) later than the end of the 35 th second. In other words, the UTI scale reading for the end of the 35 th second would be 18 h 42 m 34.3 s , since $35.0 \mathrm{~s}-0.7 \mathrm{~s}=34.3 \mathrm{~s}$.

9-16 If more detailed and further information on these broadcasts are required please write to the address on the next page and ask for a copy of the current issue of National Bureau of Standards Publication $\$ 432$.

Time and Frequency Division Institute for Basic Standards National Bureau of Standards Boulder, Colorado 80303

SECTION X

GREAT CIRCLE MAP

OF THE NORTHERN PORTION OF THE WESTERN HEMISPHERE CENTERED ON

FORT COLLINS, COLORADO

TO DETERMINE THE COMPASS HEADING FOR ANTENNA ORIENTATION FROM YOUR LOCATION TO FORT COLLINS, COLORADO: Draw a straight line from the receiving location through Fort Collins, Colorado point $\boldsymbol{\oplus}$ on the map and continue until the line intersects the outer ring. The point at which the line intersects the outer ring indicates the compass heading for Fort Collins from you location.

SECTION XI

MEASURED FIELD INTENSITY OF WWVB

IRIG B AND IRIG H TIME CODE FORMAT

12-1 INTRODUCTION

12-2 The IRIG B Time Code as outputted from the Model 60-DC, and IRIG H if optionally ordered, is as described in "IRIG STANDARD TIME FORMATS" Tele-Communications Working Group, Inter-Range Instrumentation Group, Range Commanders Council, IRIG Document 104-70. This document is published by Secretariat, Range Commanders Council, White Sands Missile Range, New Mexico, 88002 dated August, 1970.

12-3 The standard time formats described in this publication were designed for use in missile, satellite and space research programs which require the use of a standardized time format for the efficient interchange of test data among the various users of the data. These formats are suitable for recording on magnetic tape, oscillographs, film and for real-time transmission in both automatic and manual data reduction. The IRIG B format from the Model 60-DC is suitable for remote display driving, recording on magnetic tape and many other uses. When the output is used as IRIG B in the strict sense as described by the above mentioned document, the output must be in Universal Coordinated Time (UTC) and not converted to 12 -hour basis or local time zone as is the capability of this instrument. The same is of course true of the IRIG H output.

12-4 IRIG CODE FORMAT
12-5 The IRIG B and IRIG H Time Code as provided by the Model 60-DC is a serial time format with two coded expressions. The first expression is a time-of-year code word in Binary Coded Decimal (BCD) notation as days, hours, minutes and seconds. The second expression used here is a set of elements for encoding control functions which are used in the Model 60-DC to provide the user with worst case estimate of the timing accuracy. The estimate for this timing accurace is discussed in Sections 3-49 through 3-53 of this manual. The third expression sometimes found in the IRIG code, which is an expression of time-of-day in Straight Binary Seconds (SBS) notation, is not outputted by the Model 60-DC.

12-6 Each pulse, or element, in the format of the levelshift encoded signal has a leading edge which is "on time". The repetition rate of the elements in the IRIG B is 100 pulses per second, and 1 pulse per second in IRIG H. The index count interval, or the time between the leading edges of two consecutive elements is 0.01 seconds with IRIG B and 1 second with IRIG H.

12-7 The time frame format begins with a frame reference marker and consists of all the elements between two consecutive frame reference markers. This frame reference marker consists of a consecutive position identifier element and a "P" reference element each having a duration of 0.008 seconds in IRIG B and .8 seconds in IRIG H. The on time reference point of time frame is the leading edge of the second pulse. The repetition rate of the time frame called the "time frame rate" is 1 fps (frame per second) with IRIG B and 1 fpm (frame per minute) with IRIG $\mathrm{H} . \mathrm{P}_{0}$ occurs one index count interval before the frame reference point and each succeeding position identifier ($\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$, P_{4}, etc.) occurs every succeeding tenth element. The repetition rate them, of the position identifiers is 10 pps in IRIG B and 6 ppm in IRIG H . There are 7 position identifiers per IRIG H frame and 11 position identifiers per IRIG B frame.

12-8 The BCD time-of-year code word is pulse width coded. A binary " 1 " element has a duration of 0.005 seconds, a binary " 0 " has a duration of 0.002 seconds for IRIG B. IRIG H in .5 seconds for a " 1 " and . 2 seconds For a "0". This format is then used to encode the BCD time-of-year code word which consists of decimal digits in a 1-2-4-8 binary sequence.

12-9 When the IRIG B from the Model 60-DC is in the amplitude modulated 1 kHz format, the sine wave carrier frequency is synchronized to have a positive going axis crossing coincident with the leading edge of the modulating format elements. The IRIG H format is D.C. level shift format as supplied by the factory. See Section 3-44.

12-10 Figure 12-1 on the following page depicts the IRIG B Time Code, and Figure $12-2$ depicts IRIG H.

12-11 CONTROL FUNCTIONS
12-12 The control functions provide the user of the IRIG B Time Code with a record in their recording of the estimated worst case accuracy of the Model 60-DC time information. This is more fully covered in Section A "1" or . 005 second pulse width in the following loca-
tions signify the accuracy specifically.
Control Function Element 6 (or time $\mathrm{Pr}_{\mathrm{r}}+550 \mathrm{~ms}$) indicates +1 . Oms worst case Control Function Element 7 (or time $\mathrm{P}_{\mathrm{r}}+560 \mathrm{~ms}$) indicates +5 . Oms worst case Control Function Element 8 (or time $\mathrm{Pr}_{\mathrm{r}}+570 \mathrm{~ms}$) indicates +50.0 ms worst case Control Function Element 9 (or time $\mathrm{P}_{\mathrm{r}}+580 \mathrm{~ms}$) indicates +500.0 ms worst case

12-13 This information is also utilized by the True Time Model RD-B to duplicate the display of the $60-\mathrm{DC}$ Master Clock. At $\pm 50 \mathrm{~ms}$ the colons are flashed, and at $\pm 500 \mathrm{~ms}$ the display will blink on the Model RD-B.

12-14 The IRIG H Time Code does not contain these control bits. These have not been included due to the relative time frames and usage of this code as opposed to the IRIG B Code.

FIGURE 12-1 IRIG B TIME CODE FORMAT

FIGURE 12-2 IRIG H TIME CODE FORMAT

