- Four Models each covering six decades
- 0.01Ω through $11.1111 \mathrm{k} \Omega$
- 0.1Ω through $111.111 \mathrm{k} \Omega$
- 1Ω through $1.11111 \mathrm{M} \Omega$
- 10Ω through $\mathbf{1 1 . 1 1 1 1} \mathrm{M} \Omega$
- 0.01 \% Initial Accuracy
- Serves DC through Audio Frequency Applications
- Great Stability due to 5ppm/ ${ }^{\circ} \mathrm{C}$ Temperature Coefficient and $0.15 \mathrm{ppm} / \mathrm{mW}$ Power Coefficient for values $1 \mathrm{k} \Omega$ and up
- Short term switch repeatability $\pm 0.24 \mathrm{~m} \Omega$ typical

Dekabox In-Line Decade Resistors

The Model DB62 Dekabox In-Line Decade Resistor provides dependable long-term service in precision DC through audio frequency applications. Six decades of non-inductive, precision, wire-wound fixed resistors are mounted in a low noise shielded aluminum housing.

The DB62 is easy to use. The input terminals and a case connected ground terminal are conveniently located on the front panel. The dials rotate independently through 360 degrees to simplify and speed settings. This allows for a coarse approximation and then precise finer steps to provide an
exact resistance value.
Accuracy over a wide range of ambient conditions is assured by the use of resistors with good temperature and power coefficients. Repeatability is assured by the use of switches that have multiple contacts of solid silver-alloy.

The Dekabox resistance values are easily read from the large-numeral in-line presentation above the knobs. Resistance per step and current ratings of each decade are presented above the knobs for operator convenience and circuit safety.

DEKABOX IN-LINE DECADERESISTORS
Specifications

Model	Total	Smallest	Resistance Values ($\boldsymbol{\Omega}$)					
No.	Resistance Ω	Step Ω	R1	R2	R3	R4	R5	R6
	11.1111 M	10	1 M	100 k	10 k	1 k	100	10
	1.11111 M	1	100 k	10 k	1 k	100	10	1
	111.111 k	0.1	10 k	1 k	100	10	1	0.1
	11.1111 k	0.01	1 k	100	10	1	0.1	0.01

Accuracy

Initial (60 days)
Long-term

Accuracy of resistance increments is given in the table below. Accuracy of resistance change from zero setting is given below.
$\pm(0.01 \%+3 \mathrm{~m} \Omega)$
$\pm(0.02 \%+6 \mathrm{~m} \Omega) /$ year

Included Accessories
Manual
P/N 7275
Z540 Compliant Calibration
with Certificate and Data for DB62 P/N OPT-Z540

Model DB62 ratings per step for each decade								
Resistance Per Decade	Resistance ${ }^{1}$ Value R	Incremental Accuracy		Coefficients		Measurement Duty ${ }^{2}$ Maximum Ratings		Peak Voltage
(Ω)	(Ω)	Initial (\%)	Long-term (\%)	Temperature (ppm/으)	Power (ppm/mW/step)	Power (mW/step)	Current (mA)	(V/step)
10 M	1 M	0.01	0.02	5	0.15	100	0.3	300
1 M	100 k	0.01	0.02	5	0.15	1000	3.2	300
100 k	10 k	0.01	0.02	5	0.15	1000	10	100
10 k	1 k	0.01	0.02	5	0.15	1000	32	32
1k	100	0.01	0.02	5	0.15	1000	100	10
100	10	0.012	0.025	15	0.45	1000	320	3.2
10	1	0.03	0.07	20	0.6	1000	1000	1
1	0.1	0.2	0.5	60	3	500	2200	0.2
0.1	0.01	2	5	400	60	160	4000	0.04

${ }^{1}$ Refers to previous table
${ }^{2}$ Intermittent use such that temperature rise of the resistor will not appreciably exceed that which would occur in free air.

