

OSCILLATOR PRODUCTS CATALOG O-20-A

Please visit our website www.murata.com

CONTENTS

Introduction and Standards	1-4
RFQ Form/Quick Quote	5
Part Numbering System	6
1 Temperature Compensating High Stability Crystal Oscillators	7–12
2 Voltage Controlled Oscillators	13–18
3 Ovenized Crystal Oscillators	19–25
4 Surface Mount Crystal Oscillators	26–28
5 Digitally Compensated Crystal Oscillators	29
6 Microwave Oscillators – VCO	30–31
7 Phase Lock Loop Modules	32–33

If you have any questions concerning Crystal Oscillator products please contact: Murata Electronics N.A., Inc. State College Operations 1900 West College Avenue State College, PA 16801-2799 Phone: 814-237-1431 Fax: 814-238-0490

Quality Control

Murata Electronics' Quality **Control Department maintains** product quality at a level equal to the company's high standards of performance and workmanship, which are certified to ISO-9001 and ISO-14000 requirements. The department is vested with the authority to exercise control over every phase of the manufacturing process. This control extends from incoming inspection of purchased material to in-process inspection, inspection of final product, packaging and shipping.

Environmental Testing

Product quality is guaranteed by our Quality Assurance Program. Many oscillators are custom designed to meet your needs.

Standard oscillator design parameters are:

- Storage Temperature: -55°C to +85°C (to +125°C Optional)
- Vibration: 10G's, 10 to 500Hz MIL-STD-202, Method 204
- Shock: Test condition A 30g, 11msec., ½ sine MIL-STD-202, Method 213, Test Condition J
- Altitude: Sea Level to space per MIL-STD-202, Method 105
- Seal: MIL-STD-202, Method 112 Test Condition D

More stringent specification levels are available. Consult our factory for details.

Other environmental conditions encountered by oscillators should be specified so that we may design units to meet your requirements. Such conditions would include soldering profiles, board washing, exposure to moisture, corrosive atmospheres, solvents, etc.

Standard environmental tests are conducted on site in the Corporate QA laboratory. Specialized environmental tests are conducted at independent testing laboratories.

MURATA ELECTRONICS MANUFACTURES A COMPLETE LINE OF OSCILLATORS

We are a volume producer of TTL, CMOS, ECL and Sine Wave Clock Oscillators for the instrumentation and communication industries. Excellent frequency stability is achieved with TCXO, Temperature Compensated Crystal Oscillators and OCXO, Ovenized (Proportional Control) Crystal Oscillators. Special requirements are met with VCXO, Voltage Controlled Crystal Oscillators, which can be frequency modulated, with combinations of the basic types such as the TC/VCXO or OC/VCXO. Murata has full-line expertise from economy models to sophisticated, high stability, very low phase noise oscillators that are used as standards for microwave transmitters. Our oscillator production lines are closely monitored by Quality Control through Incoming, In-Process and Final Inspections.

The Crystal Oscillators featured in this catalog are manufactured exclusively at our manufacturing facility in State College, PA and are designed to meet the requirements of most high technology market applications today. However, oscillators can be custom designed to meet your needs. Send us your specifications. We have full-line capability backed by a well staffed engineering department. Murata will assist you in defining your oscillator requirements and provide the support to take your project from the conceptual stage through implementation, including fast prototype turnaround.

OSCILLATOR TECHNICAL PERFORMANCE

If you have a formal specification, send us a copy for quotation. If not, make a copy of our Specification and RFQ Form to help you specify an oscillator to meet your requirements. Select those specifications relevant to your application; cost increases as electrical and mechanical requirements become more stringent. Murata Electronics will produce a cost effective product which will meet all of your oscillator requirements. Since tradeoffs exist in many instances, we are always happy to quote options when cost/performance or cost/size tradeoffs exist. Attach additional sheets to our specification sheet if necessary.

Introduction and Standards

The following material briefly describes our in-house standards and offers some cost/performance tradeoffs.

ENVIRONMENTAL CONDITIONS See Page 1.

FREQUENCY RANGE

From less than 1Hz to 1GHz, Murata Electronics designs typically center around the "AT" cut crystals, but "SC," "IT," and other cuts are used for certain applications. Fundamental mode crystals from 3MHz and overtones from 5 to 400MHz are utilized in the oscillators. This range is extended through the use of dividers and multipliers. (Oscillators in the microwave range are available through the Murata RF and Microwave Products Group in State College, Pennsylvania.)

FREQUENCY STABILITY

Is generally defined in two ways:

 Total Frequency Stability – the maximum frequency excursion from the nominal for all conditions. This is usually expressed as a ± fraction centered at the nominal frequency.

FREQUENCY STABILITY [ppm]
$$\equiv \frac{\triangle f[Hz]}{f_c[MHz]}$$

- 2.0 Specific Stabilities -
 - 2.1 Accuracy the frequency setting tolerance at room temperature at time of shipment. Oscillators may incorporate external adjustments for exact calibration. TCXO's typically exhibit a resolution of ±1pp 10⁷. For OCXO's, the typical resolution is to ±1pp 10⁹.
 - 2.2 Frequency Stability Versus Temperature a maximum change from the nominal frequency. Oscillators relying on the temperature characteristics of the "AT" crystal can be designed to meet a stability requirement as tight as ±10ppm from –10°C to +60°C. Tighter stabilities to ±0.1ppm require temperature compensation techniques. Ovenized oscillators are used for stabilities to ±5pp 10¹⁰.
 - 2.3 Frequency Stabilities Versus Supply Voltage and Load Variation – these parameters may be improved by the use of voltage regulation and additional buffer stages. The tighter the stability requirements, the more complex the design.
 - 2.4 Stability Versus Time can be expressed over periods of milliseconds to years. Through use of high quality crystals typical aging rates of ±1ppm/year are achieved. For OCXO's, it is possible to achieve aging rates as low as ±5pp 10¹⁰ per day. Short term stability can be expressed as an Allan Variance over a range of gate times from less than 1msec to 10sec, or in terms of SSB phase noise in the frequency domain.

OUTPUT CHARACTERISTICS

Oscillator output waveforms are either sine or square waves.

 Sine Waves – outputs are specified by stating the amplitude of the signal (mW or V_{RMS} and the nominal load impedance (typically) 50 ohms or 1K ohms).

Harmonic and Sub-Harmonic distortion less than –20dBc is standard.

Deviations from the standards can be accommodated. Consult our engineering department.

2.0 Square Wave*

	TTL	CMOS	ECL
Logic "0" Level	0.4V Max.	1.0V Max.	-1.89V
Logic "1" Level	2.4V Min.	Vcc - 1.0V	-0.89
Symmetry	40/60	40/60	40/60
Load	10 Gates	50pF Max.	50 ohms to –2VDC
Freq. Range	1Hz to 100MHz	1Hz to 100MHz	4.0MHz to 700MHz

*Specify logic type to be driven

RELATIVE FREQUENCY STABILITY OF TYPICAL CRYSTAL OSCILLATOR TYPES

Introduction and Standards

INPUT POWER CHARACTERISTICS

Specification of input voltage and current parameters is vital for the proper design of all oscillators. Voltage, power limits and regulation should be specified for all supplies available. If no regulation is listed, $\pm 5\%$ will be assumed and a voltage regulation circuit incorporated if needed. For ovenized oscillators, the oven input voltage may differ from the oscillator input voltage.

PHASE NOISE

Phase noise, which is a measure of the short term frequency fluctuations of the oscillator, is a critical parameter and the limiting factor in the performance of many systems. This is usually specified as the single sideband power density in a 1Hz bandwidth at a specified offset frequency from the carrier.

At Murata Electronics, we use a state-of-the-art phase noise measurement system, which can accurately characterize the phase noise of our oscillators. This system has a noise floor below –170dBc/Hz so that even the best sources may be measured. A typical graph produced by the HP3048A is shown.

VOLTAGE CONTROL/VCXO

This capability allows the frequency of the oscillator to be changed via an external control voltage. The three most important parameters are:

- 1.0 Frequency Deviation this is how far the center frequency will change as a function of the control voltage; usually specified in ±percentage or ppm. As the deviation is made larger, other stabilities such as, temperature and aging will usually degrade.
- 2.0 Linearity the allowable error from the best straight line. This can be interpreted in a number of ways.

Murata defines linearity per MIL-0-55310, as a ±percentage of the total deviation, for example:

- a) control voltage of ±3VDC
 - b) deviation of \pm .04% (400ppm)
 - c) linearity of ±5%

For a center frequency of 1.0MHz, the total deviation of $\pm 0.04\%$ equals 800 ppm (800Hz). Line "A" shows the ideal transfer function. Line "B" shows the upper limit, which is 5% of the total deviation (0.05 x 800Hz) above the nominal curve. Conversely, line "C" shows the lower 5% limit. Line "D" shows a typical oscillator which meets the 5% specification.

3.0 Response Slope – the slope of the frequency versus the control voltage (i.e. for a negative slope, the output frequency decreases as the control voltage increases).

MECHANICAL SPECIFICATIONS

Mechanical Specifications are often unique to your application, but standard sizes and tolerances are ± 0.030 " for outer dimensions and ± 0.010 " to ± 0.015 " for pin spacing. Specify only those dimensions that are critical and let us supply you with a completed outline drawing.

The purpose of these standards is to help you define specifications without over-designing.

Note:

Frequency can also be controlled with a digital input signal (serial or parallel) instead of an analog voltage. Consult the factory for options.

RFQ Form / Quick Quote

NAME		TITI F		DATE	
			DEPAR	D, , ,	
STREET		PHONE		FAX/EMAIL	
		STATE		ZIP	
Customer Specification Dwg. No.					
Frequency and Stability:		Output Wave	Form:		
Frequency		Sine 🗌			
Stability All Conditions		Output Level			
Stability @ 25°C		Harmonic Dis	it	Subs	
ΔF From°	С То°С	Spurious			
ΔF Vs ΔB +	%	Load			
ΔF Vs Time		Square:	PECL		
25°C Setting Tolerance				ECL	
Frequency Adjustment		Others			
Power Supply: Rise Time Fa	all Time				
OSC±	_ at mA	Measured Fro	om	to	
OSC±	_ at mA	Duty Cycle _		at	level
Oven ±	_ at mA	·	Levels: Log	ic "0"	Logic "l'
		Load:			
Environmental:		VCXO (Freq.	Control) Characte	ristics:	
Storage Temperature		Freq. Deviatio	on		
Vibration		Linearity			
Shock		Control Voltag	ge		
Moisture		Input Impedat	nce		
		Niodulation Fi	req		
Others		Response Sic	ope		
		Special			
		Finish			
		iviounting			
Special Notes:					
Cost vs. Performance Trade Off:					
Application:					

Part Numbering System

PART NUMBERING SYSTEM

INPUT VOLTAGE (±5% TOLERANCE STANDARD)

Α	+5.0VDC
В	+7.5VDC
С	+10.0VDC
D	+12.0VDC
E	+15.0VDC
F	+3.3VDC
G	-5.0VDC
н	-5.2VDC
J	-12.0VDC
к	-4.5VDC
L	+4.0VDC
М	(OTHER)

OUTPUT TYPE

т	TTL
С	CMOS
н	HCMOS/TTL Compatible
Е	ECL "10KH"
F	ECL "100K"
G	SINE, 0dBm, 50 Ω LOAD
J	SINE, +3dBm, 50 Ω LOAD
к	SINE, +7dBm, 50 Ω LOAD
L	SINE, +10dBm, 50 Ω LOAD
М	SINE, +13dBm, 50 Ω LOAD
Ν	CLIPPED SINE, $1V_{p-p}$, $1k\Omega$ LOAD
Р	0dBm min., 50 Ω LOAD
U	PECL
v	LVPECL
Z	CML

Temperature Compensating High Stability Crystal Oscillators

SURFACE MOUNT TCXO SERIES – TC2268

FEATURES

- Meets or exceeds Stratum 3
- Sine, Clipped Sine Wave or CMOS output
- SMT packaging

APPLICATIONS

Telecom clock

Communications

4 Supply Voltage

Wireless

TC2268

Dimensions: mm

SPECIFICATIONS

MODEL	TC2268
Standard Frequencies:*	10.00000MHz 15.0000MHz 16.000000MHz 16.384MHz 20.000000MHz 21.056700MHz 30.00000MHz
	32.000MHz ±3.0ppm worst case for first year
Stability: All Conditions:	product lifetime ±5.0ppm worst case for 10 year product lifetime
Operating Temp. Range:	0°C to +85°C
Frequency Deviation:	±1ppm min.
Phase Noise:	-74dBc @ 10Hz -104dBc @ 100Hz -130dBc @ 1KHz -140dBc @ ≥10KHz
Power Consumption for 5VDC ± 5%:	Ranges from 2mA to 20mA maximum at +25°C
*Possible frequency range of	5MHz to 50MHz.

PART NUMBERING SYSTEM – TC226	38	
*Possible frequency range of 5MHz to 50MHz. Consult factory for other available frequencies.		
A = +5.0V F = +3.3V	H = HCMOS G = SINE, 0dBm, 50 Ohm Load N = CLIPPED SINE, 1 Vp-p, 1K Ohm Load	

Consult factory for other available frequencies.

THRU HOLE TCXO SERIES – TC2110

FEATURES

■ Sine Wave and HCMOS compatible outputs

4 Pin dip

APPLICATIONS

- Telecom clock
- Instrumentation
- Navigation

TC2110

Communications

SPECIFICATIONS

MODEL TC2110 3.577149MHz 8.192MHz -(÷ Standard 9.600MHz 15.24 max. ούτ Frequencies:* Δ B+ 10.000MHz 25.4 17.78 7.4 19.600MHz GND GND 27.00000MHz Î -ó -ċ 0.76 Dia. - 4 Plcs Aging: ±1.0ppm per year worst case 17.78 Operating Temp. -20°C to +70°C 25.4 Range: Frequency vs. ±1ppm maximum Temperature: Mechanical Frequency ±5ppm minimum Adjustment: **Power Consumption** 25mA maximum at +25°C for 5VDC ± 5%:

*Consult factory for other available frequencies.

PART NUMBERING SYSTEM - TC2110

muRata

8

Dimensions: mm

THRU HOLE TCXO SERIES – TC2178

FEATURES

Sine, clipped SINE wave, HCMOS compatible output
3 pin dip

APPLICATIONS

- Telecom clock
- Communications
- Communica ■ Wireless

TC2178

Instrumentation

SPECIFICATIONS

MODEL	TC2178	
	6.144MHz	
	9.600MHz	
	10.00000MHz	
	12.8000MHz	
	13.5168MHz	
	15.360000MHz	
Standard	16.000MHz	
Frequencies:*	16.384MHz	
	19.5000MHz	
	24.00000MHz	
	25.00000MHz	
	32.000MHz	
	39.300MHz	
	44.950MHz	
	44.952MHz	
	128.000000MHz	
Stability:	±5ppm worst case per 10 year	
All Conditions:	product lifetime	
Widest Operating Temp. Range:	0°C to +85°C	
Electrical Frequency	±6ppm	
Deviation:	minimum	
Mechanical Frequency	±5ppm	
Adjustment:	minimum	
Control Voltage Range:	-4.5VDC to +4.5VDC	
	-60dBc @ 1Hz	
Phase Noise	-90dBc @ 10Hz	
	-110dBc @ 100Hz	
	–130dBc @ ≥1KHz	
Power Consumption	2mA to 50mA	
for +5VDC Supply:	typical at +25°C	
*Possible frequency range of	5MHz to 155.52MHz.	
Consult factory for other ava	ilable frequencies.	

18.3 ± 0.76 9.0 ± 0.76 11.71 ± 0.76 11.71 ± 0.76 $0.51 \text{ Dia.} \rightarrow 4.0 \pm 0.51$ 7.5 ± 0.38 0.51 ± 0.38 15.0 ± 0.38

PIN	FUNCTION
1	Common and Case
2	Output
3	+Vcc
ა	+VCC

Dimensions: mm

PART NUMBERING SYSTEM - TC2178

THRU HOLE TCXO SERIES – TC2378

FEATURES

TRANSPORT

Meets or exceeds Stratum 3 requirements

LVPECL (100EL series compatible)

APPLICATIONS

Telecom clock

MODEL	TC2378
Standard Frequencies:*	155.520000MHz 622.080MHz
Stability All Conditions:	±4.6ppm worst case per 10 years of product lifetime
Operating Temp. Range:	0°C to +70°C
Frequency Accuracy:	±0.5ppm max. at 25°C
Jitter:	30psec p-p max.
Power Consumption +5VDC Supply:	20mA maximum
+0.0vb0 ouppiy.	

±0.1ppm

0.37ppm maximum (includes up to 20°C

temperature drift and aging)

*Consult factory for other available frequencies.

Frequency Vs ±5%

Supply Variation:

24 Hr. Holdover

Stability:

SPECIFICATIONS

PART NUMBERING SYSTEM – TC2378

TC/VCXO SERIES – TV2178

FEATURES

- Meets or exceeds Stratum 4
- Sine, Clipped SINE and HCMOS compatible outputs
- 4 pin dip

APPLICATIONS

Telecom clock

- Wireless communications
- Instrumentation

TV2178

MODEL TV2178

18.29 ± 0.76	9.00 ± 0.76 \downarrow 0.51 Dia. \rightarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	0.25 6.35 min. ↓ 51 + 1.00 ± 0.25
I	7.50 ± 0.38 ↓ (*0 − 0 + 1 + 0.38 ↓ (*0 − 0 + 1 + 0.38) ↓ (*0 − 0 + 1 + 0.38)	→ 4.0 ± 1.0

PIN	FUNCTION
1	Common and Case
2	Output
3	+Vcc
4	+Vc Input

Dimensions: mm

*Possible frequency range of 5MHz to 155.52MHz.

Consult factory for other available frequencies.

PART NUMBERING SYSTEM – TV2178

muRata

SPECIFICATIONS

Standard Frequencies:*	10.000000MHz 12.000000MHz 12.800000MHz 14.40000MHz 15.000MHz 15.3600MHz 16.384000MHz 19.6608MHz 20.000000MHz 35.000MHz 100.000000MHz
Stability All Conditions:	±5ppm worst case per 10 years of product lifetime
Operating Temp. Range:	–40°C to +85°C
Frequency Deviation:	±10ppm min. to ±40ppm maximum
Mechanical Frequency Adjustment:	±5ppm minimum
Control Voltage Range:	-4.5VDC to +4.5VDC
Phase Noise:	60dBc @ 1Hz 90dBc @ 10Hz 110dBc @ 100Hz 130dBc @ ≥1KHz
Power Consumption for +5VDC Supply:	2mA to 25mA typical at +25°C

TC/VCXO SERIES – TV2363

FEATURES

- Meets or exceeds SONET minimum clock requirements
- 100K ECL compatible output
- 24 Pin DIP

APPLICATIONS

- Telecom clock
- OC-3

SPECIFICATIONS

MODEL	TV2363
Standard Frequencies:*	155.520MHz
Stability All Conditions:	±15ppm worst case for 20 year product lifetime
Operating Temp. Range:	–40°C to +85°C
Frequency	±40ppm min. to
Deviation:	±60ppm maximum
Control Voltage Range:	-8VDC to +8VDC
VCXO Modulation Bandwidth:	DC to 1.4KHz
Jitter:	64psec p-p maximum
Aging:	±15ppm per 20 years
Power Consumption	50 - A
-4.5VDC Supply:	50mA maximum at +25°C
+12VDC Supply:	20mA maximum at +25°C

*Consult factory for other available frequencies.

100K ECL COMPLEMENTARY OUTPUT CHARACTERISTICS

PART NUMBERING SYSTEM - TV2363

Voltage Controlled Oscillators

SURFACE MOUNT VCXO FOR SONET - VH2211

FEATURES

- Meets or exceeds SONET minimum clock requirements
- CML, PECL or LVPECL output
- SMT packaging
- Available tape and reel
- Reflow solderable
- Very low jitter
- Low aging
- Tightly controlled Kv for PLL

APPLICATIONS

- OC-12, OC-48, OC-192 and OC-768
- Forward error correction frequencies available

VH2211

SPECIFICATIONS

MODEL	VH2211
Standard Frequencies:*	622.0800MHz 666.514286MHz (15/14 of 622.0800MHz)
Stability All Conditions:	±20ppm worst case for 20 year lifetime
Operating Temp. Range:	0°C to +85°C
Control Voltage Range:	0.5 to 4.5VDC
Modulation Bandwidth:	100KHz minimum
Modulation Gain:	19.4ppm/V ≤Kv ≤29.0ppm/V
Jitter:	.001 UI max.
Phase Noise:	-60dBc @ 100Hz -90dBc @ 1KHz -110dBc @ 10KHz -125dBc @ ≥100KHz
Electrical Tuning:	±40ppm to ±60ppm
Power Consumption for +5.0VDC Supply:	50mA maximum
Sub-Harmonics	–45dBc maximum

*Consult factory for other available frequencies.

PART NUMBERING SYSTEM - VH2211

Dimensions: mm

Voltage Controlled Oscillators

SURFACE MOUNT VCXO FOR SONET - VO2246

FEATURES

- Inverted Mesa, AT cut fundamental mode crystal technology
- ECL, PECL or LVPECL compatible output
- Meets or exceeds SONET minimum clock requirements
- SMT packaging
- Available tape and reel
- Reflow solderable
- Very low jitter
- Low aging
- No subharmonics

APPLICATIONS

- Telecom clock
- Forward error correction frequencies

VO2246

Dimensions: mm

-0.711

5.08 2.54

1.448 ¥ 2.032

PIN	FUNCTION
1	N/C
2	N/C
3	Supply Voltage
4	Q Output
5	/Q Output
6	Ground

SPECIFICATIONS

MODEL	V02246
Standard Frequencies:*	155.520000MHz 166.628500MHz
Stability All Conditions:	±20ppm worst case over 20 year product lifetime
Operating Temp. Range:	0°C to 70°C
Jitter:	.001 UI RMS max.
Phase Noise:	-80dBc @ 100Hz -110dBc @ 1KHz -135dBc @ 10KHz -140dBc @ ≥100KHz
Power Consumption:	65mA typical at +25°C

*Consult factory for other available frequencies.

PART NUMBERING SYSTEM – VO2246

Voltage Controlled Oscillators

SURFACE MOUNT VCXO FOR SONET - VO2268

FEATURES

- SINE, 0dBm, 500hm load
- SMT packaging
- Available tape and reel
- Reflow solderable
- Very low jitter
- Low aging

APPLICATIONS

- Telecom clock
- Wireless communication
- Instrumentation

VO2268

20mA typical at +25°C

PIN	FUNCTION
1	EFC
2	Ground
3	Output Signal
4	Supply Voltage

*Consult factory for other available frequencies.

for +5V Supply:

PART NUMBERING SYSTEM – VO2268

SPECIFICATIONS

muRata

Voltage Controlled Oscillators

SURFACE MOUNT VCXO FOR SONET - VO2286

FEATURES

- Meets or exceeds SONET Stratum 4 requirements
- Inverted Mesa, AT cut fundamental mode crystal technology
- ECL, PECL, LVPECL and CML compatible output

20.574 max.

Ref. Only- 6 Plcs.

<u>00</u>

▲ 2.54

SXX -

Pin #1

2.54 **4**

12.7

15.24

Frequency

0.508

Murata Part Number Date Code Location, Month & Year Serial Number

- SMT packaging
- Available tape and reel
- Reflow solderable
- Very low jitter
- Low aging
- FEC frequencies available
- No subharmonics

APPLICATIONS

- OC-3
- Clock recovery PLL

13.843 max

5.715 max

1.727 0.711

1.727

VO2286

MODEL	V02286
Standard Frequencies:*	155.520000MHz 166.628571MHz
Stability All Conditions:	±35ppm worst case for 20 year product lifetime
Operating Temp. Range:	0°C to 85°C
Control Voltage Range:	0.0 to 5.0VDC
Modulation Bandwidth:	DC to 50KHz
Modulation Sensitivity:	45ppm/V ≥ Kv ≥ 28ppm/V (others upon request)
Jitter:	.001 UI max.
Electrical Tuning:	± 50 ppm \leq Freq. Deviation $\leq \pm 125$ ppm
Power Consumption:	10mA to 65mA

PART NUMBERING SYSTEM - VO2286

PIN	FUNCTION
1	Vc Control Voltage
6	Disable
7	Ground
9	Output Signal
10	Complementary
	Output
14	Vs Supply Voltage

Dimensions: mm

Voltage Controlled Oscillators

THRU HOLE VCXO FOR SONET – VH1011

FEATURES

- Meets or exceeds SONET minimum clock requirements
- 100K ECL, PECL compatible
- 16 pin gullwing packaging
- Very low jitter
- Low aging
- Tightly controlled Kv for PLL

APPLICATIONS

- OC-12, OC-48, OC-192 and OC-768
- Forward error correction frequencies available

VH1011

*Consult factory for other available frequencies.

PART NUMBERING SYSTEM - VH1011

SPECIFICATIONS

MODEL	VH1011
Standard Frequencies:*	622.080MHz 666.514286MHz (622.080MHz 15/14) 669.3265MHz
Stability All Conditions:	±20ppm over 10 year product lifetime
Operating Temp. Range:	0°C to 85°C
Frequency Deviation:	±40ppm to ±60ppm
Control Voltage Range:	-4.5 VDC \leq VC \leq -0.5 VDC
Modulation Bandwidth:	100KHz minimum
Modulation Sensitivity:	19.4ppm/V ≤ Kv ≤ 29.0ppm/V
	-60dBc @ 100Hz
Phase Noise:	–90dBc @ 1KHz
	-110dBc @ 10KHz
	–125dBc @ ≥100KHz
Power Consumption for –5VDC Supply:	65mA maximum
Sub-harmonics:	–35dBc maximum

muRata

Voltage Controlled Oscillators

THRU HOLE VCXO FOR SONET - VO2386

FEATURES

- Meets or exceeds Stratum 4 requirements
- Inverted Mesa, AT cut fundamental mode crystal technology
- ECL, PECL, LVPECL and CML compatible output
- DIP packaging
- Very low jitter
- Low aging
- FEC frequencies available
- No subharmonics

APPLICATIONS

Telecom clock

Dimensions: mm

Forward correction code applications

VO2386

\$5.8

PIN	FUNCTION
1	V _c , Control Voltage
7	Ground, Case/Ground
8	Q1 Output Signal
9	Q2 Complementary Output Signal
14	V _{CC}

*Consult factory for other available frequencies.

PART NUMBERING SYSTEM - VO2386

SPECIFICATIONS

MODEL	V02386
Standard Frequencies:*	155.520000MHz
Stability All Conditions:	±35ppm worst case over 20 year product lifetime
Operating Temp. Range:	0°C to 85°C
Control Voltage Range:	0.0VDC to 5.25VDC
Modulation Bandwidth:	DC to 50 KHz
Modulation Sensitivity:	$28ppm/V \le Kv \le 45ppm/V$ (other deviation upon request)
Electrical Tuning:	±50ppm minimum to ±125ppm maximum (others are available upon request)
Jitter:	.001 UI RMS max.
Power Consumption for +5VDC Supply:	10mA to 65mA typical at +25°C

Ovenized Crystal Oscillators

SURFACE MOUNT – OC3125

FEATURES

- Meets or exceeds Stratum 3 requirements
- LVPECL output
- Hermetic surface mount packaging
- +3.3V supply

APPLICATIONS

Telecom clock

OC3125

SPECIFICATIONS

MODEL	0C3125
Standard Frequencies:*	77.760000MHz
Stability All Conditions:	±4.6ppm maximum for 10 year product lifetime
Operating Temp. Range:	0°C to 70°C
Frequency Tolerance:	±0.5ppm maximum at 25°C
Supply Voltage Range:	+3.3VDC ± 5%
Jitter:	0.001 UI
Warm-up:	±0.20ppm of 2-hour frequency after 3 minutes maximum
Allan Variance:	$1x10^{-9}$ for $\tau = 1$ sec
Power Consumption +3.3VDC Supply:	1.15A max. for 3 minutes max. for warmup at +25°C 300mA typical at +25°C

*Consult factory for other available frequencies.

PART NUMBERING SYSTEM - OC3125

Ovenized Crystal Oscillators

THRU HOLE – OCXO – OC2541

FEATURES

- Meets or exceeds Stratum 3 requirements
- HCMOS/TTL or Sine Wave output
- 8 pin DIP packaging
- Low phase noise
- SC cut crystal

APPLICATIONS

- Telecom clock
- VSAT
- Instrumentation
- Navigation
- Communications

TYPICAL PHASE NOISE CHARACTERISTICS – OC2541-DT

SPECIFICATIONS

MODEL	0C2541
Standard Frequencies:*	10.000MHz
Stability All Conditions:	±0.1ppm/year
Operating Temp. Range:	0°C to 50°C
Frequency Deviation:	±1.0ppm maximum
Frequency vs Temperature:	±0.02ppm maximum
Control Voltage Range:	0VDC to +6VDC
Modulation Bandwidth:	DC to 150Hz minimum
Warm-up:	±0.1ppm typical after 3 minutes at 25°C
Phase Noise:	–123dBc @ 100Hz –135dBc @ 1KHz –140dBc @ ≥10KHz
Electrical Tuning:	±1ppm minimum
Harmonic Distortion Sine Wave Output Only:	–20dBc maximum
Power Consumption +15VDC Supply:	400mA maximum at startup 125mA typical at +25°C
+12VDC Supply:	250mA maximum at startup 90mA typical at +25°C

*Consult factory for other available frequencies.

PART NUMBERING SYSTEM – OC2541

Ovenized Crystal Oscillators

THRU HOLE OCXO FOR SONET – OC2545

FEATURES

- Meets or exceeds Stratum 3 requirements
- HCMOS/TTL or Sine Wave output
- 8 pin DIP packaging
- Low phase noise
- AT cut crystal

APPLICATIONS

- Telecom clock
- Instrumentation
- Navigation
- Communications
- VSAT

MODEL	0C2545
Standard Frequencies:*	10.000MHz 12.000MHz
Operating Temp. Range:	0°C to 60°C
Frequency Deviation:	±4.0ppm minimum
Frequency vs Temperature:	±0.2ppm maximum
Control Voltage Range:	0VDC to 6VDC
Modulation Bandwidth:	DC to 150Hz minimum
Warm-up:	±0.1ppm after 10 minutes at 25°C
Phase Noise:	-110dBc @ 10Hz -120dBc @ 100Hz -135dBc @ 1KHz -140dBc @ 10KHz
Harmonic Distortion Sine Wave output:	–25dBc maximum
Electrical Tuning:	±4ppm minimum for 0 to 6 volts
Power Consumption	250mA maximum at startup 90mA typical at +25°C
*Consult factory for other availab	le frequencies.

OC2545-DT

PART NUMBERING SYSTEM - OC2545

3

21

Ovenized Crystal Oscillators

THRU HOLE – OCXO FOR SONET – OC2566

FEATURES

- Meets or exceeds Stratum 3 requirements
- Sine Wave, HCMOS compatible output
- DIP packaging
- SC cut crystal

APPLICATIONS

- Telecom clock
- Instrumentation
- Navigation
- Communications
- VSAT

OC2566

SPECIFICATIONS

OC2566
3.000MHz
±0.20ppm maximum per year
-30°C to 70°C
±25ppb maximum
±0.1ppm after 5 minutes at 25°C
±1.0ppm minimum from nominal
50mA typical 400mA maximum
+13dBm to +18dBm (@50 Ohm load)
–20dBc maximum

*Consult factory for other available frequencies.

PART NUMBERING SYSTEM - OC2566

Ovenized Crystal Oscillators

THRU HOLE OCXO FOR SONET – OC2644

FEATURES

- Fast warm-up SC cut crystal technology
- Meets or exceeds SONET Stratum 3 requirements
- HCMOS or SINE outputs
- Industry standard EURO packaging

APPLICATIONS

- Telecom clock
- Instrumentation
- VSAT
- Navigation
- Communications

OC2644

Dimensions: mm

TYPICAL PHASE NOISE (OC2644)

Standard Frequencies:*	13.000000MHz 15.000MHz 16.384MHz 19.440MHz
Operating Temp. Range:	0°C to +70°C
Frequency Stability:	±10ppb
Control Voltage Range:	0VDC to +4.0VDC
Warm-up:	±0.1ppm of 24-hour frequency after 30 minutes at 25°C, worst case
Allan Variance:	1×10^{10} maximum for $\tau = 1$ sec
	–115dBc/Hz @ 10Hz
Phase Noise	-135dBc/Hz @ 100Hz
1 11030 110130.	–145dBc/Hz @ 1KHz
	-150dBc/Hz @ 10KHz
Electrical Tuning:	±1.0ppm to ±2.0ppm
Aging:	±1.0ppb per day maximum at shipment date

OC2644

10.000MHz

750mA maximum at start up,

aczerany-1000

8\N 83081884 208\82

Consumption: 200mA typical at +25°C *Consult factory for other available frequencies.

Power

SPECIFICATIONS

MODEL

PART NUMBERING SYSTEM - OC2644

3

Ovenized Crystal Oscillators

THRU HOLE OCXO FOR SONET – OC2710

FEATURES

- Meets Stratum 3 requirements
- HCMOS compatible output
- 14 pin DIP packaging

APPLICATIONS

- Telecom clock
- A variety of power supply options
- Instrumentation

OC2710

Wireless communication

SPECIFICATIONS

MODEL	0C2710
Standard	16.384MHz
Frequencies*	19.440MHz
rioquonoloo.	20.480MHz
Stability	±4.6ppm maximum for
All Conditions:	10 year product lifetime
Operating Temp. Range:	0°C to +60°C
Frequency Deviation:	±0.5ppm maximum at 25°C
Control Voltage Range:	+0.5VDC to +4.5VDC
Warm-up:	±0.2ppm of 24-hour frequency after 30 minutes at 25°C
Electrical Tuning:	±10ppm to ±16.5ppm
Power Consumption	800 mA maximum at start-up,
For +5VDC Supply:	200 mA typical stable at +25°C
*Consult factory for other av	ailable frequencies

*Consult factory for other available frequencies

Possible frequency ranges of 5MHz to 45MHz.

Note: Consult factory for other supply options available.

Ovenized Crystal Oscillators

THRU HOLE OCXO FOR SONET – OC3545

FEATURES

- Meets or exceeds Stratum 3 requirements
- Sine Wave or HCMOS/TTL compatible output
- Low phase noise

APPLICATIONS

- Telecom clock
- Instrumentation
- Navigation
- Communications

SPECIFICATIONS

MODEL	0C3545
	9.830400MHz
Standard	12.800000MHz
Frequencies:*	14.1364MHz
	15.00MHz
	17.000000MHz
Stability All Conditions:	±4.6ppm for 20 years product lifetime max.
Operating Temp. Range:	0°C to +70°C
Frequency Tolerance:	±0.5ppm at 25°C
Manna	±0.10ppm of 24-hour frequency
vvarini-up.	after five minutes
	–95dBc @ 10Hz
Phase Noise:	-125dBc @ 100Hz
	-140dBc @ ≥1KHz
Power Consumption	
+3.3V Supply:	1.15 A maximum at turn on
	330mA typical stable at +25°C
+5.0V Supply:	750mA maximum at turn on
	200mA typical stable at +25°C

*Consult factory for other available frequencies.

PART NUMBERING SYSTEM – OC3545

3

muRata

Crystal Oscillators

SURFACE MOUNT CRYSTAL OSCILLATOR FOR SONET - XO2246

FEATURES

■ ECL, PECL and LVPECL compatible output

- SMT packaging
- Available tape and reel
- Reflow solderable
- Very low jitter
- Low aging
- No subharmonics

APPLICATIONS

- Telecom clock
- Forward error correction

5.51 max.

XO2246

■ Inverted Mesa, AT cut fundamental mode crystal technology

Dimensions: mm

SPECIFICATIONS

MODEL	X02246
Standard Frequencies:*	155.520000MHz 166.628500MHz
Stability:	±20ppm worst case over 20 year product lifetime
Operating Temp. Range:	0°C to 70°C
Jitter:	.001 UI RMS max.
	-80dBc @ 100Hz
Phase Noise:	-110dBc @ 1KHz
	-135dBc @ 10KHz
	–140dBc @ ≥100KHz
Power Consumption:	65mA typical at +25°C

*Consult factory for other available frequencies.

PART NUMBERING SYSTEM - XO2246

Crystal Oscillators

SURFACE MOUNT CRYSTAL OSCILLATOR FOR SONET - XO2266

FEATURES

- Inverted Mesa, AT cut fundamental mode crystal technology
- PECL compatible output
- SMT packaging
- Available tape and reel
- Reflow solderable
- Very low jitter
- Low aging
- No subharmonics

APPLICATIONS

- Telecom clock
- Forward error correction

XO2266

MODEL	DC2300
Standard Frequencies:*	155.520000MHz
Stability:	±15ppm worst case over 10 year product lifetime
Operating Temp. Range:	0°C to 70°C
Power Consumption:	85mA maximum

102266.HV-120E a fiata

52000 Htz

*Consult factory for other available frequencies.

PART NUMBERING SYSTEM - XO2266

4

Crystal Oscillators

SURFACE MOUNT CRYSTAL OSCILLATOR FOR SONET – X02286

FEATURES

nuPasta 155.550000 HHZ 100256FN-4224 0151 001

■ Inverted Mesa, AT cut fundamental mode crystal technology

- LVPECL compatible output
- SMT packaging
- Available tape and reel
- Reflow solderable
- Very low jitter
- Low aging
- No subharmonics

APPLICATIONS

- Telecom clock
- Forward error correction

SPECIFICATIONS

MODEL	X02286	
Standard Frequencies:*	155.520000MHz 167.331646MHz	
Stability:	±20ppm worst case over 10 year product lifetime	
Operating Temp. Range:	0°C to 85°C	
Jitter:	.001 UI RMS max.	
Phase Noise:	-60dBc @ 100Hz -90dBc @ 1KHz -110dBc @ 10KHz -125dBc @ ≥100KHz	
Power Consumption:	20mA max.	
*Consult factory for other available frequencies.		

PIN	CONNECTIONS
1	No Connect
6	No Connect
7	Ground
8	Output Signal
9	Complementary Output
14	Vs Supply Voltage

Dimensions: mm

PART NUMBERING SYSTEM – XO2286

muRata

Digitally Compensated Crystal Oscillators

DC2300 SERIES FOR SONET

FEATURES

- Digitally compensated to improve thermal stability
- Meets or exceeds Stratum 3 requirements
- HCMOS/TTL compatible
- DIP packaging
- Low power consumption
- Accuracy of an OCXO

APPLICATIONS

- Telecom clock
- Instrumentation
- Wireless communications

DC2300

PINS	CONNECTIONS
1	Output
2	Serial I/O
3	GND
4	+5
5	GND

Dimensions: mm

SPECIFICATIONS

MODEL	DC2300	
Standard Frequencies:*	10.00000MHz	
Stability All Conditions:	±0.1ppm to ±0.5ppm	
Operating Temp. Range:	–40°C to 85°C	
Control Voltage Range:	0VDC to +5VDC	
Allan Variance:	5x10 ⁻¹⁰ at one second	
Phase Noise:	-90dBc @ 10Hz -125dBc @ 100Hz -140dBc @ 1KHz -140dBc @ 10KHz	
Electrical Tuning:	±.5ppm min. for 0 to +5V	
Power Consumption +5VDC Supply:	35mA typical	

PART NUMBERING SYSTEM - DC2300

VCOs

	Series	Frequency Range	Size (mm)		
	MQE95 SERIES	700 to 2000MHz (Shift VCO)	7.6 X 5.8 X 1.8		
	MQK SERIES	700 to 2000MHz	5.5 X 4.8 X 1.65		
	MQL SERIES	700 to 2600MHz	5.0 X 4.0 X 1.65		
	MQW1 SERIES	700 to 2000MHz (Dual VCO)	9.6 X 7.0 X 1.65		

Microwave Oscillators

VOLTAGE CONTROLLED (VCO) - MQE900/MQK/MQL SERIES

MQ Series

Application (System)		Part Number	Frequency (MHz)	VB	Vc (V)	Control Voltage Sensitivity (MHz/V)	Output Level (dBm)	Power Consumption (mA Max)	C/N (DBc/Hz)	Separation (KHz)
MQK Series										
GSM/DCS	1stL0	MQK001-927	880.0~975.0	2.80	0.5~2.3	71 ± 10	-6 ± 3	8.0	≥92	250.0
CDMA	1stL0	MQK002-967	954.0~980.0	2.95	0.7~2.7	24 ± 6	- 5 + 3 P	S (5) N	≥118	60.0
TDMA	1stL0	MQK001-1016A	981.0 1052.0	2.10	7.9/ 0.3:	32 ± 3	-0.5 + 2.5		≥117.5	60.0
WLL	1stL0	MQK301-1528	1466.0~1590.0	2 70	0 5~3.6	RF-1CU	13	12.0	120.00	600.0
MQL Series THIS P						FAC	= CO	NTAC		
EPDC	1stL0	MQL005-717	680.0~755 0	23B	5~2.5	50±5	-2 + 3	6.6	≥92	250.0
WCDMA	A 1stLO	MQL001-760	760.0~760.0	2 50	0.5~2.		1 2.5	4.5	≥135	10000.0
WODINA		MQL304-2330	2300.0~2360.0	2.20	0.5~3 5	59 ± A	/3	0 R 5	≥90	10.0
JCDMA	1stL0	MQL002-946	920.0~972.0	8 3.7 P F	6.2.0	32.5 ± 4.5	0 ± 2		≥83	10.0
PHS	1stL0	MQL3H2-1668	1648.0~1688.0	2.79	0 5~2 2	N:EOF	≥-0.5	≤ 8	≥110	100.0
PDC1.5G	1stL0	MQL302-1619	1607.05~1631.0	2.50	0.45~2.45	27 ± 6	-3 ± 3	≤ 7	≥100	100.0
DCS1800	1stL0	MQL302-1840	1790.0~1891.0	3.70	0.6~3.0	63.5 ± 8	0 ± 3	10.0	≥143	3000.0
GSM1000	1stL0	MQL302-1960	1920.0~2000.0	3.70	0.6~3.0	55 ± 7	0 ± 3	10.0	≥143	3000.0
0011100		MQL301-1964	1920.0~2009.0	3.60	0.6~3.0	55 ± 7	-1.5 ± 3	10.0	≥143	3000.0

VCO TYPICAL CHARACTERISTICS

Test Circuit

MOUNTING AND PACKAGING – MQE9

Recommended Mounting Dimensions: mm

Reflow Soldering Conditions

Reel Dimensions: mm

31

6

PLL Modules

Series	RF/Local Frequency Limits	IF/Local Frequency Limits	Module Structure	Size (mm)
HFQC80 SERIES	700 to 2000MHz	Only IF Port	RFVCO+Dual PLLIC (for CDMA)	9.8 X 8.0 X 1.85
HFQD08 SERIES	700 to 2000MHz	100 to 350MHz	RFVCO+IFVCO+Dual PLLIC	12.6 X 8.6 X 1.85
HFQD80 SERIES	700 to 2600MHz	100 to 760MHz	RFVCO+IFVCO+Dual PLLIC	9.8 X 8.0 X 1.85
HFQS80 SERIES	700 to 2500MHz	-	RFVCO+PLLIC	9.8 X 8.0 X 1.85

Microwave Oscillators

PHASE LOCK LOOP MODULE – HFQD08/HFQS14/HFQS80 SERIES

PLL MODULES								
Application		Part Number	Operating Frequency Range (MHz)	Supply Voltage (1) (V)	Output Level (dBm)	Power Consumption (mA max.)	C/N (2) (dBc/Hz min.)	Lock-up Time (msec.max.)
VICS	Tx/Rx	HFQS80Q2489MA01	2489	3.0 ± 0.2	0 ± 3	23	-110	5.0
N-CDMA800	Tx/Rx	HFQD08B740M440A01	741.5 ± 19.5	2.8 ± 0.1	-4 ± 2.5	20	-138	5.0
ISM5.8	Tx/Rx	HFQS14D5820MA01	5820 ± 25	5.0 (3.0)	0 ± 3	37	_	1.0

(1) = Vcc1 (3.0) for VCO + Doubler, Vcc1 (5.0) for PLL-IC (2) = Separation (kHz)

■ BLOCK DIAGRAM

7

All information contained in this catalog is available in PDF downloadable format at <u>www.murata.com</u>.

Marketing Communications 2200 Lake Park Drive Smyrna, Georgia 30080 Tel: 770-436-1300 Fax: 770-436-3030 www.murata.com